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In an attempt to enhance the electrochemical performance of the iron-based electrode, an iron-core 

copper-shell nano-structured material was synthesized and incorporated with ferrous sulphide, and 

graphite additives. An electrically conductive nickel mesh as a current collector, coupled with a low-

cost hot-pressing technique, was employed to formulate the electrodes. The ferrous and graphite 

integrated iron-core copper-shell nano-structured negative electrode was investigated for applications in 

Fe-based alkaline batteries energy storage. FeCu0.25/15%FeS/5%C composite electrode delivered a 

specific discharge capacity of 385 mAh g-1 an approximately 71% coulombic efficiency. The nominal 

specific capacity of the electrode exhibited negligible capacity degradation after 40 cycles. Ex-situ X-

ray Diffraction characterisations and scanning electrode microscopy images of both the fresh and the 

discharged electrode surfaces show that particle arrangement was still intact after 40 cycles, with 

negligible particle agglomeration compared to the pure iron electrode surface which was marked with 

massive agglomeration. Energy filtered transmission electrode microscopy images confirmed the iron-

core copper-shell particle arrangement. The FeCu0.25/15%FeS/5%C electrode exhibited stable 

performances marked by high specific capacity coupled with negligible capacity decay and high 

efficiency. The ferrous/graphite integrated iron-core copper-shell electrode is consequently a conducive 

negative electrode candidate in alkaline iron-air and nickel-iron battery systems. 

 

 

Keywords: Energy Storage, Iron-based Alkaline Battery, Iron-Core Copper-Shell, Composite Iron-

Copper/Sulphide Electrode  

 

1. INTRODUCTION 

The world economy currently relies eminently on non-renewable energy sources such as coal, 

oil, metal ores and natural gas [1]. The mounting utilisation of these dwindling resources owing to 
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rampant economic development and exponential population growth is becoming critically unsustainable 

and this has fuelled the development of sustainable alternative energy sources.  

In the past few years, renewable energy sources, such as the wind, water and solar resources, 

have emanated as the ideal and suitable energy sources to boost energy security and supply, and alleviate 

ecological and environmental matters [1–4]. Renewable energy sources have the potential to 

significantly lower greenhouse gas emissions while offering a practical mode to reduce, or possibly 

eliminate fossil fuel dependency, this is mainly due to their eco-friendly nature and absolute abundance. 

It is thus apparent why most countries are taking drastic steps to implement economic policies that will 

accelerate the utilisation of such clean resources [1,5,6]. As a result, renewable energy-based power 

generation plants have emerged as the fastest-growing power production plants [2,7]. Global wind and 

solar power production exceeded 1100 GW in 2018, an increase of a staggering 680% compared to the 

previous 10 years [1].  

However, generation of energy from renewable resources (wind, solar etc) is not always feasible 

when the energy demand peaks (stochastic wind profiles and seasonal availability of sunlight, water and 

wind resources). The integration of renewable energy generation and energy storage, therefore, fosters 

a transcendent key to the drift between the sporadic energy generation trend from renewable energy 

sources and energy demand.   

Electrochemical energy storage offers an ideal viable solution that would instil stability in the 

electrical energy grid by mitigating the intermittent energy generation trend from renewable energy 

sources to match energy demand. This solution is pragmatic mostly due to its high round-trip efficiency, 

long cycle life, low cost, and scalability compared to other energy storage technologies [1,3,5,6]. Only 

a few of the several battery technologies developed in the last century have been demonstrated in large-

scale applications. Among the various developed battery technologies, aqueous batteries have the 

potential to help stabilise the future electrical energy grid at a lower cost than any of their non-aqueous 

counterparts (such as Na-ion, Zn-ion, Li-ion, etc.). This is attributed to their utilisation of low-cost water-

based electrolyte and abundant raw materials. In addition, non-aqueous batteries require integration of 

costly safety systems to minimise the risk of fire and explosions; such costly systems are inessential for 

aqueous batteries [5,7].  

Lead-acid (Pb-acid) batteries are the oldest, most commercially deployed aqueous energy storage 

technology; however, its energy density (~ 35-40 Wh kg-1), the toxicity of raw materials, and short cycle 

life hinder its potential as an ideal renewable energy storage technology candidate [3,5,6]. In contrast,  

nickel-iron (Ni-Fe) batteries, invented and commercially deployed in the early 20th century, could 

potentially deliver double to triple the specific energy capacity of  Pb-acid batteries. Ni-Fe also offers 

increased robustness and longer cycle life at a deep discharge state (>10000 cycles at 75% Depth of 

Discharge) [8]. In addition, with Ni-Fe batteries exceeding 10000 cycles of charge and discharge, they 

significantly surpass most of their competing energy storage technology counterparts, such as is Pb-acid 

(300-400 cycles), nickel-metal hydride (500–800) and nickel-cadmium (1300-1600 cycles) [3,5,8].   

The revived interest in the Fe-based alkaline batteries (such as Ni-Fe and Fe-Air), has been 

largely propelled by the incentive to develop efficient, robust and low-cost storage technologies. Ni-Fe 

alkaline batteries are secondary batteries that are robust, non-toxic, and eco-friendly [2,9]. Ni-Fe 

batteries could foster a cost-effective solution to store energy for grid system applications due to the 
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relative abundance of raw materials required to build the technology. However, the successful 

commercial deployment of this battery technology has been diminished by their poor coulombic 

efficiency (40–60%), low discharge rate capability and relatively poor specific energy (~50 Wh kg-1) 

[10]. The poor coulombic efficiency is a direct result of the parasitic evolution of hydrogen gas during 

charging of the Fe-based electrode, while the low discharge capability results from passivation of the 

Fe-based electrode, attributed to an insulating layer of the less reactive iron hydroxide (Fe(OH)2) 

generated during the discharge process [10,11]. The parasitic evolution of hydrogen is due to the standard 

reduction potential of the hydrogen reaction (Equation 1) being more positive than the Fe electrode 

electrochemical reaction (Equation 2.) 

   

( )- - o

2 22H O+2 H +2OH       E  = -0.83 V vs Hg/Hg   O    e →
 

                                                [1] 

( )o

2

- -OH) +2 E  = -0.88 V vFe+2OH Fe(    s Hg/H   gO    e→
 

                                                [2] 

  

The Fe-based electrode exhibits a prominent influence (compared to other components) on the 

overall electrochemical performance of the battery; therefore, by altering the electrode material 

composition, design, nanostructure and/or production techniques, the battery’s overall electrochemical 

performance will subsequently improve [11]. To suppress the hydrogen evolution reaction and increase 

specific capacity, various sulphide and carbon components have been added as electrode- or electrolyte- 

additives. Among them, Bi2O3, Bi2S3, FeS and organo-sulphurs are considered as the most effective 

[6,11–14]. Most of the compounds form different iron sulphide phases, while elemental bismuth metal 

is formed during charging, consequently increasing the overpotential for hydrogen evolution [14,15]. 

Nanoparticles have proved beneficial for enhancing the utilization of the Fe active materials [16,17]; 

Synthesized nano Fe-core Cu-shell composite electrode material, with a high concentration of Cu, could 

discharge up to 150 mAh g−1 at a current density of 2000 mA g−1 [10].  

In this study, a combination of both Cu and FeS additives plus graphite particles is used. FeS/C 

substituted Fe-Cu composite material was synthesized as anode material to be utilised in Fe-based 

alkaline batteries. The rationale behind this is that Cu should circumvent Fe particle agglomeration 

during cycling, graphite should formulate a good conductive network, subsequently improving the 

reversibility of the active material, and FeS should impede the parasitic hydrogen evolution reaction and 

the passivation process. 

 

2. MATERIAL AND METHODS 

2.1. Materials 

The reagents Fe (Hoganas, Sweden), FeS (Sigma Aldrich, USA), Graphite  (Alfa Aesar, United 

States), Coatheylene HA16 (AXALTA, United States), potassium hydroxide (KOH) (99%) (Sigma 

Aldrich, USA), lithium hydroxide (LiOH) (98%) (Sigma Aldrich, USA) and nickel mesh (Q-Lite 

batteries, China) were purchased were purchased and used without further purification. 
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2.2. Synthesis of FeCux composite material 

The FeCux composite electrode materials were synthesized through a single series of 

autocatalytic Cu deposition and electroless Fe deposition, followed by washing with deionized water 

and vacuum drying at room temperature to acquire the precursor materials, FeCux (x=0, 0.1, 0.15, 0.2, 

0.25, 0.3, 0.35). The synthesis process of the FeCux/FeS/C microparticles is schematically presented in 

Fig. 1. The typical process to synthesize  FeCu0.25 composite material was executed as follows:  

16 g (0.3 mol) of Fe powder was dispersed into 400 ml deionized water to make 0.75M Fe 

dispersion. The dispersion was stirred on an overhead stirrer at 100rpm for 10 minutes. 18.7 g of 

CuSO4.5H2O (0.075 mol) was dissolved 200 ml deionized water to make 0.375 M CuSO4 solution by 

stirring at 100 rpm impeller speed for 2 mins on an overhead mixer.  A 0.35 M NaBH4 solution was 

prepared by adding 12 g of NaBH4 into 900 ml deionized water and stirred at 100 rpm for 2 minutes on 

an overhead stirrer. Aqueous CuSO4 solution was added dropwise to the Fe dispersion under continuous 

stirring at 100 rpm. When the solution turned from blue to green, dropwise addition of the aqueous 0.55 

M NaBH4 solution commenced under continuous stirring (at 100 rpm). The absence of gas bubbles 

together with a complete solution colour change from green to colourless indicated the successful 

reduction of residual Fe2+ ions; therefore, the composition of the composite was noted as FeCu0.25. 

Correspondingly, the sample FeCux (x=0.2) was also prepared by altering the mole ratio of Fe/Cu to 5 

to suit the molecular denotation FeCu0.2. After 10 minutes of continuous stirring (at 100 rpm) the mixture 

was allowed to cool down. The reaction products were separated by means of centrifugation, washed 

three times with deionized water, and finally dried in a vacuum oven at room temperature for 72 hours.  

 

2.3. Synthesis of the FeCux/FeS/C Composite Material 

The optimum FeCux=optimum composite material was mixed (on an overhead mixer) with a varied 

amount of FeS (3, 6, 9, 12, 15%) to formulate the second set of electrode materials. All electrode 

formulations constituted 5% Graphite (Alfa Aesar, United States) and 5 % Coatheylene (AXALTA, 

United States).  Fig. 1 illustrates the synthesis process of the FeCux/FeS/C particles. 

CuSO4 FeSO4 + NaBH4
FeS+ C

Fe FeCu FeCu FeCu/FeS/C

Fe Cu FeS C
 

Figure 1. Schematic illustration of the synthesis process of the FeCux/FeS/C microparticles. 
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2.4. Electrode Preparation 

The composite materials were hot-pressed onto a nickel mesh using a custom-designed hydraulic 

press with integrated heated press plates (HyJack, Cape Town). The pressure of the hydraulic system 

was set at 3.9 MPa, which translates to a 40 kgf cm-2 on the sample.  The pressing procedure was initiated 

after the pressure plates reached 100 OC. The compaction pressure on the sample was maintained for 

five minutes. The final electrode thickness and active material loading were 0.75±0.10 mm and 0.16±05 

g cm−2 respectively. Two electrodes were produced for each electrode formulation: 90 mm ᵡ 60 mm ᵡ 

0.75 mm for galvanostatic cycling measurements and 10 mm ᵡ 10mm ᵡ 0.75 mm for cyclic voltammetry.  

 

2.5. Materials Characterization  

The fresh electrode materials, as well as the charged and discharged electrode materials, were 

characterized by X-ray Diffraction (XRD) using a D8 Diffractometer (iThemba Labs, South Africa). 

Phase identification was done using DIFFRAC.EVA software and the plane reflections were indexed 

using the powder diffraction file (PDF). The nanostructure of the FeCux material was analysed by the 

Zeiss EM 912 CRYO EFTEM (EMU-University of Cape Town, South Africa). The morphology of the 

fresh Fe-matrix electrode samples, along with their respective charged/discharged electrodes, was 

assessed by TESCAN MIRA SEM with the Raman confocal system (EMU-University of Cape Town, 

South Africa). 

 

2.6. Electrochemical Characterisation  

Cyclic voltammetry was conducted in a three-electrode set-up having the Fe-matrix as the 

working electrode, platinum (Pt) as the counter electrode and mercury/mercury oxide (4M KOH 

Hg/HgO) as the reference electrode. The electrodes, immersed in 6 M KOH/1M LiOH electrolyte, were 

activated for 50 cycles at a scan rate of 200 mVs-1 within a potential window of −1.4 to − 0.4 V vs 

Hg/HgO.   

Galvanostatic cycling measurements were conducted in a two-electrode set-up having the Fe-

matrix as the working electrode, nickel oxy-hydroxide (NiOOH) as the counter electrode. To complete 

the setup the electrodes were immersed in a 6 M KOH/1M LiOH electrolyte. 

In order to activate the electrodes,  the cells were cycled for 30–40 cycles between 0.8 and 1.8 V 

at 100 mA g-1 current density. Thus, after being nominally “activated”, the electrodes were cycled 

between 0.8 and 1.75 V at 100 mA g-1 current density. All capacities reported in this work were after 

cell activation. 

As for coulombic efficiency, when the cells were charged to 1.75 V at 100 mAh g-1,  the charge 

capacity was noted as Ǫc. when the cells were discharged to 0.8 V at 100 mAh g-1,  the discharge capacity 

was noted as Ǫd. The coulombic efficiency, denoted by ղc, was calculated using the [Ǫd / Ǫc × 100%] 

equation. In the rate capability tests, the discharge current was varied from 50 to 600 mA g−1 in 

increments.  
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To evaluate the polarization performance, the cells were charged to 1.75 V at 100 mAh g-1, and 

then discharged at a current density ranging from 200 to 2500 mAh/g for 5 s. All capacities are reported 

as per the mass of total Fe in the composite electrode.  

Cyclic voltammetry was conducted by Metro Auto-Lab Set-up (PGSTAT128N 12 V / 800 mA). 

The electrochemical studies, such as the cycling stability and discharge rate capability, were performed, 

and the data acquired from NEWARE BTS-400 (5V 2A BTS System).  

 

3. RESULTS AND DISCUSSION 

3.1 Materials Characterisation  

Fig. 2, 3 and 4 depict the XRD patterns of Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C 

composite electrodes respectively. The different crystal planes in the pattern are identified using the 

powder diffraction file directory (PDF numbers). The PDFs for Fe, Cu, FeS, C, Fe3O4 and Cu2O are 00-

006-0696, 00-004-0836, 00-037-0477, 00-026-1076, 00-019-0629 and 00-0050667 respectively.  

In Fig. 2 peaks for Fe and C can be identified for the pure Fe sample. The (110) plane for Fe 

occurring at 2θ between 42.5 and 45.4 O , was the dominant facet for Fe in all the electrode formulations 

analysed. The crystallite size of fresh material particles is approximately 192 nm which decreased to 161 

nm (after 40 cycles) due to particle surface passivation. Particle sizes were calculated using the Match! 

software which adopts the Scherrer equation. When the fresh material is deeply discharged, the XRD 

analysis of the pure Fe material shows that the peak intensity of Fe becomes weaker and the peaks of 

Fe3O4 are observed. However, the variance between Fe peaks in fresh and discharged material is 

minimal, indicating a low utilisation of active material.  In theory, the major discharge reaction product 

should be Fe(OH)2; however, it was not detected in the discharged state electrode material, suggesting 

that it was amorphous. The absence of Fe(OH)2 was observed in all XRD results from discharged 

electrode materials. The decrease in Fe peak intensity between fresh Fe and charged electrode material 

might be ascribed to the limited reversibility of the electrochemical reaction.  

Fig. 3 shows that the fresh FeCu0.25/5%C composite material has strong peaks of Fe and weaker 

peaks of Cu which aligns with the ratio of Fe to Cu. When the fresh FeCu0.25/5%C composite material 

was deeply discharged, the XRD analysis indicated that the peaks of Fe become weaker and the peaks 

of Fe3O4 are observed. The XRD analysis of the discharged FeCu0.25/5%C composite material also 

depicts that little Fe remains after deep discharge, indicating a high utilisation of active material 

compared to that of pure Fe electrode material. In addition, the peaks of Fe3O4 are much stronger due to 

an increased amount of active material (Fe) participating in the electrochemical reaction. Furthermore, 

the peak of Cu2O was observed, indicating that some of the Cu was oxidized at a deep discharge state. 

The negligible decrease in Fe peak intensity between fresh FeCu0.25/5%C and charged FeCu0.25/5%C 

electrode material might be ascribed to the amplified reversibility of the electrochemical reaction 

induced by the ability of Cu to increase electro-conductivity of the electrode [10]. 

A relatively small reduction of the average FeCu0.25 crystallite size was observed, i.e. from 141 

nm at the start to 117 nm after 40-cycles. The lack of an anti-passivation agent in the electrode composite 

leads to surface passivation due to the inevitable formation of the discharge products (Fe2O3 and 
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Fe(OH)2) which exhibit sparse electro-conductivity [4]. Fig. 4 shows the fresh FeCu0.25/15%FeS/5%C 

composite material has strong peaks of Fe and weaker peaks of Cu and FeS which aligns with the 

formulations employed. The average crystallite size of the FeCu0.25 particles decreased from 139 to 121 

nm after 40-cycles. This is due to the sulphur additive’s ability to inhibit surface passivation [4,12,13]. 

The adsorption of S2- (from the FeS additive) onto the Fe-Fe(OH)2 particle structure fosters a distortion 

that leads to an increase in defect concentration of the film and consequently, an increase in its ionic 

conductivity. This mechanism retards the passivation process, subsequently leading to the formation of 

a thicker film. 

 
 

Figure 2. XRD patterns for F/5%C electrode. 

 
 

Figure 3. XRD patterns for FeCu0.25/5%C electrode. 
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Figure 4. XRD patterns for FeCu0.25/15%FeS/5%C electrode. 

 

Fig. 5 shows the energy-filtered transmission electron microscopy (EFTEM) imaging of the 

FeCu0.25 composite material to confirm the Fe-core Cu-shell particle arrangement. It is evident from Figs. 

4 a-c that the particles are in a Fe core Cu coat structure with particle sizes in a typical range of 150 to 

250 nm. In Figs. 5a and 5c, the light portion of the image represents the Cu and Fe distribution 

respectively. Because a part of Fe was oxide and dissolved Fe2+ was reduced back to elemental Fe after 

initial Cu precipitation, the coating layer contained Cu and some Fe as depicted by EFTEM imaging 

(Fig. 5). 

 

 

a) 

 

b) 

 

c) 

 
 

Figure 5. FeCu0.25/5%C material EFTEM imaging analysis. 

 

Frame Iron 

Map 
Copper 

Map 
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Figs. 6 a1 and a2 show the scanning electrode microscopy (SEM) images for the Fe/5%C in a 

fresh and charged state respectively, while Figs. 6 b1 and 6 b2 show the SEM images for the 

FeCu0.25/5%C electrode in a fresh and charged state. The FeCu0.25/5% composite particles were prepared 

by a two-step method that included Cu electroless deposition and reduction. The original Fe particles 

(visible in Fig 6.a1) appear cubical with particle size ranging from 150-250nm. When Cu was 

autocatalytically deposited onto Fe particles and subsequently subjected to electroless plating with Fe 

using the NaBH4, particles appear more spherical and larger with a particle size distribution between 

200 and 300nm ((visible in Fig6.b1). The shape of nanoparticles is primarily dependant on surface 

energy minimization; therefore, rather intuitively, spherical or roughly spherical polyhedral shapes with 

the lowest surface-to-volume ratio are the most likely to form in a process which is characterised by 

spontaneous chemical kinetics [18].  The SEM images in Figure 6a2 and 6b2 confirm that the 

FeCu0.25/5%C based composites inhibit particle agglomeration upon cycling, compared to pure Fe 

material, which indicates visible particle agglomeration after 40 cycles as depicted in Fig. 6a2. 

 

a1) Fresh Fe Electrode a2) Charged Fe electrode (Charged) (40 

cycles)   

  
b1) Fresh FeCu0.25/5%C electrode b2) Charged FeCu0.25/5%C electrode (after 40 

cycles)     

  
 

Figure 6. SEM images for a) Fe/5%C electrode and b) FeCu0.25/5%C electrode. 
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3.2 Electrochemical Characterisation   

Fig. 7 shows the cyclic voltammograms of the Fe/5%C, FeCu0.25/5%C composite and 

FeCu0.25/15%FeS/5%C composite electrodes. The electrodes were activated for 50 cycles at a scan rate 

of 200 mVs-1 vs. the Hg/HgO in 6 M KOH/1M LiOH electrolyte. The activation step was executed to 

remove any surface impurities and stabilize the electrode’s electrochemical response. The graph shows 

the cyclic voltammograms obtained after the 30th cycle at a scan rate of 2.5 mVs-1 vs. the Hg/HgO in 6 

M KOH/1 M LiOH electrolyte.  

 
Figure 7. Cycling voltammetry of pure Fe/5%C electrode, FeCu0.25/5%C electrode and 

FeCu0.25/15%FeS/5%C electrode in 6M KOH /1M LiOH at 2mV/s. 

 

All three cyclic voltammograms depict two major oxidation peaks (Ox1 and Ox2) for Fe as well 

as an additional small pre-peak (Ox0) due to hydrogen oxidation and hydroxyl ion adsorption i.e.  H2 → 

2H2O [4]. The peak Ox1 corresponds to the Fe → Fe(OH)2 while Ox2 corresponds to the Fe(OH)2 → 

Fe3O4 reaction [7,10,19]. The phenomenon of the removal of adsorbed hydrogen from the electrode 

during the anodic sweeping has also been observed by the electrochemical quartz crystal microbalance 

method, confirming the initial Fe/Fe(II) reaction step [20]. The Ox1 reaction is more favoured under the 

test conditions and appears twice as large as the Ox2 peak which indicates that there is a significantly 

higher charge associated with it. However other literature reports have shown a larger or equal-sized 

Ox2 peak compared to the Ox1 peak [21–24]. A possible explanation for the smaller Ox2 peak could be 

due to partial oxidation which is limited by repulsion from the neighbouring Fe (II) sites. The ratio of 

the oxidation peaks may also be dependent on the type of Fe material analysed and the type of additives 

incorporated. The Ox1 peaks show maximum peak heights at − 0.78 V, - 0.75 V and – 0.72 V for the  

Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C electrodes respectively.  The Ox2 peaks show 
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maximum peak heights at – 0.56 V, – 0.52 V and – 0.51 V for the Fe/5%C, FeCu0.25/5%C and 

FeCu0.25/15%FeS/5%C electrodes respectively. The addition of Cu shifts the oxidation potential to 

slightly less negative potential. This shift implies a lowering in over-potential. It was reported that the 

oxidation of Cu to Cu2O takes place at −0.4641 V vs Hg/HgO [15,25]. In the case of the FeCu0.25/5%C 

electrode, the oxidation of Cu may also exist in parallel with the Fe (II)/Fe (III), though its peak was not 

distinct due its relatively small amount in the electrode composite. The Red1 peaks, corresponding to 

the reduction of Fe (II) to Fe(0), show maximum peak heights at – 0.98 V, – 1 V and – 1 V for the pure 

Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C electrodes respectively. Clear peaks on the reduction 

of Fe3O4 to Fe(OH)2 were not observed in any of the voltammograms, as this reaction would have 

preceded the Fe(OH)2/Fe reduction peaks [26,27]. However, it cannot be ruled out that the reduction 

peak is an overlap of both the Fe(III)/Fe(II) and Fe(II)/Fe(0) reduction reactions as these two reduction 

reactions both occur within a very small potential window [21,22,28]. Following this peak, however, the 

hydrogen evolution reaction becomes predominant at a potential which is more negative than − 1.16 V. 

The Fe/5%C electrode shows the smallest redox peaks compared to the FeCu0.25/5%C composite and 

FeCu0.25/15%FeS/5%C composite electrodes which indicates a lower ability of the electrode to store 

charge. The specific capacitance (Cs) was calculated using the following equation: 

=     s

IdV
C

mv V


            [3] 

Where Cs is specific capacitance (Fg-1), ∫IdV is the area under the anodic curve, m is the mass of 

the active electrode material (g), v is the scan rate (Vs-1) and 𝛥V is the potential window (V). The 

calculated specific capacitances for the pure Fe, FeCu0.25 composite and FeCu0.25/15%FeS composite 

electrodes are 84.7 Fg-1, 233.3 Fg-1 and 286.7 Fg-1 respectively. Furthermore higher cathodic current 

densities are observed with the addition of Cu (from 74 to 188 mA cm-2) which is beneficial for battery 

operations and utilization at high discharge rates [19]. The increased cathodic current density could be 

attributed to the better electronic conductivity displayed by the metallic Cu present in the composite 

material [10]. The addition of FeS effectuated a further increase in cathodic current density to 220 mA 

cm-2 which could be due to the beneficial role of FeS in improving the ionic conductivity of the 

passivation layer [22]. The sulphide which is released from the sulphide additive attaches to the Fe 

electrode particles to modify its morphology [12,29]. This results in the restraining of the formation of 

the passive Fe(OH)2 layer, enhancing the bulk conductivity of the Fe electrode and blocking the 

electrochemical process of hydrogen evolution [23]. It should be noted that the addition of Cu also 

decreases the anodic current density of the hydrogen evolution reaction which is not beneficial for the 

charging process. The addition of the FeS to the FeCu0.25/5%C composite is shown to lower the hydrogen 

evolution reaction anodic current density as expected. 

Fig. 8 displays the discharge curves of Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C 

composite electrode materials while Fig. 9 displays the polarization curves of Fe/5%C, FeCu0.25/5%C 

and FeCu0.25/15%FeS/5%C composite electrode materials.  
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Figure 8. Discharge curves of Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C composite electrode 

materials: The cells were charged at 100mA/g to 1.75 V, and then discharged at 100 mA/g C to 

0.8 V. 

 

 
 

Figure 9. Polarization curves of Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C electrodes: the cells 

were charged at 1000 mA/g for 90 min, and then discharged at a rate ranging from 200 mA/g C 

to 2500 mA/g for 5 s. 

 

It is noteworthy that the activation process is a fundamental step in secondary alkaline battery 

technology. Generally, Fe electrodes always suffer from slow activation progress in the first cycles 

compared to other analogous electrodes (Ni, Zn, Na, Air, Al etc)[10]. The discharge curve of pure Fe 

had only one plateau which suggested the conversion of Fe to Fe(OH)2. The capacity was about 90 mAh 

g−1, significantly lower than the theoretical value for Fe of 962 mAhg−1[8]. This large deviation was 

influenced chiefly by the parasitic hydrogen evolution side reaction and significant particle 

agglomeration [12,16,26]. The discharge curves of Fe/5%C, FeCu0.25/5%C and FeCu0.25/15% FeS/5%C 
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had exhibited only one plateau which suggested the conversion of Fe to Fe(OH)2 [2,29]. The capacity of 

the FeCu0.25 electrode material capacity was about 340 mAh g−1, significantly higher than the capacity 

of pure Fe electrode material. The higher capacity was due to the presence of Cu particles constructing 

an electron transfer network for the oxidation and reduction of Fe/Fe(II) reaction to progress. Because 

NaBH4 was used as the reducing agent, the generation and incorporation of hydrogen into Fe could, 

therefore, be expected [2]. During the discharge of Fe, hydrogen could react with OH- to produce water. 

This reaction may contribute to the extra electrical capacity of the electrode [3]. The capacity 

FeCu0.25/15%FeS electrode exhibited similar discharge behaviour to FeCu0.25/5%C but delivered a 

slightly higher specific capacity of 380 mAh g−1. The slightly higher capacity was due to the presence 

of FeS that aids in circumventing the hydrogen evolution reaction and enhancing the electrode’s ionic 

conductivity; consequently the electrode accepts and transports more charge [4,29]. Fig. 9 showed the 

polarization curves of Fe/5%C, FeCu0.25/5%C and FeCu0.25/15%FeS/5%C composite electrode 

materials. As the current densities are increased, the polarization becomes intensified. However, as 

represented in Fig. 14., the polarization of FeCu0.25/5%C composite electrode (which co-aligns with 

FeCu0.25/15%FeS/5%C), is less intense (less ohmic potential drops), compared to the pure Fe electrode. 

This is attributed to the ability of Cu particles to construct an electro-conductive network for the redox 

reaction to progress. 

In Fig. 10, the capacities of the electrode materials constituting different amounts of Cu were 

shown in up to 40 cycles. The battery was operated between 1.75 V and 0.8 V at a current density of 

100mA g-1. 

 

  
 

Figure 10: Cycling stability curves of pure Fe/5%C and various FeCux/5%C composite electrodes: the 

cells were charged at 100mA/g to 1.75 V, and then discharged at 100 mA/g C to 0.8 V. 

 

The discharge capacities of the composite electrodes increase gradually with Cu content. The 

capacity of the pure Fe electrode decreased quickly to around 100 mAhg−1 at about 10 charge-discharge 

cycles. From ten cycles onwards, the specific capacity of pure Fe/5%C gradually decreases with the 
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cycle number. This is due to reduced particle surface area due to massive particle agglomeration as noted 

in the SEM image depicted in Fig. 6a2. The highest capacity of around 360 mAh g−1 was attained when 

the FeCu0.25 composite electrode material was employed. The electrode exhibited superlative cycling 

stability as it retained more than 95% of the initial capacity. This is attributed to the ability of Cu to 

lower the particle surface energy through its highly conductive network embedded in the electrode [10]. 

When the material was FeCu0.1, the effect of Cu content was only minimal and directly comparable to 

the pure Fe electrode. At this stage, the copper may not have been sufficient to form an electron-

conducting network to aid with the oxidation/reduction electrode reactions and/or to prevent particle 

agglomeration. On the other hand, when the Cu addition is over FeCu0.3, the Cu might cover the entire 

Fe particle active surface and therefore the electrode exhibited a lower specific capacity [2]. In an attempt 

to limit utilisation of high amounts of costly Cu, the optimum Cu composition was FeCux (x=0.25), since 

there was no significant difference between FeCux (x=0.25) and FeCux (x=0.3) in terms of specific 

capacity and cycling stability. The nominal capacity of 350 mAh g-1 (Fe) is a promising number for 

future applications in renewable energy storage systems (RESS). 

In Fig. 11, the specific capacities of the FeCu0.25/5%C electrode materials containing different 

amounts of FeS were depicted (capacity values up to 40 cycles). 

 

 
Figure 11. Specific capacity versus % FeS Content in FeCu0.25/5%C electrode material (capacity values 

up to 40 cycles): The cells were charged at 100mA/g to 1.75 V, and then discharged at 100 mA/g 

C to 0.8 V. 

 

In Fig. 12, the capacities of the FeCu0.25/5%C electrode materials containing different amounts 

of FeS were depicted (specific capacity at the 10th cycle). 
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Figure 12. Specific capacity versus % FeS Content in FeCu0.25/5%C electrode material: The cells were 

charged at 100mA/g to 1.75 V, and then discharged at 100 mA/g C to 0.8 V. 

 

 

 
 

Figure 13. Coulombic efficiency of Fe-based electrodes containing various amounts of Cu: The cells 

were charged at 100mA/g to 1.75 V, and then discharged at 100 mA/g C to 0.8 V. 

 

The highest capacity of around 390 mAh g−1 was attained when 15% FeS was incorporated into 

the FeCu0.25 electrode composite material. As % FeS content increases, the specific capacity increases 

up until capacity stabilization at %FeS Content>12. The linear correlation is attributed to the ability of 

FeS to partake in the electrochemical reaction and its ability to distort the Fe(OH)2 structure which leads 

to an increase in defect concentration of the film, consequently increasing its ionic conductivity 

[4,12,29]. The capacity stabilises at %FeS Content>12. At higher FeS concentrations (>20%), the 
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capacity drastically drops, nevertheless, this effect is not completely understood [3]. Fig. 12 displays the 

coulombic efficiency of the charging process for electrodes containing various amounts of FeS.   

Fig. 13 displays the coulombic efficiency of the electrodes containing various amounts of copper. 

As the fractional copper content increases, the coulombic efficiency increases. This is attributed to the 

ability of Cu electro-conductive network to amplify reversibility of the Fe(3+)/Fe(2+)/Fe (0) reaction 

[19,30]. The presence of Cu nanoparticles increases the overvoltage of the hydrogen evolution, 

consequently effectuating an upswing in the charge efficiency [6]. 

Fig. 14 displays the coulombic efficiency of the FeCu0.25/5%C electrodes containing different 

amounts of FeS additive. 

 

 
Figure 14. Coulombic efficiency versus % FeS content in FeCu0.25/5%C electrode material: The cells 

were charged at 100mA/g to 1.75 V, and then discharged at 100 mA/g C to 0.8 V. 

 

As % FeS content increases, the coulombic efficiency increases; this is attributed to the ability 

of FeS to increase the overvoltage of the hydrogen evolution reaction. The coulombic efficiency of 71 

% was attained when the electrode formulation of 15% FeS in FeCu0.25/5%C electrode material was 

employed; however, it has been reported that higher FeS (>15%) tends to shorten the life of the battery; 

thus in this work, the cut off value for %FeS composition was 15% [5,12,26,29]. The high charge and 

coulombic efficiency induced by FeS through amplified electrochemical reaction reversibility and 

curbing hydrogen evolution reaction are due to the adsorption of the highly polarizing S2− ion on the  Fe-

Fe(OH)2 particles. [29]. Hydrogen molecular recombination reaction equation [1] is inhibited by S2− ion 

chemisorption [31]. Another influential factor is the change of electrode surface species prompting the 

overpotential of the hydrogen evolution reaction [13,29]. 

Fig. 15 depicts the discharge rate capability of FeCu0.25/5%C and Fe/5%C electrode.  
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Figure 15. Discharge capability at different current densities for Fe/5%C and FeCu0.25/5%C electrode 

materials: the cells were charged at 100mA/g to 1.75 V, and then discharged at rates from 50 to 

600 mA/g to 0.8 V. 

 

 

The Fe/5%C electrode performs poorly at higher discharge rates. This is indicated by the drastic 

drop in the specific capacity as the current density increases. The FeCu0.25/5%C electrode material 

exhibits the best rate in performance, even at an impressively high rate of 600 mA g-1 and a specific 

discharge capacity of about 300 mAh g-1 is achieved with 85 % of the nominal capacity retained. This 

indicates that the FeCux composite electrode materials show significant potential as a high-rate electrode 

material for Fe-based rechargeable batteries. This inimitable high rate discharge capability is attributed 

to the ability of Cu to improve the electron transfer between Fe particles by constructing a stable electron 

transfer network [2,19]. Generally, the discharge rate capability of the pure Fe electrodes was limited to 

600 mA g-1 due to the inevitable rampant bulk formation of a Fe(OH)2 passive layer [2]. 

 

 

4. CONCLUSION 

A series of FeCux composite electrode materials were synthesized by autocatalytic Cu deposition 

followed by electroless Fe deposition, of which some of the materials were doped with various amounts 

of FeS. The inclusion of both Cu and FeS revealed a drastic increase in the specific charge/discharge 

capacity, stability and coulombic efficiency. The Cu nanoparticles in the FeCu0.25/5%C composite 

construct formed a stable network to transfer electrons during the reduction/oxidation of the Fe electrode. 

The incorporation of Cu, therefore, prevents the fast drop in electrical capacity induced by the formation 

of a non-conductive Fe(OH)2 layer. The inclusion of FeS further increases the efficiency of the electrode 

by curbing the parasitic hydrogen evolution and enhancing the ionic conductivity of the passivation 

layer. Ultimately, the FeCu0.25/15%FeS/5%C composite electrode material delivers a stable capacity of 

about 385 mAh g-1 with ~ 70% coulombic efficiency at a current density of 100 mA g-1. The electrode 
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material can still deliver about 278 mAh g−1 at a high current density of 600 mA g-1. This outcome thus 

opens the possibility of future applications for the development of advanced Fe-based alkaline batteries 

with performance characteristics required for integration with renewable energy resources. 
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