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This study proposed a well-organized technique for the optimal selection of the unknown parameters for 

the Solid Oxide Fuel Cell (SOFC) model. The main idea is to propose a new metaheuristic method to 

achieve more efficient results for the model to give a satisfying agreement between the voltage and 

current profile of the SOFC. The mean squared error (MSE) has been adopted as an objective function 

between the achieved data and the experimental data. For minimizing the MSE, a new modified version 

of the Stain Bowerbirds Optimization algorithm has been utilized. The proposed design is applied to 

simulated data and practical data to verify its efficiency. Finally, the robustness and the precision of the 

presented algorithm are compared and verified by some state of art metaheuristics including basic Satin 

Bowerbird Optimization algorithm (SBO), Differential evolution algorithms (DE), coRNA-GA, Chaotic 

Binary Shark Smell Optimization (BSSO), and Swarm Optimizer (SO). 

 

 

Keywords: Solid Oxide Fuel Cell; model estimation; Stain Bowerbirds Optimization algorithm; 

electrochemical model. 

 

 

1. INTRODUCTION 

However, fossil fuels are now the main part of energy resources in the world, due to some main 

disadvantages like generating a high ratio of pollutants and also the lack of fossil fuel resources leads 

the researchers to work a clean alternative energy resource [1,2]. Fuel cells are a kind of clean energy 

resources that their applications have been increasing [3]. Fuel cell technology has been the focus of 

research in recent years due to its high efficiency, lower pollution, use of different fuels, and flexibility 

in the type of energy produced [4-6]. Other benefits of a fuel cell include adaptability to the environment, 

lack of noise pollution due to the lack of moving parts, the ability to generate heat and electricity at the 

same time, and use in decentralized energy production applications [7,8]. Among the different types of 

fuel cells, only those cells can be used in power plants that have high operating temperatures. Therefore, 

Solid Oxide Fuel Cell (SOFC) is the main option for employing power plants [9,10]. Because in addition 
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to the overall benefits of fuel cells, the specific benefits of SOFCs, including higher efficiency than other 

fuel cells, the possibility of using the heat generated in the fuel cell (stack) for increased efficiency, the 

possibility of reforming the inlet fuel inside the fuel cell stack due to its high operating temperature, not 

needing for expensive catalysts and the low corrosion problem due to the use of solid electrolyte in its 

structure has increased the use of this type of fuel compared with other kinds of fuel cells [11]. As 

mentioned above, the exhaust gases from the solid oxide fuel cell have a high temperature so that the 

heat of these gases can be used to increase re-efficiency [12,13]. For example, the SOFC gas power plant 

can be studied as an upstream cycle for either single or multi-pressure CHP Rankine cycles [9]. 

Generally, the mathematical modeling of SOFCs gives basic information of them that is significant for 

optimal designing of the system by considering physical and electrochemical reactions [14]. This case 

encourages the researchers to work on betters modeling of this kind of fuel cell. Several methods have 

been proposed in this field. For example, Yang  [15] proposed an optimized procedure for the optimal 

selection of the dynamic model of SOFC. A three sub-models were used for the SOFC. Improved 

Genetic Algorithm (IGA) was used for the parameter optimization. The proposed improved algorithm 

was validated by some different types of GA in terms of accuracy.  

Liu [16] presented an adaptive technique based on the Differential Evolution (DE) algorithm for 

the optimal selection of the model parameters. For achieving better results of the method, the crossover 

technique has been added to the algorithm. for validating the proposed method, it is applied to a simple 

electrochemical SOFC model. The simulation showed that the presented method has better efficiency 

for the identification of model parameters compared with other metaheuristics from the literature.  

Wei  [17] proposed an optimization method for optimal modeling of the SOFC system. The main 

idea is to achieve optimum value parameters for the solid oxide fuel cell by minimizing the mean squared 

deviation error based on a modified version of Binary Shark Smell Optimizer and Chaos theory. 

MATLAB software was used for simulating the method. The method was applied to empirical data and 

the results also compared with some other state of art techniques to indicate the method capability.  

Jun [18] introduced an optimized procedure to minimize the system cost once an air leakage fault 

occurs and to maximize the total performance of the SOFC. These two objectives lead the researchers 

to use a non-dominated sorting PSO algorithm. The simulation results indicated that the presented 

method gave a maximum performance and minimum cost for the studied SOFC. 

Bunin  [19] performed an empirical verification of a real-time optimization (RTO) for the 

efficient operation of SOFCs. The RTO adopted the constraint-adaptation methodology to supply the 

constraints. The impact of the filter parameters was implemented to a modifier update and of the RTO 

frequency for more investigation. Based on the literature it can be concluded that several studies have 

been presented for parameter identification of a SOFC in both transient and steady-state scenarios. The 

purpose of the present research is to design a new reliable approach for parameter estimation of SOFC. 

The main contribution of the present work is briefly given below:  

- A new optimal method based on metaheuristics is proposed for SOFC model identification 

- The MSE is used as a cost function between the achieved and the experimental data 

- A modified version of Stain Bowerbirds Optimization algorithm is utilized for minimizing MSE 

- The method is verified by simulated data and practical data  

- The robustness and the precision of the method are compared with some state of art methods 
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2. THE DYNAMIC MODEL OF SOLID OXIDE FUEL CELL 

As previously mentioned, for achieving a proper optimized SOFC model, we need to represent 

and simulate it before the construction. In this study, a dynamic model of SOFC is proposed for optimal 

parameter identification. ،he dynamic electrochemical model of the SOFC has been described in the 

following. Based on [16,9,20,13], the output voltage of a single SOFC is obtained as follows: 

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 − 𝑉Ω − 𝑉𝑐𝑜𝑛𝑐 − 𝑉𝑎𝑐𝑡,𝑐𝑒𝑙𝑙 (1) 

where, 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 describes the Nernst voltage, 𝑉Ω stands for the ohmic loss, 𝑉𝑐𝑜𝑛𝑐 represents the 

concentration loss, and 𝑉𝑎𝑐𝑡defines the activation loss. By considering the above definition, the output 

voltage for the SOFC stack including 𝑁𝑐𝑒𝑙𝑙 number of cells is as follows: 

𝑉𝑠𝑡𝑎𝑐𝑘 = 𝑁𝑐𝑒𝑙𝑙 × 𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑁𝑒𝑟𝑠𝑡 − 𝐸Ω − 𝐸𝑐𝑜𝑛𝑐 − 𝑉𝑎𝑐𝑡 (2) 

In Eq. (2), the Nernst reversible voltage is achieved as follows [20]: 

𝐸𝑁𝑒𝑟𝑠𝑡 = 𝐸0 +
𝑅 × 𝑇

4 × 𝐹
ln (

𝑃𝐻2

2 × 𝑃𝑂2

𝑃𝐻2𝑂
2 ) 

(3) 

where, 𝐸0 describes the standard potential, T stands for the operating temperature of the SOFC 

(K), 𝑃𝐻2
, 𝑃𝑂2

, and 𝑃𝐻2𝑂 describe the partial pressure of hydrogen oxygen, and water. 𝑅 =

8.314 𝑘𝐽 (𝑘𝑚𝑜𝑙 𝐾)−1  determines the universal gas constant, 𝐹 =  96,486 𝐶 𝑚𝑜𝑙−1describes the 

Faraday constant. 

By considering Eq. (2), the ohmic resistance happens once the resistance of ions to the flow in 

the electrolyte and their resistance to the electrons flow over the electrode materials. The general ohmic 

voltage loss is achieved as follows:  

𝑉Ω = 𝐼 × 𝑅Ω (4) 

where, 𝑅Ω describes the ionic resistance, which is gradually reduced by increasing 

temperature[9]. Based on the ButlereVolmer equation, the loss of activation voltage is achieved as 

follows [21]: 

𝐼 = 𝐼0 × {exp (
𝛽 × 𝑛𝑒 × 𝐹 × 𝑉𝑎𝑐𝑡,𝑐𝑒𝑙𝑙

𝑅 × 𝑇
) − exp (

(𝛽 − 1) × 𝑛𝑒 × 𝐹 × 𝑉𝑎𝑐𝑡,𝑐𝑒𝑙𝑙

𝑅 × 𝑇
)} 

(5) 

where, 𝛽 represents the transfer coefficient, 𝐼0 describes the density for the exchange current, 𝑛𝑒 

defines the transferred electrons mole quantity. By considering [16], 𝛽 = 0.5 and therefore: 

𝐼 = 2 × 𝐼0 × sinh (
𝑛𝑒 × 𝐹 × 𝑉𝑎𝑐𝑡,𝑐𝑒𝑙𝑙

2 × 𝑅 × 𝑇
) (6) 

Accordingly, 

𝑉𝑎𝑐𝑡,𝑐𝑒𝑙𝑙 =
2 × 𝑅 × 𝑇

𝑛𝑒 × 𝐹
× sinh−1 (

𝐼

2 × 𝐼0
) (7) 

The concentration voltage loss happens once the resistance of mass transfer to the reactants and 

products flow over the porous electrodes. Since the concentration voltage loss is obtained by the 

following equation: 

𝑉𝑐𝑜𝑛𝑐 =
𝑅 × 𝑇

4 × 𝐹
× [ln (

𝑃𝐻2

2 × 𝑃𝑂2

𝑃𝐻2𝑂
2 ) − ln (

𝑃𝐻2

∗2 × 𝑃𝑂2

∗

𝑃𝐻2𝑂
∗2 )] 

(8) 

The present study presents a simple electrochemical model for the SOFC stack as for the output 

efficiency. Based on [22], the SOFC output voltage can be simplified as follows: 
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𝑉𝑠𝑡𝑎𝑐𝑘 = 𝐸0 − 𝐴 × 𝑙𝑛 (
𝐼

𝐼0
) − 𝐼 × 𝑅Ω + 𝐵 × ln (

𝐼𝐿 − 𝐿

𝐼𝐿
) (9) 

where, A describes the Tafel line slope, B is a constant depends on the operating state of the fuel 

cell, 𝐼𝐿represents the density of the limit current (mA cm2).  𝑅Ω stands for the area-specific resistance in 

(kΩ cm2), and 𝐸0 defines the open-circuit voltage. 

Because of the second term of Eq. (9) is the Tafel equation, which is generally employed under 

a high activation polarization and because of the reason that the Tafel equation makes high errors during 

low activation polarization, the ButlereVolmer equation is performed to define the activation voltage 

loss as follows [23]: 

𝑉𝑠𝑡𝑎𝑐𝑘 = 𝐸0 − 𝐴 × sinh−1 (
𝐼

2 × 𝐼0
𝑎) − 𝐴 sinh−1 (

𝐼

2 × 𝐼0
𝑐) − 𝐼 × 𝑅Ω

+ 𝐵 × ln (
𝐼𝐿 − 𝐿

𝐼𝐿
) 

(10) 

where, 𝐼0
𝑐 and 𝐼0

𝑎 represent the density of the cathode and the anode exchange currents, 

respectively. 

In this research, seven main parameters have been selected for optimal parameters selection 

including 𝐸0, 𝐴, 𝐵, 𝐼0
𝑎, 𝐼0

𝑐, 𝑅Ω, and 𝐼𝐿, i.e. the decision vector x can be considered by the following 

equation: 

𝑥 = [𝐸0, 𝐴, 𝐵, 𝐼0
𝑎, 𝐼0

𝑐, 𝑅Ω, 𝐼𝐿] (11) 

 

 

 

3. THE COST FUNCTION 

For optimal parameter selection of the SOFC stack model, a cost function is needed. The presents 

study uses the mean squared error (MSE) as the cost function: 

min 𝑓𝑖𝑡(𝑥) =
1

𝑛
∑(𝑉𝑜𝑢𝑡 − 𝑉𝑒𝑠𝑡)2

𝑛

𝑖=1

 
(12) 

where, n stands for the number of data for estimation, and 𝑥 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7} =

{𝐸0, 𝐴, 𝐵, 𝐼0
𝑎, 𝐼0

𝑐 , 𝑅Ω, 𝐼𝐿} are the optimization variables. 

Such that [24], 

𝑥𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑖 (13) 

𝐿 ≤ 𝐼𝐿 , i = 1,2, … , n   (14) 

𝐼0
𝑐 < 𝐼0

𝑎 (15) 

To achieve high conformity between the actual data and the estimated model, a minimum value 

should be achieved for Eq. (12) that is performed by optimal selection of the undetermined parameters 

(x) with its constraint in Eqs. (13-15).  

There are different types of optimization methods to solve such problems. The classic 

optimization algorithms are the first selection for the optimization which is due to their exact solutions. 

Recently, due to increasing the complexity of the problems, these methods not only usually fail to give 

a proper solution to solve the complicated problems, but also, they sometimes stuck in the local optimum. 

In recent years, the development of metaheuristics as simple and global optimizers turn them as the first 
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option to solve these optimization problems [25,26]. In recent research, a modified version of a new 

modified metaheuristic method, called Chaos Satin Bowerbird Optimization algorithm is used for the 

optimal selecting of the SOFC parameters for identification problems.  

 

 

4. SATIN BOWERBIRD OPTIMIZATION ALGORITHM 

Satin Bowerbird is a marvelous kind of bird that lives in Australia. Among the wonders of this 

bird is that has a big talent in the case of nesting such that its nest is similar to a bower. During the mating 

season, a male satin bowerbird attempts to build the best beautiful bower for attracting female 

bowerbirds. This is a competitive process among males to attract the female by designing better bower. 

The bower designing is performed by collecting different things such as their small twigs, ornamental 

stones, and other beauties. 

Afterward, a female satin bowerbird comes to the bower in from the backside when the males 

are absent. Then, the female goes back to judge the male. Once numerous bowers are in the same general 

area, females can analyze males with higher speed and watch them all as their bowers take shape. These 

features inspired  

Moosavi works on a new version of metaheuristics based on these interesting birds that are called 

the Satin Bowerbird Optimization algorithm (SBO) [27]. In the following, the method of designing the 

SBO algorithm has been explained. 

 

4.1. Initializing 

The SBO is a population-based algorithm that starts with some uniform and random n-

dimensional population vector that defines the positions of the bowers. The attractiveness of each male 

bower is made by a combination of different parameters. Consider the initial population of the SBO as 

follows: 

𝑊ℎ = (𝑤1, 𝑤2, . . . , 𝑤𝑚) (16) 

where, Wh describes the hth solution and (w1, w2,…,wm) is the population of the solution.  

The attractiveness of the bowers is defined by the probability of fitness value. Therefore, 

probability helps the satin female bowerbirds to select the best male. Once a male bowerbird has been 

selected by the female based on its probability, it mimics the bower construction, i.e. 

𝑃𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑁𝐵
𝑛=1

 (17) 

𝑓𝑖𝑡𝑖 = {

1

1 + 𝑓(𝑥𝑖)
,   𝑓(𝑥𝑖) ≥ 0

1 + |𝑓(𝑥𝑖)|, 𝑓(𝑥𝑖) < 0

 
(18) 

where, 𝑓(𝑥𝑖) represents the value of the cost function for the position i. 
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4.2. Elitism 

The SBO algorithm considered the best individual as elitism. Essentially, all the male satin bower 

birds make their bowers based on their instinct such that each of them uses its unique instinct for making 

the bower in the mating season. However, the male satin bower birds utilize unique materials for their 

bower decorating, they also use their experiences as the main factor for more attraction of the female 

stain bowerbirds. In other words, experience has a high significance on both bower construction and 

dramatic gestures that help elder males to have more power for attracting the females to their bower. The 

algorithm considers the bower with the best position as the elite of the current iteration. Elites have a 

high ability to effect on the other positions updating. 

 

4.3. Updating 

The updating process of the positions in each cycle of the algorithm is done by the following 

formula: 

𝑊ℎ𝑗
𝑛𝑒𝑤 = 𝑊ℎ𝑗

𝑜𝑙𝑑 + 𝜆𝑗 (
𝑤𝑖𝑗 + 𝑤𝑒𝑙𝑖𝑡𝑒,𝑗

2
) − 𝑊ℎ𝑗

𝑜𝑙𝑑 (19) 

where, Wi describes the desired solution in the current iteration, i is obtained by roulette wheel 

methodology, Whj describes the jth member of Wh, Welite
 represents the elite’s position, 𝜆𝑗 defines the 

attraction power in the desired bower (solution) that is calculated as follows: 

𝜆𝑗 =
𝛼

1 + 𝑝𝑖
 (20) 

where, 𝛼 describes the greatest step size of the solution and pi defines the probability achieved 

by 𝑃𝑟𝑜𝑏𝑖.  

 

4.4. Mutation 

Due to the seriousness of the competition, the weaker male satin bower birds are may be attacked 

by stronger ones or even totally ignored by the others, such that stronger males may destroy the weaker 

males’ bower or steal their materials. This behavior has been applied to the algorithm by performing a 

specific probability to Whj; therefore, a normal distribution (L) can be adopted with variance 𝜎2and 

average of 𝑊ℎ𝑗
𝑜𝑙𝑑 as follows: 

𝑤ℎ𝑗
𝑛𝑒𝑤~𝐿(𝑤ℎ𝑗

𝑜𝑙𝑑, 𝜎2) (21) 

𝐿(𝑤ℎ𝑗
𝑜𝑙𝑑, 𝜎2) = 𝑤ℎ𝑗

𝑜𝑙𝑑 + (𝜎 × 𝐿(0,1)) (22) 

The proportion of space width is represented as a value of 𝛼 that is evaluated in equation (16). 

𝛼 = 𝑦 × (𝑉𝑎𝑟𝑚𝑎𝑥 − 𝑉𝑎𝑟𝑚𝑖𝑛) (23) 

where, y stands for the variance ratio among lower and upper ranges, varmax and varmin represent 

the upper and the lower limits assigned by the variable. 

All the populations have been then combined and sorted to generate the new population. Once 

the termination condition satisfied, the algorithm has been stopped. 
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4.5. Satin Bowerbird Optimization algorithm based on chaos theory (ISBO) 

However, the SBO algorithm gives promising results for the optimization problems, its low 

convergence speed in some problems makes a weak solution or even an improper solution. In this study, 

two mechanisms are employed for decreasing this problem as it is possible. The first term is to use a 

Quasi-oppositional learning mechanism. For understanding the conception of this mechanism, we first 

define the basic oppositional learning mechanism. The oppositional learning mechanism is a method for 

modifying the premature convergence problem by comparing each individual of the population with its 

opposite value and to select the better one as a more suitable candidate [28,29]. This mechanism is 

performed by assuming a candidate x as a real number in the search space with d-dimension in the range 

[α, β]. In this situation, the opposite mechanism for the individual x is obtained as follows: 

𝑥�̃� = 𝛼𝑖 + 𝛽𝑖 − 𝑥𝑖 (24) 

𝑖 = 1,2, … , 𝐷 (25) 

By considering the definition of the opposite mechanism, the quasi-opposite number is obtained 

as follows [30]:  

�̂�𝑖 = 𝑟𝑎𝑛𝑑 (
𝛼𝑖 + 𝛽𝑖

2
, 𝑥�̃�) (26) 

The above mechanism is used for better population generation. 

The second mechanism employed in this study is to use the chaotic mechanism. Based on the 

chaos theory, the real nature of systems is complicated and nonlinear, and also some models seem 

random, but they have a formulated pseudo-random nature [31,32]. This mechanism is utilized to speed 

up the quasi-opposite by using pseudo-random values instead of random values in each iteration. The 

present study uses the logistic map as a chaotic mechanism to modify the quasi-opposite mechanism. 

The logistic map is formulated below [31,32]:  

𝛿o,n
q+1

= 4𝛿o,n
q

(1 − 𝛿o,n
q

)   (27) 

where, o describes the value of the system generators, n stands for the number of populations, 𝑞 

represents the number of iterations, 𝛿n is the chaotic mechanism value in iteration n that is placed 

between 0 and 1. 

Based on the above explanations, the new population in the next iteration will be generated by 

the following equation: 

�̂�𝑛
𝑞+1

= 𝛿o,n
q

× �̂�𝑛
𝑞
 (28) 

Fig. (1) indicates the flowchart diagram of the ISBO algorithm. 
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Figure 1. The flowchart of the ISBO algorithm 

 

 

5. SIMULATION RESULTS 

The programming has been simulation based on MATLAB 2017b software based on CPU: Intel 

Core i7-4720-HQ 2.60 GHz; RAM: 16 GB with Microsoft Windows 10 Enterprise Edition operating 

system. For applying the estimation of the parameters of the SOFC, the ISBO algorithm parameter values 

of the mutation probability are considered 0.05, α and z are considered 0.95 and 0.03, respectively, and 

the initial population and maximum iteration are selected 50 and 1000, respectively. Based on the 

aforementioned discussions, the efficiency of the parameter identification of the SOFC with the 

presented technique has been validated by implementing it to a dynamic electrochemical model from 

[9]. Table 1 indicates the operating conditions for the analyzed SOFC model. 

 

 

Table 1. The operating conditions for the analyzed SOFC model [9] 

 

Parameter Value  Unit 

Cell number 96 - 

Load current  0-158 A 

The mass flow rate of the Air 0.012 mol s-1 

The mass flow rate of the H2 9E-4 mol s-1 

H2O mass flow rate 1E-4 mol/s 

Anode and Cathode pressure 3 atm 

Inlet temperature for fuel and Air 899.85 ℃ 

 

5.1. Validation based on simulated data 

The simulation has been performed to different temperatures including 799.85 ℃, 849.85℃, 

899.85℃, 949.85℃, and 999.85℃) and different pressures including 1 atm, 3 atm, 5 atm, 7 atm, and 9 

atm. The range of the limitations of the parameters has been given in Tables 2.  

Start

Initializing the Satin 

Bowerbird Optimization 

algorithm and parameters

Fitness calculation

t=0 Mutation

Termination

Satisfied?

End

Yes

No

t=t+1

Elitism

Quasi-oppositional based 

learning

Logistic 

Map
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Table 2. The feasible range of the unknown parameters for optimization 

 

Parameter Range Unit Parameter Range Unit 

𝐸𝑂𝐶 [0, 1.2] V 𝐵 [0,1] 𝑉 

𝐴 [0, 1] V 𝐼𝐿 [0,10000] 𝑚𝐴. 𝑐𝑚−2 

𝐼0,𝑎, 𝐼0,𝑐 [0,100] 𝑚𝐴. 𝑐𝑚−2 𝑅𝑜ℎ𝑚 [0,1] 𝐾Ω. 𝑐𝑚−2 

 

For the simulation, the data sets have about 16,000 data points such that only about 1600 numbers 

have been adopted from the main dataset with a step size of 10 to speed up the process. The feasible 

range of the unknown parameters is considered based on Table 2. Table 3 and Table 4 illustrate the 

estimated parameters for the simulated data by different temperatures and pressures based on the 

proposed improved SBO algorithm. For determining the value of the error, the MSE values are also 

given in Tables. Figs. (2) and (3) show the comparisons of the results for the voltage-current profile of 

the simulated data and the estimated data based on the improved SBO algorithm at different pressures 

and temperatures.  

 

 
Figure 2. The comparisons of the results for the voltage-current profile of the simulated data and the 

estimated data based on the ISBO algorithm at various pressures 

 

 
Figure 3. The comparisons of the results for the voltage-current profile of the simulated data and the 

estimated data based on the ISBO algorithm at various temperatures 
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Table 3. The estimated parameters for the simulated data by various temperatures based on the ISBO 

algorithm 

 

Variables 799.85 ℃ 849.85℃ 899.85℃ 949.85℃ 999.85℃ 

𝐸𝑜𝑐(𝑉) 1.127 1.123 1.115 1.110 1.108 

𝐴(𝑉) 0.041 0.037 0.033 0.029 0.025 

𝐼𝑜,𝑎(𝑚𝐴. 𝑐𝑚−2) 32.834 28.336 25.634 23.059 20.637 

𝐼𝑜,𝑐(𝑚𝐴. 𝑐𝑚−2) 6.830 5.751 4.397 3.695 3.108 

𝐵(𝑉) 0.068 0.072 0.076 0.078 0.083 

𝐼𝐿(𝑚𝐴. 𝑐𝑚−2) 158.93 159.67 160.27 160.29 160.31 

𝑅𝑜ℎ𝑚(𝐾Ω. 𝑐𝑚−2) 0.0041 0.0033 0.0030 0.0026 0.0023 

MSE 4.21E-4 1.83E-4 1.64E-4 8.61E-5 3.86E-3 

 

Table 3 indicates the estimated parameters for the simulated data by various temperatures based 

on the ISBO algorithm. According to the results, the proposed ISBO algorithm gives small enough 

results for MSE values for all temperatures. Besides, it is observed that the estimated data achieved by 

the improved SBO algorithm has proper confirmation with the simulated data for various temperatures. 

By a glance on the results reported by Table 3 and Table 4, it can be concluded that by increasing 

the value of the parameter (except 𝐼𝐿 and B) the temperature has been gradually increased.  

The estimated parameters for the simulated data by different pressures based on the ISBO 

algorithm are given in Table 4. As can be seen, while different from the results at different temperatures, 

the values of the estimated parameters are close at different pressures, the parameter E0 has been 

increased by increasing the pressure. 

 

 

Table 4. The estimated parameters for the simulated data by various pressures based on the ISBO 

algorithm 

 

Variables 1 atm 3 atm 5 atm 7 atm 9 atm 

𝐸𝑜𝑐(𝑉) 1.076 1.113 1.126 1.132 1.145 

𝐴(𝑉) 0.0250 0.0250 0.0250 0.0250 0.0250 

𝐼𝑜,𝑎(𝑚𝐴. 𝑐𝑚−2) 22.146 22.108 22.137 22.139 22.144 

𝐼𝑜,𝑐(𝑚𝐴. 𝑐𝑚−2) 4.452 4.436 4.439 4.438 4.438 

𝐵(𝑉) 0.0742 0.741 0.0742 0.0742 0.0742 

𝐼𝐿(𝑚𝐴. 𝑐𝑚−2) 160.053 160.053 160.056 160.053 160.058 

𝑅𝑜ℎ𝑚(𝐾Ω. 𝑐𝑚−2) 0.0031 0.0031 0.0031 0.0031 0.0031 

MSE 1.84E-4 1.86E-4 1.87E-4 1.89E-4 1.88E-4 

 

Fig. (4) and Fig. (5) show the output voltage errors for the simulated data in Fig. (1) and Fig. (2). 
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Figure 4. The voltage deviation between the simulated data and the data obtained by ISBO at different 

temperatures 

 

 
 

Figure 5. The voltage deviation between the simulated data and the data obtained by ISBO at different 

pressures 

 

As observed in Figs. (4) and (5), there is a proper confirmation between the estimated data and 

the simulated data with a small MSE value. 

 

5.2. Validation based on experimental data-ASC/SOFC 

Besides, to validate the results based on simulated data, two different kinds of empirical data are 

used in this paper. The first data set is achieved by [33], which is based on a single cell 10×10 cm2 ASC-

10B Elcogen planar (ASC-SOFC). This data contains 8 data sets with different fuel uses and 

temperatures. The estimated parameters based on the improved SBO algorithm have been reported in 

Table 5. In Table 7, case 1, 2, 4 mean dry H2 at 599.85℃, 649.85℃, and 699.85℃, respectively; case 3 

shows synthetic reformate at 649.85℃; case 5 illustrates dry H2 at FU 20%; case 6, 7, 8 demonstrate 

synthetic reformate at FU 20%, FU 50%, and FU 50% D humidified air, respectively. 
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Table 5. Identified parameters based on the ISBO algorithm for the empirical data of ASC-SOFC  

 

Variables Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

𝐸𝑜𝑐(𝑉) 1.185 1.620 1.367 1.004 1.632 1.007 1.003 1.007 

𝐴(𝑉) 0.063 0.069 0.034 0.015 0.037 0.027 0.031 0.116 

𝐼𝑜,𝑎(𝑚𝐴. 𝑐𝑚−2) 2.415 7.641 2.463 31.24 1.935 20.28 30.42 30.45 

𝐼𝑜,𝑐(𝑚𝐴. 𝑐𝑚−2) 2.241 7.497 1.959 30.16 1.781 18.76 30.16 30.16 

𝐵(𝑉) 0.003 2.16E-15 0.549 6.86E-15 7.86E-15 0.187 0.326 0.111 

𝐼𝐿(𝑚𝐴. 𝑐𝑚−2) 168.48 171.48 202.14 196.67 174.21 121.52 199.24 200.00 

𝑅𝑜ℎ𝑚(𝐾Ω. 𝑐𝑚−2) 4.97E-15 1.14E-16 1.72E-3 1.68E-3 1.11E-3 6.16E-3 6.19E-4 2.08E-10 

MSE 5.06E-6 2.35E-6 2.76E-6 2.93E-6 1.17E-6 5.47E-7 1.48E-7 1.42E-6 

 

Fig. (6) and Fig. (7) show the comparisons between the empirical ASC-SOFC data and the 

optimized model based on the IBSO algorithm during different temperatures and fuel utilization, 

respectively. 

 

 
 

 

Figure 6. The comparisons between the empirical ASC-SOFC data and the optimized model based on 

IBSO algorithm during different temperatures 
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Figure 7. The comparisons between the empirical ASC-SOFC data and the optimized model based on 

IBSO algorithm during different fuel utilizations 

 

As can be observed from Fig. (6) and Fig. (7), the estimated data based on the ISBO method have 

proper confirmation with the empirical data. 

 

5.3. Validation based on comparison with other metaheuristics 

In the previous subsections, the proposed ISBO-based method efficiency was verified on 

simulated data and also experimental data of a SOFC. In this part, the performance of the proposed ISBO 

algorithm is validated for showing its prominence toward the basic Satin Bowerbird Optimization 

algorithm (SBO) [34] and some other metaheuristics in the literature including Differential evolution 

algorithms (DE)[16], coRNA-GA [35], Chaotic Binary Shark Smell Optimization [17], swarm optimizer 

for parameter [36] for optimal parameter estimation of SOFC model. To do a fair comparison among 

different algorithms, similar numbers of population have been adopted for the algorithms (N=100) and 

the maximum iteration (Ni=30) is considered as the stopping criteria. Due to the random process of 

metaheuristics, 50 independent runs have been simulated for each algorithm to have a meaningful result 

in terms of statistical calculations. The results of the analyzed metaheuristics are indicated in Table 6.  

 

 

Table 6. The comparison results of the MSE for various metaheuristics for the simulated data at various 

temperatures 

 

Algorithms 549.85℃ 649.85℃ 699.85℃ 749.85℃ 799.85℃ 

SO [36] 

 

1.23E-2 

(4.15E-3) 

2.84E-2 

(4.09E-3) 

1.62E-2  

(4.32E-3) 

8.77E-

2(2.63E-1) 

1.25 (5.26E-

1) 

BSSO [17] 3.31E-2 

(2.12E-2) 

4.17E-2  

(1.69E-2) 

1.78E-2  

(4.28E-2) 

6.81E-1  

(3.91E-1) 

1.47 (8.98E-

1) 
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coRNA-GA 

[35] 

1.98E-2 

(1.57E-2) 

1.97E-2 

(2.71E-2) 

5.32E-2  

(5.79E-2) 

1.58E-1  

(4.37E-1) 

3.54 (7.59E-

1) 

DE [16] 4.59E-3 

(9.97E-3) 

9.52E-3 

(8.96E-3) 

2.28E-2  

(6.45E-2) 

6.27E-2  

(3.34E-1) 

7.34E(-2)   

(8.78E-2) 

SBO [34] 1.59E-2 

(1.89E-2) 

2.26E-2 

(1.89E-2) 

7.36E-2  

(9.94E-2) 

1.29E-1  

(3.31E-1) 

5.34E-1  

(9.35E-1) 

ISBO 6.32E-4 

(6.78E-4) 

1.18E-3 

(1.92E-3) 

3.94E-3  

(4.38E-3) 

2.95E-3  

(6.41E-3) 

1.73E-3  

(2.22E-4) 

 

To provide a proper comparison between the IBSO method and the compared methods, the paired 

Wilcoxon signed-rank test [49] has been utilized. Fig. (8) shows the convergence speeds of the analyzed 

algorithms using the results achieved by Table 7. As can be seen, the proposed ISBO gives less average 

MSE and standard deviation values toward the basic SBO method and other compared metaheuristics 

that indicates its more robustness and precision. 

 

  
(A) (B) 

  
(C) (D) 

 

Figure 8. The convergence speeds of the analyzed algorithms for (A) 799.85, (B) 999.85, (C) 3 atm, and 

(D) 7 atm 
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 Based on the Wilcoxon’s test results, the ISBO method meaningfully has better efficiency than 

the other compared methods for different temperatures. Fig. (8) also shows that ISBO has the best 

convergence speed toward the others. However, the BSSO algorithm results in good convergence in the 

first stages, it failed to complete its good convergence until the end. 

 

 

 

6. CONCLUSIONS 

The present study proposed a new improved version of a new metaheuristic, called Improved 

Satin Bowerbird Optimization (ISBO) algorithm for optimal selection of unknown parameters of the 

SOFC model. The idea was to present a precise model with optimal parameters such that it gives a good 

agreement of the voltage vs. current profile of the SOFC. To evaluate the model accuracy, the mean 

squared error (MSE) was employed as a cost function between the achieved data and the empirical data. 

For evaluating the capability of the proposed ISBO method, it was simulated based on three different 

scenarios. In the first scenario, the method was evaluated by modeling simulated data. In the next 

scenario, the method was used to model an experimental system (ASC-SOFC). Finally, the method was 

compared with basic Satin Bowerbird Optimization algorithm (SBO), and some other metaheuristics in 

the literature including Differential evolution algorithms (DE), coRNA-GA, Chaotic Binary Shark Smell 

Optimization, and Swarm Optimizer (SO) for the parameter for optimal parameter estimation of SOFC 

model. The method was finally compared with these algorithms from the points of convergence speed 

and accuracy to show its robustness and precision toward the others.  
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