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The mathematical model for mass transfer with reversible homogeneous reactions is discussed. 

Estimation of mass transfer to and from electrodes for this reaction needs the analytical solution of 

nonlinear reaction-diffusion equations. Taylor's series method and hyperbolic function method are used 

to solve the system of nonlinear reaction-diffusion equations. Approximate closed-form of analytical 

expression of the concentration of substrate, reactant and product are derived for all values parameters. 

The empirical results are compared with the simulation results, and there is noticeable agreement. The 

effect of various parameter on aqueous carbonate-species concentration are also discussed. The current 

density and homogeneous equilibrium constant are also obtained. 
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1. INTRODUCTION 

Many electrode processes include homogeneous reactions (reactions between gases and between 

liquids or substances dissolved in liquids) that also occur in the boundary layer of mass transfer [1]. 

Descriptive analyzes of electrode-kinetics experiments as well as mathematical modelling need the 

evaluation of the concentrations of species on the electrode surface. The measurement of concentration 

profiles in the boundary layer of the solution near the electrodes is based on the mass balance equations 

of species. 
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Where ci and Ri are the molar concentration and the net production rate of species i. In general, 

the molar flux Ni is defined by 
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This represents the transport of species by diffusion and convection along with ion migration in 

an electric field[2].The rate of production can be written as 
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Each species in solution is combined with the condition of electroneutrality .0 i

i

icz Problems 

such as cyclic voltammetry, chronopotentiometry, chronoamperometry, square wave voltammetry, and 

differential pulse voltammetry, rotating electrodes, biosensor, biofuel-cell, and several boundary-layer 

problems have been solved for several important situations [3-6].Recently some of the nonlinear 

problems in rotating disk electrode [7-10], cyclic voltammetry [11], electroactive polymer film 

[12,13],biofuel cell[14] and biosensor [15] are solved using various analytical techniques. 

Recently Chapman et al.[1] discuss the mass transfer at the electrodes for the homogeneous 

reactions for the fast and reversible reaction. In this paper, we propose a simple and efficient methods 

(Taylor's series and hyperbolic function)to solve the differential equations that arises in the context of 

mass transfer at the electrodes with reversible homogeneous reactions.The analytical expressions of the 

concentration of species and current are provided using Taylor's series method and hyperbolic function 

method. 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider the followingreversible reaction 

CBA
f

r

k

k
           (4) 

Where A is formed at the known rate NAo at an electrode, and B is found outside a stationary 

diffusion layer of uniform thickness  in the bulk solution. The homogeneous reaction forms the species 

C and diffuses into the bulk.The general scheme for second-order irreversible homogeneous reaction is 

represented in Figure.1. 

 

 
 

Figure 1. General scheme for second- order  irreversible homogeneous reaction. 
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By neglecting ionic migration, it is possible to write the boundary value problem that must be 

solved asfollows[1]: 

 
     xCkxBxAk

dx

xAd
D rf 

2

2

       (5) 
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xBd
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       (6) 

 
     xCkxBxAk
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2

2

       (7) 

whereA, B, and Carethe concentration of species and kristheforward reaction-rate constant. For 

convenience, all coefficients of diffusion are assumed to be equal to a constant D. In the bulk solution, 

the concentrations of A and C are zero, and at the electrode, the fluxes of  B and C are zero.This can be 

represented by the following boundary conditions. 

     
0; 

dx

xdC
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xdB
N

dx

xdA
D Ao

at 0x       (8) 

      0;  xCxABxB b at x        (9) 

The appropriate dimensionless variables are introduced. 
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where a, b and S are dimensionless concentration of species A, B and C. 𝜀 represent  the  relative 

rates of diffusion and reaction , K*  denotes   the homogeneous equilibrium constant.The rate of injection 

of A corresponding to the limiting flux of B toward the electrode was described by μ.Eqs.(5)-(7) becomes 

in dimensionless form as follows: 
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The dimensionless boundary conditions are, 

      00',00',0'  zSzbza        (14) 

      01,11,01  zSzbza        (15) 

The relation between the concentration of species is given in Appendix-A. 

 

3. APPROXIMATE ANALYTICAL EXPRESSION OF CONCENTRATION OF  

SPECIES USING TAYLOR’S SERIES METHOD (TSM) 

In this section, Taylor’s series method is applied to solve the system ofnon-linear differential 

Eqs. This method[12,16-18] provides an analytical solution with quickly computable terms for rapidly 
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convergent infinite power series. Taylor’s series is an infinite sum of terms expressed on a single point 

in terms of the functional derivatives. We regard the solution to Eqs. (13)-(15) is sufficiently smooth so 

that it can be obtained using Taylors series (Appendix B ) as follows: 
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Here m is obtained from the following Eq.
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4. APPROXIMATEANALYTICAL EXPRESSION OF CONCENTRATIONUSING  

HYPERBOLIC FUNCTION METHOD (HFM) 

Recently some the analytical methods are used to solve the nonlinear problems in physical 

chemistry [19-21]. In this paper, the hyperbolic function method is also used to solve non-linear 

differential equations. The HFM [21] yields without linearization, perturbation or transformation, a 

closed-form of analytical solution. The concentration of the species by using HFM(Appendix C) may be 

obtained as follows: 
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Here mis obtained from the Eq. (20). 

 

5. ESTIMATION CURRENT DENSITY i AND HOMOGENEOUS EQUILIBRIUM  

CONSTANT K*. 

The currentdensity becomes[1] 

 

2NH2CO3 + NHCO3–NOH= i/nFatx= 0      (24)  

322)0()0()0(2  mcba
nF

i
      (25) 

For the fast-irreversible homogeneous reaction, from the Eq.(5) we get 
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For all value of x, In terms of dimensionless variables this becomes 
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For all values of z. At z=0, this becomes 
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6. PREVIOUS WORKOF CHAMPAN ET AL.[1] 

Using the relation between the concentration of species, Champan et al.[1]obtained the 

differential Eq.of second-order for the concentration of species   S(z) as follows: 
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Since the above equation is still nonlinear, Champan et al.[1] obtain the solution of the 

Eq.(29)when the homogeneous rate constant kf is large or 0 . In this case a quadratic algebraic Eq. 

for S becomes 
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Champan et al.[1]also obtain the solution of the equation for large values of  K* 
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7. VALIDATION OF ANALYTICAL METHODS 

Method of validation has received considerable attention in the literature. The nonlinear 

differential equations (11)-(13) with the boundary conditions (14) and (15) are solved numerically by 

using the function pdex4 in Scilab/Matlab, numerical software. The concentration of species derived by 

Taylor’ s series method (equation (16), (17) and (18)) Hyperbolic function method (equation (21),(22) 

and (23)) are compared with a numerical solution in Figures 1-3 and Tables 1-3. Also, the average 

relative errors are given in the respective tables. From Tables 1-3, it is confirmed that the Taylor series 

method is the efficient tool for providing analytical expressions of concentrations of species for 

reversible homogeneous reactions. Also from the Eqs. (16) to (18) weget 

1)(2)()(   zzczbza
       (32) 

The derived analytical results also satisfy the above result. 
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8. RESULT AND DISCUSSION 

Eqs. (16)-(18) and (21)-(23)are the new analytical expressions of the concentration species 

A,Band Cin reversible homogeneous reactionfor the steady-state conditions. The species  concentration  

depends upon the variable relative rates of diffusion and reaction( ), rate of injection of A relative to 

the limiting flux of B toward the electrode (  ) and homogeneous equilibrium constant ( *K ).Figures1-

3 shows the dimensionless steady-state concentration for various species a(z), b(z) and S(z) involved in 

the  reversible homogeneous reaction with respect to the distance from the electrode surface z for 

different values of parameters  , and *K . 

From the Figure1 it is inferred that   the concentration of the species a(z) and b(z) increases when 

  increases. But   the concentration of the species S(z) increases when relative rates of diffusion  

decreases. The effect of different values of the parameter on the concentration profile is shown in 

Figure.2.From this Figure2, it is observed that an increase inequilibrium constant leads to increase in 

a(z) and b(z)  and decreases in S(z).Figure.3 illustrates the species concentration versus distance from 

the surface of the electrode for various values of a parameter.As the rate of injection of A relative to the 

limiting flux of B toward the electrode (  ) decreases,the concentration of species a(z) and S(z) increases 

and b(z) increases. 

 

 

9. CONCLUSIONS 

This paper discusses the modeling of mass transfer at electrodes with homogeneous reversible 

reaction. The systems of non-linear second-order differential equations are solved using Taylor’s series 

and hyperbolic function method. The approximate analytical expression for the concentration of the 

species is obtained. We have successfully used Taylor’s series method and Hyperbolic function method 

to construct solutions for non-linear differential equations. With numerical results, the analytical results 

are compared, and adequate agreement is noted.The theoretical study of a simplified model system 

explores the nature of these problems.This method can be extended to non-steady-state problems in 

physical and chemical sciences. 
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Figure 1.The plot of dimensionless concentrations )(),( zbza and )(zS versus dimensionless distance z . 

For various values of the parameter , for some fixed values of other parameters and Fig (a) and 

(b)).for the different values of (i).m= 0.59919,(ii). m= 0.737434, (iii). m= 0.82132, (iv). m= 

0.90596 using Eqs. (16, 21)and(17, 22) and (c) for the different values of (i).m= 0.90596,(ii). m= 

0.82132, (iii). m= 0.737434, (iv). m= 0.59919 using Eqs.(18, 23) 

 

 

 

Figure 2.The plot of dimensionless concentrations )(),( zbza and )(zS versus dimensionless distance z
.For various values of the parameter , for some fixed values of other parameters and Fig (a) and 

(b)), for the different values of (i).  m= 0.98702,           (ii).m= 0.98702, (iii). m= 0.98722, (iv). 

m= 0.988767, (v). m=0.994846using Eqs.(16, 21)and (17, 22)and (c) for the different values  of 

(i). m= 0.994846,         (ii). m= 0.988767, (iii).m= 0.98722, (iv). m= 0.98702, 

m=0.98702,usingEqs.(18, 23)  
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Figure 3.The plot of dimensionless concentrations )(),( zbza and )(zS versus dimensionless distance z
.For various values of the parameter , for some fixed values of other parameters and Fig (a) and 

(c)), for the different values of (i). m= 0.96570, (ii). m= 0.72744, (iii).m= 0.55637, (iv). m= 

0.43914, using Eqs. (16, 21)and (17, 22)and (b) for the different values of (i).  m= 0.43914,(ii). 

m= 0.55637, (iii). m= 0.72744, (iv). m= 0.96570using Eqs. (18, 23) 

 

 

Table 1. Comparison of numerical solution of concentration of species )(za  with the analytical         

solutions by Taylor series method and Hyperbolic function method for 1*,3  K  and for 

different values of   
 

 =0.7,   m = 0.482460 (TSM) 

 
 =0.8,   m = 0.523922 (TSM)  =0.9,   m = 0.562987 (TSM)  =1,   m = 0.599190 (TSM) 

x 

Num 

 

TSM 

Eq. 

(16) 

Err% 

of 

TSM 

HFM 

Eq. 

(21) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(16) 

Err% 

of 

TSM 

HFM 

Eq. 

(21) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(16) 

Err% 

of 

TSM 

HFM 

Eq. 

(21) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(16) 

Err% 

of 

TSM 

HFM 

Eq. 

(21) 

Err% 

of 

HFM 

0.0 2.5 2.4825 0.7 2.4825 0.70 2.538 2.5239 0.56 2.5239 0.56 2.573 2.563 0.40 2.563 0.40 2.607 2.5992 0.30 2.5992 0.30 

0.2 1.922 1.9069 0.79 1.9004 1.12 1.957 1.9476 0.48 1.9407 0.83 1.991 1.9854 0.28 1.9787 0.62 2.023 2.0202 0.14 2.0138 0.45 

0.4 1.39 1.3708 1.38 1.3554 2.49 1.42 1.4102 0.69 1.3922 1.96 1.449 1.4452 0.26 1.4265 1.55 1.463 1.4765 0.92 1.4582 0.33 

0.6 0.8942 0.8667 3.08 0.8517 4.75 0.9169 0.904 1.41 0.8816 3.85 0.9383 0.9346 0.39 0.9093 3.09 0.9531 0.9605 0.78 0.9346 1.94 

0.8 0.4273 0.3994 6.53 0.3963 7.25 0.4395 0.429 2.39 0.4147 5.64 0.4507 0.4509 0.04 0.4315 4.26 0.4734 0.4679 1.16 0.4467 5.64 

1.0 0 0 0 0 0.00 0 0 0.00 0 0.00 0 0 0.00 0 0.00 0 0 0.00 0 0.00 

Average 2.08   2.72     0.92   2.14     0.23   1.65     0.55   1.44 
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Table 2. Comparison of numerical solution of concentration of substrate )(zb with the analytical 

solutions by Taylor series method and Hyperbolic function method for 1*,3  K  and for 

different values of   
 

 

 

 Table 3.Comparison of numerical solution of concentration of substrate )(zS with the analytical 

solutions by Taylor series method and Hyperbolic function method for 1,2    and for 

different values of *K  
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NOMENCLATURE  

 

Symbols Name Unit 

A Concentration of species A mol/cm3 

B Concentration of species B mol/cm3 

C Concentration of species C mol/cm3 

D  Diffusion coefficient  cm2/s 

 =1,   m= 0.599190 (TSM)  =1.5,   m= 0.737434 (TSM)  =2,   m= 0.821320 (TSM)  =3,   m= 0.905960 (TSM) 

x 

Num 

 

TSM 

Eq. 

(17) 

Err% 

of 

TSM 

HFM 

Eq. 

(22) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(17) 

Err% 

of 

TSM 

HFM 

Eq. 

(22) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(17) 

Err% 

of 

TSM 

HFM 

Eq. 

(22) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(17) 

Err% 

of 

TSM 

HFM 

Eq. 

(22) 

Err% 

of 

HFM 

0 0.6071 0.5992 1.3 0.5992 1.30 
0.7395 0.7374 0.35 0.7374 0.35 0.8219 0.8213 0.10 0.8213 0.10 

0.906 0.906 0.00 0.906 0.00 

0.2 0.6291 0.6202 1.41 0.6138 2.43 0.7542 0.7518 0.32 0.7474 0.90 0.832 0.8312 0.10 0.8282 0.46 0.9114 0.9112 0.02 0.9097 0.19 

0.4 0.6902 0.6765 1.98 0.6582 4.64 0.794 0.7907 0.42 0.7775 2.08 0.8594 0.858 0.16 0.8491 1.20 0.9259 0.9254 0.05 0.9208 0.55 

0.6 0.7763 0.7605 2.04 0.7346 5.37 0.8528 0.8483 0.53 0.8286 2.84 0.8997 0.8977 0.22 0.8842 1.72 0.9472 0.9464 0.08 0.9394 0.82 

0.8 0.8825 0.8679 1.65 0.8467 4.06 
0.9249 0.9195 0.58 0.9021 2.47 0.949 0.9463 0.28 0.9342 1.56 

0.9732 0.972 0.12 0.9658 0.76 

1.0 1 1 0 1 0.00 1 1 0.00 0 0.00 1 1 0.00 1 0.00 1 1 0.00 1 0.00 

 Average 1.40   2.97 
    0.37   1.44     0.14   0.84 

    0.05    0.39 

*K =0.1,   m= 0.961202  (TSM) *K =0.2,   m= 0.949830 (TSM) *K =0.5,   m= 0.938947 (TSM) *K =100,   m= 0.928570 (TSM) 

x 

Num 

 

TSM 

Eq. 

(18) 

Err% 

of 

TSM 

HFM 

Eq. 

(23) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(18) 

Err% 

of 

TSM 

HFM 

Eq. 

(23) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(18) 

Err% 

of 

TSM 

HFM 

Eq. 

(23) 

Err% 

of 

HFM 

Num 
TSM 

Eq. 

(18) 

Err% 

of 

TSM 

HFM 

Eq. 

(23) 

Err% 

of 

HFM 

0 0.0386 0.0388 0.52 0.0388 0.52 
0.0501 0.0502 0.26 0.0502 0.26 0.061 0.0611 0.26 0.0611 0.26 

0.0714 0.0714 0.00 0.0714 0.00 

0.2 0.0362 0.0364 0.55 0.0373 3.04 
0.047 0.0472 0.43 0.0482 2.55 0.0574 0.0576 0.35 0.0586 2.09 

0.0673 0.0674 0.15 0.0686 1.93 

0.4 0.0297 0.0303 2.02 0.0326 9.76 
0.0391 0.0394 0.77 0.0422 7.93 0.0479 0.0482 0.63 0.0514 7.31 

0.0562 0.0566 0.71 0.0601 6.94 

0.6 0.0211 0.0216 2.37 0.0249 18.01 
0.0277 0.0282 1.81 0.0322 16.25 0.034 0.0345 1.47 0.0392 15.29 

0.04 0.0406 1.50 0.0459 14.75 

0.8 0.0109 0.0113 3.67 0.014 28.44 
0.014 0.0147 5.00 0.0182 30.00 0.0172 0.018 4.65 0.0221 28.49 

0.0203 0.0212 4.43 0.0259 27.59 

1.0 0 0 0 0 0.00 
0 0 0.00 0 0.00 0 0 0.00 0 0.00 

0 0 0.00 0 0.00 

 Average 1.52   9.96 
    1.38   9.50     1.23   8.91     1.13   8.53 
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rk ,
fk  Reaction-rate constants s-1 

AoN  Known rate constant s-1 

bB  Bulk concentration of species B mol/cm3 

x  Distance from the electrode surface (Eqn.(2)) cm 

  
Diffusion layer of uniform thickness cm2/s 

bbb B

C
S

B

B
b

B

A
a  ,,  Dimensionless concentration of the species A, B and 

C 

None 

z Dimensionless distance from the electrode surface None 

  Relative rates of diffusion and reaction None 
*K  Homogeneous equilibrium constant s-1 

  Rate of injection of A relative to the limiting flux of B 

toward the electrode 

None 

 

APPENDIX A: 

Relation between a(z), b(z) and S(z) 

Subtract of the Eq. (11) from (12) gives 

0
2

2

2

2


dz

bd

dz

ad
          (A1) 

Integrating we get, 

c
dz

db

dz

da
            (A2) 

Using the boundary condition (14), we obtain 


dz

db

dz

da
           (A3) 

Again integrating the above Eq. and using the boundary conditions (15),yields 

1)()(   zzbza          (A4) 

Similarly 

Adding the Eqs. (12) and (13) we get 

0
2

2

2

2


dz

Sd

dz

bd
          

 (A5) 

Integrating the above Eq. and using the boundary condition(14), we obtain 


dz

dS

dz

db
           (A6) 

The above Eq. is again integrated and the boundary condition (15) is used. 

1)()(  zSzb            (A7) 

 

APPENDIX B: 

The solution of eqs. (11)-(13) is using Taylor’s series method 

The solution of Eqs. (11)-(13) in the form of Taylor series can be written as follows: 
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azaza ,      (B1)

 )0(
!4

)0('''
!3

)0("
2

)0(')(
432

0

ivb
z

b
z

b
z

bzbzb ,      (B2)
 

 )0(
!4

)0('''
!3

)0("
2

)0(')(
432

0

ivS
z

S
z

S
z

SzSzS      (B3)

 
 

Assume that  

mb )0(
           (B4) 

Using the relation (A4) we get 

1)0(  ma ,           (B5) 

Using the relation (A7) we obtain 

mS 1)0(
           (B6) 

   0' za            (B7) 
  00' zb            (B8) 

  00' zS            (B9) 

Using the Eqs. (11)-(13)andsubstitute )0(),0( ba and )0(S  we get 

  






 


*2

1
1

1
)0("

k

m
mmb 


,        (B10) 

Using the relations (A1)and (A5), the following results are obtained. 

)0(")0(" ba  ,           (B11)  

)0(")0(" bS 
          (B12) 

Differentiating the Eqs. (11)-(13) and )0('),0(' ba and )0('S yields 

 


mb
2

1
)0(''' 

          
(B13) 

Using the relations (A4) and (A7), we get 

)0(''')0(''' ba  ,           (B14) 

)0(''')0(''' bS 
          (B15) 

Double differentiating the Eq. (11)-(13)and )0(''),0('' ba and )0(''S  we obtain 

  















 


**4

1
12

1
1

1
)0(

k
m

k

m
mmb iv 


      

(B16) 

The following results are obtained using the Eq. (A1) and (A5). 

)0()0( iviv ab  ,           (B17) 

)0()0( iviv bS            (B18) 

Again differentiating the Eq. we get 

   















 











**4

1
13

1
12

1
)0(

k

m
mm

k
mmb v 

     (B19)

 

Again differentiating the Eq. we obtain 
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Where m obtained as follows: 
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 (B22) 

The concentration of species B (Eq. (17) in the text) can be obtained by simplifying the 

Eq.(B21).The concentration of species A (Eq.(16) and species S (Eq.(18)) can be computed using the 

Eq.(A4) and Eq. (A7). 

 

APPENDIX C: 

Solution of equations (11)-(13) is using Hyperbolic function method 

The trail solution of Eq. (12) is assumed in the following form: 

)(sinh)(cosh)( znBznAzb          (C1) 

Using the boundary conditions Eqs. (14) and (15), we can obtain the constant  

0,
cosh

1
 B

m
A           (C2) 

The functionb(z) becomes 

n

zn
zb

cosh

)cosh(
)(            (C3) 

Where n is a constant. Using (A4) we get  

n

zn
zza

cosh

)cosh(
1)(            (C4) 

Using (A7) we obtain 

n

zn
zS

cosh

)cosh(
1)(            (C5) 

At z= 0 the equation (C3)becomes 



Int. J. Electrochem. Sci., Vol. 16, 2021 

 

13 

m
n

b 
cosh

1
)0(  i.e., 








 

m
n

1
cosh

1

       (C6) 

Now the concentrations of species A and Scan be obtained as follows:  

z
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z
m
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
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
  1

coshcosh1)(
1

        (C8) 

 

APPENDIX D. 

Matlab Program For The Numerical Solution of Nonlinear Differential Eqs. (11)-(13) 

function sol=ex6 

ex6init=bvpinit(linspace(0,1),[0 1 1 0 0 0]); 

sol = bvp4c(@ex6ode,@ex6bc,ex6init) 

end 

functiondydx=ex6ode(x,y) 

dydx=[y(2) 

(1/(2)^2)*(y(1)*y(3)-((y(5))/(3))) 

y(4) 

(1/(2)^2)*(y(1)*y(3)-((y(5))/(3))) 

y(6) 

(1/(2)^2)*(((y(5))/(3)))-y(1)*y(3)]; 

end 

function res=ex6bc(ya,yb) 

res=[ya(1)-0 

yb(2)-1 

ya(3)-1 

yb(4)-0 

ya(5)-0 

yb(6)-0]; 

end 
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