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This paper describes a fuzzy predictive energy management strategy for battery and supercapacitor 

hybrid energy storage systems of electric vehicles and validates it using a scaled down experimental test 

platform. The strategy consists of a power demand distributor for dealing with power flow between 

battery and supercapacitor and a power demand predictor for improving the control performance of the 

former. The power demand distributor is developed based on a combination of filtration strategy and 

fuzzy logic controller. The filtration strategy is used to prevent battery from providing high frequency 

power demand. The fuzzy logic controller is used to shave battery peak current and maintain the voltage 

level of supercapacitor. Considering the stochastic nature of actual traffic condition, the power demand 

predictor is developed using a Markov chain model. Different from prior research efforts that carry out 

Markov decisions using either weighted probability estimation or maximum probability estimation, this 

study implement a comparative study on the two probability estimation methods based on NEDC, 

NurembergR36 and SC03 driving cycles. Experimental results validated the superiority of the described 

control strategy. 
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1. INTRODUCTION 

Along with petrol-driven automobile quantity increases as well as the air quality in cities and 

urban areas declines, the emission performance of cars has become a serious concern. In some 

automobile markets, such as China, United States and European Union, series of regulations have been 

issued in automotive sector to restrict emission of harmful gas, including CO, NOx, HC and solid 

suspended particle[1]. These policies have heartened the development of electric vehicles, which have 
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been believed the most promising solution by automobile manufacturers[2]. However, the spread of 

electric vehicles has been slow, in part because of battery performance limitations. At present, lithium-

ion batteries are most configured in electric vehicles for a continuous energy supply to satisfy the desired 

driving distance. In addition, spike power with large current demand often needs to be responded in time 

for vehicle performance and energy recovery during the process of vehicle acceleration and deceleration. 

Therefore, it requires batteries have not only high energy density and but also high power density at the 

same time for satisfying various driving demands of electric vehicles. However, owing to current 

technology limitation, it is still impossible to find the two natures in one battery[3,4]. 

To break the battery performance dilemma, a hybrid energy storage system with battery pack as 

primary energy buffer and supercapacitor pack as primary power buffer, has been recommended in the 

literature. Compared with batteries, supercapacitors have higher power density but extremely low energy 

density. They are thus ideal partners combining with battery, compensating mutually flaws[5-10]. To 

form such a hybridized energy storage system, different kinds of topology structures have been proposed. 

Among these topology structures, the semi-active and fully active are most used[11-19], and three 

representative examples are shown in Figure 1. Generally, only one converter is employed in the semi-

active topology structures for implementing power distribution task. The role of the DC/DC converter is 

to adjust current of a certain energy source with its voltage maintain. For the semi-active topology 

structure shown in Figure 1(a), the use of the supercapacitor can be obviously restrained when a stable 

load voltage needs to be maintained. Another kind of semi-active topology structure is illustrated in 

Figure 1(b). In this structure, since the supercapacitor can be actively controlled by the DC/DC converter, 

therefore the energy utilization efficiency can be obviously improved. The fully active topology structure 

with two DC/DC converters is given in Figure 1(c). Although this kind of structure can achieve best 

flexible control potential, it has the highest cost among all these structures.  
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(a) Semi-active topology structure with one degree of freedom: controllable battery. 
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(b) Semi-active topology structure with one degree of freedom: controllable supercapacitor. 
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(c) The fully active topology structure with two degrees of freedom: controllable battery and 

supercapacitor. 

 

Figure 1. Three representative examples of the semi-active and fully active topology structures. 

 

 The performance of the mixed dual energy sources is heavily dependent upon the adopted energy 

management control strategy, which determines how much power demand would be delivered to battery 

and supercapacitor respectively. To improve the overall system efficiency and the battery durability, the 

development of highly efficient energy management strategies for hybrid energy storage systems has 

become a research hotspot in the field of hybrid electric vehicles. Some researchers have summarized 

the existing energy management strategies and classified them into two groups, which are optimization-

based control strategies and rule-based control strategies, according to the described mathematical 

models when they are developed [8,20,21].  

Optimization-based strategies aim at finding best solution to minimize the preset objective 

functions by employing some optimization algorithms, where common examples are dynamic 

programming [22], particle swarm optimization [23], genetic algorithm [24], DIRECT global 

optimization[25]. They are effective in seeking for ideal global results based on priori information of an 

entire driving cycle, but time-consuming. Therefore, they cannot be implemented online. On the 

contrary, their solutions are often used for parameter adjusting of some rule-based strategies. In order to 

improve the availability of optimization methods, some real-time optimization energy management 

strategies are proposed. In [26], the authors used equivalent consumption minimization strategy (ECMS) 

to online optimize power flow among the power systems. In the ECMS, the battery charge is converted 
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to the equivalent fuel coefficient, and the total fuel consumption (actual and equivalent) is minimized at 

each sampling interval. In [27], a model predictive controller (MPC) was developed for real-time power 

flow optimization during operation, considering physical constraint limitations of each power source in 

the system. 

In contrast, rule-based methods are most designed through a series of preset rules which are 

inspired by heuristics and expertise experience. The development of the rules does not rely accurate 

mathematical model and priori knowledge of a driving cycle, therefore they have good real-time 

performance and robustness, and have been successfully employed in real hardware controllers, even 

though the solutions are not the most perfect. Determined rule, fuzzy logic and filtration strategies are 

three typical examples. In [28], the authors developed a multi-level power management strategy for such 

a compounded system. The determined rule-based strategies were designed for energy planning. 

Simulation showed the strategy could effectively reduce system losses and component sizing. In [29], a 

determined rule-based multi-mode energy management strategy was developed for switching working 

modes of battery and supercapacitor. Simulation and experimental results demonstrated that the 

proposed strategy could effectively reduce the energy losses of the DC/DC converter. In [30], the author 

used a determined rule-based strategy to control the charge and discharge of supercapacitor. Simulation 

results revealed that the control strategy allowed for a high utilization of supercapacitor for regenerative 

breaking energy recovery. The determined rule strategy can realize good control performance by tuning 

rule parameters reasonably. Furthermore, in order to better accommodate the inherent time-varying and 

nonlinear characteristics of battery and supercapacitor hybrid energy system, fuzzy logic-based 

strategies are further put forwarded in [31-33]. For example, an adaptive fuzzy controller was built in 

[33]. In this strategy, the membership functions of the fuzzy controller are independently designed 

according to four different speed ranges of driving cycles. Experimental results demonstrated that the 

strategy had a good adaptation to variation of vehicle speed. Filtration-based strategy decomposes load 

power demand into different frequency components depending the characteristics of power sources. In 

[34], wavelet based filter power distribution strategy was introduced for a fuel cell system combined 

with battery and supercapacitor two sources. In this work, the load power was separated into high and 

low two frequency components using a three-layer Haar wavelet. The extracted low-frequency power 

demands were jointly assumed by the fuel cell stack and battery pack, while the high frequency part was 

distributed to the supercapacitor. Simulation and experimental results demonstrated the method could 

achieved satisfactory performance.   

In summary, the rule-based strategies have good real-time capability, but fail to achieve optimal 

system performance. On the contrary, the ideal power sequences of each power source can be obtained 

by the optimization-based strategies, however they are not directly implementable because the 

computation process are time-consuming. For this, predictive energy management strategies, in which 

algorithms are performed at a short time window of future driving condition, are proposed by some 

researchers [35-37]. In general, the ahead knowledge of driving condition, including terrain, speed, 

distance and other data can be acquired by vehicular navigation system and radar sensors [36-38]. These 

telematic devices usually can supply high enough prediction accuracy, but their equipment cost is often 

very expensive. For this, low-cost mathematical algorithms, such as artificial neural networks and 

Markov chain models, are most used in predictive energy management strategies. The neural networks 
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have good learning and recognizing abilities, and therefore they are widely employed in the field of 

pattern recognition [39]. The learning vector quantization neural network was employed to develop a 

driving mode recognizer in [40]. For each driving mode, thermostat strategy was optimized by genetic 

algorithm. Simulation results showed that prediction-based multi-mode strategy could achieve better 

economic performance compared with the sole thermostat strategy under a composite profile which was 

based on a combination of three standard driving cycles. Considering the stochastic influences of traffic 

condition and driver operation, in [36], the Markov chain model, which assumed that the upcoming 

traffic and driver behaviors were independent of the past, was developed for power demand prediction. 

In this work, the predictive information was integrated into a fuzzy logic controller. Simulation and 

experimental results showed improved performance in peak current reduction and energy efficiency 

could be realized. In [41], a predictive energy management strategy based on a combination of Markov 

chain and Pontryagin’s Minimum Principle was proposed for a fuel cell and supercapacitor hybrid 

system. Simulation results showed that the influence of speed variation on fuel cell hybrid system could 

be effectively reduced when Markov chain modular was added to the original strategy. In [42], a multi-

mode energy management strategy based on driving pattern recognizer using Markov chain was 

proposed for fuel cell hybrid vehicles. In this study, three driving patterns are predefined according to 

speed-acceleration characteristics of driving cycles. Namely, each driving pattern was comprised of 

driving cycles that had similar Markov transition probability matrix. Simulation results showed that the 

hydrogen consumption could be reduced by at least 2.07% compared with a single-mode benchmark 

strategy. 

In the existing publications, different probability methods have been proposed in order to predict 

driver power demand by implementing Markov decisions. However, the prediction performance of each 

probability method is not yet evaluated considering the speed and acceleration characteristics of the 

driving cycles. The Markov chain state probability map is used to feature the speed and acceleration 

transition behavior of a driving cycle. However, each driving cycle has its own speed and acceleration 

characteristic. In other words, the Markov chain state probability maps can be different and even have 

big differences when the driving scenario is changed. Therefore, it is necessary to study the probability 

methods for power demand prediction applied in different driving scenarios. This paper implements a 

Markov chain based predictive energy management control method for a battery dual buffer system with 

a comparative study on two popular probability methods, namely maximum probability and weighted 

probability methods. The main contribution of this study is to reveal predictive performance of the above 

two probability methods by using different driving cycles. The research conclusions are expected to 

supply a basic reference for probability method selection when a Markov chain based predictive energy 

management strategy is designed. 

 

2.  ENERGY MANAGEMENT STRATEGY  

In this paper, a Markov chain based predictive energy management strategy is proposed, as 

shown in Figure 2. In the strategy, a low-pass filter is employed for decomposing load power demand 

into low and high two frequency components, of which the low frequency power part is distributed to 
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the battery, and at the same time the high frequency power part is distributed to the supercapacitor. In 

this way, the frequency features of the fluctuating power demand can be effectively compensated by the 

supercapacitor. To reduce battery current and maintain the voltage level of supercapacitor, a fuzzy logic 

controller is developed. The input power demand of the fuzzy controller is estimated by a Markov chain 

model. Each part of the proposed energy management strategy will be explained detailly in the following 

sections. 
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Figure 2.  Implementation framework of the proposed predictive energy management strategy. 

 

2.1. Frequency separation based on low-pass filter 

In actual traffic condition, the power demand generated from the driver pedal operation is largely 

fluctuating. In the conventional single power system, the battery is often suffering from the largely 

fluctuating power demand, which would increase the internal resistance values of the battery and thus 

yield extensive power loss. To alleviate battery stress and improve work efficiency, a low-pass filter is 

employed to extract the low frequency component of the load power demand, denoted by PLF. 

Correspondingly, the supercapacitor power demand, denoted by PHF, is the difference between battery 

power demand and load power demand, denoted by Pload. Therefore, we have the following relationship 

expressions. 

 

𝑃LF = 𝐹(𝑃𝑙𝑜𝑎𝑑)                                                                           (1) 

 

𝑃HF = 𝑃𝑙𝑜𝑎𝑑 − 𝑃LF                                                                        (2) 

 

where F represents a low-pass filter function. This filter operation would stop battery from 

providing high frequency power demand and extend its lifetime.  
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2.2. Power demand prediction based on Markov chain model 

 In this work, we model vehicle acceleration state in the upcoming time step by the following 

first order Markov chain.  

 

𝑃ijm = Pr(𝑎𝑘+1 = 𝑖|𝑎𝑘 = 𝑗, 𝑣𝑘  = 𝑠)                                                             (3) 

 

where vehicle speed 𝑣k and acceleration 𝑎k are Markov state parameters, 𝑃ijm is the transition 

probability of vehicle acceleration, transferring from the acceleration state 𝑎k at the current time step to 

the acceleration state 𝑎k+1 at the next time step while current vehicle speed 𝑣𝑘  = 𝑠.  

   To obtain the Markov transition probabilities, the observation data need to be collected from 

selected driving cycles and then calculate by the following expression. 

 

𝑃i,j =
𝑚𝑖,𝑗

𝑚𝑖
                                                                                                (4) 

where 𝑚𝑖,𝑗 represents the number of occurrences of vehicle acceleration state transition from 𝑎k 

to 𝑎k+1 at vehicle speed 𝑣𝑘  = 𝑠, 𝑚𝑖 represents the total transition number of the acceleration 𝑎k. 

 

 
(a) Speed and acceleration characteristics of NEDC. 

 

 
(b) Speed and acceleration characteristics of NurembergR36. 
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(c) Speed and acceleration characteristics of SC03. 

 

Figure 3.  Acceleration transition probabilities of NEDC, NurembergR36 and SC03 driving cycles. 

 

Figure 3 shows the speed and acceleration characteristics of NEDC, NurembergR36 and SC03 

driving cycles. It can be observed that the speed and acceleration characteristics of the three driving cycles 

are obviously different. Based on speed and acceleration information, the power demand at the next 

moment can be calculated in (5) and (6). 

 

𝑣𝑘+1 = 𝑣𝑘 + 𝑎𝑘 ∙ 𝑡                                                                      (5) 

 

𝑃𝑘+1 =
𝑣𝑘+1

𝜂
(𝑚𝑓𝑔𝑐𝑜𝑠(𝜃) + 𝑚𝑔𝑐𝑜𝑠(𝜃) +

𝐶𝐷𝐴

21.15
𝑢𝑘+1

2 + 𝛿𝑚𝑎𝑘+1)                         (6) 

where the formula in (6) is a vehicle longitudinal dynamic model, which is used for power demand 

calculation. In the model, η represents energy deliver efficiency of the powertrain system, m represents 

vehicle weight, 𝑓 represents rolling resistance coefficient of tires, g represents gravitational acceleration 

constant, A represents frontal area of vehicle, 𝐶𝐷 represents drag coefficient, 𝛿 represents the conversion 

factor of rotational motion mass in a vehicle, 𝜃 represents road slope angle, here it is assumed to be zero, 

namely flat road surface. The parameter values of the vehicle model adopted in this study are given in 

Table 1. 

 

Table 1. The parameter values of vehicle model adopted in this study. 

 

Parameters                      Values                                        

m                                       1550  

A                                        2.13                                 

Cd                                       0.3                                   

A                                        0.36                                  

f                                          0.02  

𝛿                                          1.1 
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In the vehicle model, the acceleration 𝑎𝑘+1  at speed 𝑣𝑘+1  condition would be estimated using 

maximum probability and weighted probability two methods, which can be respectively written by 

 

𝑎𝑘+1 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑎1, 𝑎2, ⋯ , 𝑎𝑛)                                                                   (7) 

 

𝑎𝑘+1 = 𝑎1𝑝1 + 𝑎2𝑝2 + ⋯ + 𝑎𝑛𝑝𝑛                                                                 (8) 

 

 

2.3. Power distribution regulation based on fuzzy logic control 

Although the power components obtained from the above frequency separation strategy can well 

match the frequency spectrum characteristics of the power sources, a supervisory control strategy is still 

necessary for reducing battery current and maintaining the voltage level of supercapacitor. From the energy 

management literature, the fuzzy logic controllers are widely used for managing power flow between the 

power sources due to their advantage in coping with uncertain and complicated systems. They make 

decisions depending on expert system rather than using a precise mathematical model of the system. 

Therefore, they can supply an appropriate control structure for the hybridized system with two different 

sources.    

  In this subsection, a fuzzy logic controller is developed for determining the appropriate power 

demand for battery and supercapacitor. The input parameters of the fuzzy controller are the low frequency 

current obtained from the low-pass filter and the voltage value of the supercapacitor, and the output 

parameter is the surplus current distributed to the supercapacitor for voltage regulation. Different types of 

membership functions are employed for partitioning the possible variation range of input and output 

parameters into several fuzzy areas. The current input parameter has four fuzzy domains, which are entitled 

with negative large (NL), negative small (NS), positive small (PS), positive large (PL). The supercapacitor 

voltage has three fuzzy domains, which are entitled with low (L), medium (M), high (H). The fuzzy 

domains used for the output parameter are similar with that of the current input parameter.  

 In order to obtain an improved fuzzy controller so that the battery current can be effectively 

reduced. The membership function curves of inputs and output are designed according to the possible 

power demand levels. For this, two specific cases are discussed as following. 

  (1) Case 1: an electric vehicle has the same driving state at current and next time interval, 

namely the electric vehicle is currently in driving state, according to Markov prediction, at the next time 

interval, it will be still in driving state; or the electric vehicle is currently in braking state, according to 

Markov prediction, at the next time interval, it will be still in braking state. Either driving or barking 

states, the fuzzy controller should can reasonably control the supercapacitor discharge for satisfying the 

continuous power supply of an electric vehicle. The fuzzy function relations between data import and 

export are plotted together using Figure 4. For the battery current, the Gaussian functions are utilized for 

dividing the current variations into four fuzzy areas from -25A to 25A, as pictured using Figure 4(a). In 

addition, the Gaussian function curves for current < -15 and current > 15 are modified with the 

trapezoidal function curves, where the battery current can be recognized more easily when it is becoming 
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very large under driving or braking states. For the supercapacitor, in this work, the voltage variation is 

preset from 0.8 to 1.0. Two symmetric trapezoidal curves are employed for the low and high voltage 

areas, as shown using Figures 4(b) and (c). For the medium voltage range, the fuzzy membership is 

depicted using an asymmetry trapezoidal curve, which is finally determined by different simulation tests. 

The membership function curves of Figure 4(b) are used for the case that an electric vehicle has 

continuous driving demand at current and next time interval. It is clearly seen that the left curve of the 

asymmetry function is much cliffier, which indicates that the fuzzy logic controller will become more 

sensitive in controlling the supercapacitor discharge when the its voltage is low. Similarly, the 

membership function curves of Figure 4(c) are used for the case that an electric vehicle has continuous 

braking demand at current and next time interval. It is also seen that the right curve of the asymmetry 

function is much cliffier, which indicates that the fuzzy logic controller will become more sensitive in 

controlling the supercapacitor charge when the its voltage is high. For the surplus current, the layout of 

the membership function curves is the same with that of the battery current. 

 

 

 
(a) The membership function curves of the import current. 

 
(b) The fuzzy function relations of the supercapacitor voltage when a vehicle has continuous driving 

demand at current and next time interval. 
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(c) The fuzzy function relations of the supercapacitor voltage when a vehicle has continuous braking 

demand at current and next time interval. 

 

 
(d) The fuzzy function relations of the export surplus current. 

 

Figure 4.  The fuzzy function relations of the import and export parameters. 

 

(2) Case 2: an electric vehicle has inverse driving states at current and next time interval, namely 

the electric vehicle is currently in driving state, according to Markov prediction, at the next time interval, 

it may be in braking state; or the electric vehicle is currently in braking state, according to Markov 

prediction, at the next time interval, it may be in driving state. In this case, the membership function 

curves of battery current and surplus current are the same with that of the first case, but the membership 

function curves of the supercapacitor voltage need to be slightly adjusted as shown using Figure 5. The 

layout of the membership function curves is designed to be symmetric because the supercapacitor has 

completely different charge operations at current and next time interval. Table 2 displays the fuzzy rules 

that are utilized to combine surplus current to battery current and supercapacitor voltage.                                                                                                                                                                                                                                                                                                                                                                                       

 

 
 

Figure 5.  The membership function curves of the supercapacitor voltage when a vehicle has composite 

driving states at current and next time interval. 
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Table 2.  Fuzzy rules for combining input and output variables. 

 

dS 

Ratio of supercapacitor 

voltage 

L                     M                     H 

Cbat 

NL              NL                  NL                  NS 

NS              NL                  NS                   NS 

PS               PS                   PS                   PL 

PL               PS                   PL                   PL 

 

 

 

3. EXPERIMENTAL CONFIGURATION OF HYBRID ENERGY STORAGE SYSTEM 

In the subsection, a scaled-down hybrid energy storage system experimental configuration for a 

battery and supercapacitor has been established, as pictured using Figure 6. These experimental devices 

are composed of a 100V200A cycle simulator that is used to yield load current demand of an electric 

vehicle according to preset driving cycle, a Rapid prototyping controller from Huahai company  in China 

that is used for implementing developed control algorithm between the energy sources, a bidirectional 

DC/DC converter that is used for regulating the voltage of the supercapacitor with a current supervision 

control.  

 

 
 

Figure 6. The 72V hybrid system test bench, which consists of a battery pack as main source, a 

supercapacitor pack as aided source, a RapidECU for algorithm implement, a DC/DC converter 

for power flow regulation, a load simulator for cycle simulation, and a personal computer. 

 

 

Table 3. Primary parameters and their ratings for DC/DC controller. 

 

Names                                        Ratings 

Peak voltage(V)                           200                                         

Peak current(A)                           120                                         

Rated power(kW)                         20                                    

Pack weight(kg)                           15                                            
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For each implementing step of the implement control algorithm, the actual obtained supercapacitor 

power signal is compared with the desired power demand of the supercapacitor, which generated from the 

developed control model. The comparison result is then given to a designed PI controller and the output of 

the controller is the input of the DC/DC converter. The energy sources include a battery pack and a 

supercapacitor pack. The battery system is consisted of twenty-two cells by lithium iron phosphate material 

composition. The supercapacitor system is consisted of with six 48V Maxwell modules by iron oxide 

material composition. The main names of all the above several systems are given in Tables 3-6. 

 

 

Table 4. Primary parameters and their ratings for load simulator. 

 

Names                                       Ratings 

Peak voltage (V)                          100                                    

Peak current (A)                          200                                 

Peak power (kW)                          20                                   

 

 

Table 5. Primary parameters and their ratings for battery pack. 

 

Names                                        Ratings 

Rated voltage(V)                            72                                  

Rated capacity(Ah)                         50                            

Total cells                                        22                              

Peak power(kW)                             3.6                       

Pack weight(kg)                              50                               

Average resistance((mΩ)           80                                  

 

 

Table 6. Primary parameters and their ratings for supercapacitor pack. 

 

Names                                        Ratings 

Rated voltage(V)                            96                            

Rated capacity(F)                          165                            

Module number                               6                        

Peak power(kW)                            9.6                        

Pack weight(kg)                             45                               

Average resistance((mΩ)          2.9                           

 

4.  RESULTS AND DISCUSSION 

In this section, three different urban driving cycles, including NEDC, NurembergR36 and SC03, 

are chosen as test cycles. Considering the current and voltage limits of the actual battery and supercapacitor 

systems, the power demand of an electric vehicle using parameters displayed in Table 1 is scaled down by 

5. Figures 7-9 give the experimental results of the proposed predictive energy management strategy using 

Markov chain with two different probability estimations. In the first method, the future power demand is 
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predicted using Markov chain with maximum probability estimation, and in the second method, the future 

power demand is predicted using Markov chain with weighted probability estimation[36,41,42]. 

The dynamic behaviors of battery current under NEDC driving cycle are compared in Figure 7(a). 

The red indicates the results that are obtained using Markov chain with maximum probability estimation, 

and the blue indicates the results that are obtained using Markov chain with weighted probability 

estimation. From the curves, we can find that the battery current by maximum probability estimation is 

obviously smaller than that by weighted probability estimation. However, from the results of Figure 8(a) 

and Figure 9(a) under NurembergR36 and SC03 driving cycles respectively, we have inverse observation, 

that the battery currents by maximum probability estimation are relatively larger than that by weighted 

probability estimation. This indicates that the prediction accuracy of Markov probability estimation 

methods is dependent on the transition behaviors of the state variables in a driving cycle.  

Figures7-9(b) give the experimental comparative results of battery voltage under NEDC, 

NurembergR36 and SC03 driving cycles. We can observe that the control strategy with both probability 

estimation methods can realize a good voltage stability. For the NEDC driving cycle, the maximum voltage 

drop is 8.88V by maximum probability estimation, which is a bit larger than 8.55V by weighted probability 

estimation. Still, at most time of the driving cycle, the voltage drops by maximum probability estimation 

is much smaller than that by weighted probability estimation. From the voltage results of NurembergR36 

and SC03 driving cycles, at most time of the driving cycle, the voltage drops by maximum probability 

estimation is much larger than that by weighted probability estimation. These observations prove that the 

Markov chain with maximum probability estimation can realize higher predictive precision for NEDC 

driving cycle, and the Markov chain with weighted probability estimation can realize higher predictive 

precision for NurembergR36 and SC03 driving cycles.  

The curve evolutions of supercapacitor current under NEDC, NurembergR36 and SC03 driving 

cycles are illustrated in Figures 7-9(c). Since the current demands generated from the three driving cycles 

are provided by the battery and supercapacitor jointly, therefore, if the battery current is large, then the 

supercapacitor current should be small based on fixed current demand, and vice versa. From Figure 9(c), 

the control strategy with maximum probability estimation can control the supercapacitor to provide larger 

charge-discharge current compared with that with weighted probability estimation under NEDC driving 

cycle. This can prevent the battery from large current shock and extend its lifetime. In addition, owing low 

resistance and high energy deliver efficiency, more regenerative breaking energy can be effectively 

recovered by the supercapacitor. Figure7(d) illustrates the experimental comparative results of 

supercapacitor voltage under NEDC driving cycle. We can find that the lowest voltage point of the 

supercapacitor is above 75V, namely the voltage doesn’t exceed its lower limitation (in this study, the 

lower limitation of the supercapacitor voltage is set to be 75V). The conclusions for the supercapacitor 

current comparison under NurembergR36 and SC03 driving cycles are the same, namely the control 

strategy with weighted probability estimation can control the supercapacitor to provide larger charge-

discharge current compared with that with maximum probability estimation. It should be noted from Figure 

8(d) and Figure 9(d), that the lowest points of the supercapacitor voltage are all above 80V. This can be 

explained that smaller power demands are requested for NurembergR36 and SC03 driving cycles. 
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(a) Experimental comparative results of battery current. 

 
(b) Experimental comparative results of battery voltage. 

 
(c)Experimental comparative results of supercapacitor current. 

 
(d) Experimental comparative results of supercapacitor voltage. 

 

Figure 7. Voltage and current behaviors of battery and supercapacitor under NEDC driving cycle. The red 

indicates the results that are obtained using maximum probability method, and the blue indicates 

the results that are obtained using weighted probability method. 
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(a) Experimental comparative results of battery current. 

 

 
(b) Experimental comparative results of battery voltage. 

 
(c) Experimental comparative results of supercapacitor current. 

 

 
(d) Experimental comparative results of supercapacitor voltage. 

 

Figure 8. Voltage and current behaviors of battery and supercapacitor under NurembergR36 driving cycle. 

The red indicates the results that are obtained using maximum probability method, and the blue 

indicates the results that are obtained using weighted probability method. 
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(a) Experimental comparative results of battery current. 

 

 
(b) Experimental comparative results of battery voltage. 

 

 

 
(c) Experimental comparative results of supercapacitor current. 

 

 
(d) Experimental comparative results of supercapacitor voltage. 

 

Figure 9. Voltage and current behaviors of battery and supercapacitor under SC03 driving cycle. The 

red indicates the results that are obtained using maximum probability method, and the blue 

indicates the results that are obtained using weighted probability method. 
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5. CONCLUSIONS 

This paper introduced a predictive energy management strategy and its experiment 

implementation for battery and supercapacitor hybrid energy storage systems of electric vehicles. In the 

strategy, a low-pass filter was designed for removing the high-frequency component of the battery power 

demand. A fuzzy logic controller was developed using future power demand information of a driving 

cycle for enhancing the performance in shaving battery peak current and maintaining the voltage level 

of supercapacitor. The future power demand information was obtained from a Markov chain model using 

two probability estimation methods for the purpose of comparison, namely maximum probability 

estimation and weighted probability estimation. A scaled down battery and supercapacitor hybrid system 

experimental test platform was developed to implement energy management strategy based on NEDC, 

NurembergR36 and SC03 Driving cycles. Experimental results showed that the proposed strategy could 

achieve expected control performance. Here two findings are summarized. One is that the battery peak 

current was obviously reduced and at the same time the high-frequency component was effectively 

avoided, which can eventually increase the lifetime of the battery. Another is that the strategy with 

maximum probability estimation performs better if the state transition probabilities of Markov chain are 

obtained from NEDC driving cycle, whereas the strategy with weighted probability estimation performs 

better if the state transition probabilities of Markov chain are obtained from NurembergR36 and SC03 

driving cycles. 
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