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Serious stray current corrosion poses a threat to the sustainable and safe use of buried gas pipelines. To 

exactly predict the stray current of buried gas pipelines and take timely action to reduce stray current 

corrosion on buried pipelines, the multiple linear regression (MLR) model, multiple nonlinear 

regression (MNLR) model, extreme learning machine (ELM) model and extreme learning machine 

processed by principal component analysis (PCA-ELM) model are established in this work. The stray 

current data obtained on site are applied to establish the above four prediction models. The predicted 

results suggest that the neural network models perform better at prediction than the traditional multiple 

regression models, and the proposed PCA-ELM model yields the smallest prediction errors, leading to 

a higher prediction accuracy and better generalization performance than the other three prediction 

models. However, the activation function and the number of hidden layer nodes in the neural network 

models should be selected and tested carefully. With the local optimization method, the proposed 

PCA-ELM model prefers the sine activation function and 18 hidden layer nodes. In summary, the 

proposed PCA-ELM model can be used for stray current prediction of buried gas pipelines or in other 

prediction studies. 
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1. INTRODUCTION 

With the development of urban rail transit systems and high-voltage power transmission and 

transformation systems, stray current corrosion in buried gas pipelines used for urban gas transmission 

and distribution systems is becoming increasingly prominent [1-4]. In particular, pipelines with defects 

in their external anti-corrosion coating are easily affected by stray current corrosion [5], which can 

lead to the perforation of the pipelines and leakage of the internal medium, resulting in huge economic 
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losses and serious environmental pollution [6]. In addition, stray current corrosion of buried gas 

pipelines is a type of electrochemical corrosion. Therefore, by studying the relevant factors that affect 

the stray current of buried gas pipelines and establishing a prediction model between the stray current 

and influencing factors, we can take the necessary measures in time to reduce the electrochemical 

corrosion of buried pipelines, which is of great significance for the safe operation of pipelines. 

Recently, mathematical regression models and neural network models have been applied in 

various engineering fields for predictions. Thoe [7] established multiple linear regression (MLR) 

models to forecast the daily water quality of Hong Kong beaches. More [8] established a MLR model 

and multiple nonlinear regression (MNLR) model to determine the chromium removal efficiency 

(CRE) in the cathode chamber of Bioelectrochemical system, concluding that the MLR model was 

better suited than the MNLR model for predicting chromium removal behavior. With the development 

of artificial neural networks, Rezaeianzadeh [9] used an artificial neural network (ANN), adaptive 

neuro-fuzzy inference system (ANFIS), MLR model and MNLR model to forecast maximum daily 

flow and proposed the MNLR model as a simple way to predict the maximum daily flow. Cao [10] 

used the BP neural network model to predict the stray current of buried gas pipelines, and Wang [11] 

established a quantum particle swarm optimization neural network (QPSO-NN) model to predict the 

stray current density; both studies obtained a good prediction performance. As a type of single hidden 

layer feedforward neural network, the extreme learning machine (ELM) has been widely used in 

various fields, especially in the fields of classification [12-16] and prediction [17-25]. After verifying 

by the simulation results, Huang [26] concluded that ELM achieved a better generalization 

performance for regressions and achieved a much faster learning speed (up to thousands of times 

faster) than traditional support vector machine (SVM) and least squares support vector machine (LS-

SVM). 

In this paper, we propose an approach for training ELM networks based on principal 

component analysis (PCA). PCA is widely used for data analysis and dimension reduction in 

applications throughout science and engineering [27-29]. The trained PCA-ELM model is applied to 

predict the stray current of buried gas pipelines, and the predicted results are compared with those from 

models established by traditional multiple linear regression and multiple nonlinear regression. The 

prediction accuracies of the models are analysed and compared, and the results provide references for 

methods and a certain theoretical basis for stray current prediction of buried gas pipelines. 

 

 

2. EXPERIMENTAL 

2.1. Multiple linear regression model 

Multiple linear regression (MLR) is a linear regression relationship in which the dependent 

variable is affected by two or more independent variables. MLR is a commonly used method in 

mathematical statistics. The basic principle of MLR is similar to that of the one-variable linear 

regression model. Setting the dependent variable as y and the independent variable as 
ix  (i=1, 2, ..., k), 

the basic MLR model is:  

0 1 1 2 2     k ky β β x β x β x ε  (1) 
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where 
0 1, ,..., kβ β β  are k+1 unknown parameters; 

0β  is the regression constant; 
1 2, ,..., kβ β β  are 

the regression coefficients; y is the explained variable; 
1 2, ,..., kx x x  are k explanatory variables that can 

be precisely controlled; and ε is random error. 

If there are n sets of sample data, denoted as (xi1, xi2, …, xik, yi), (where i=1, 2, ..., n), then n 

regression equations can be established:  

1 0 1 11 2 12 1

2 0 1 21 2 22 2

0 1 1 2 2

    


    


     

k k

k k

n n n k nk

y β β x β x β x

y β β x β x β x

y β β x β x β x

 (2) 

Written in matrix form: 

Y=Xβ (3) 

where 

1

2

 
 
 
 
 
 n

y

y
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y

,

0

1

 
 
 
 
 
 k

β

β
β

β

 and 

11 12 1

21 22 2

1 2

1

1

1

 
 
 
 
 
 

k

k

n n nk

x x x

x x x
X

x x x

. 

The estimated value ˆ  β  of the regression coefficient β  in the MLR model can be obtained by 

the least squares method: 
1ˆ ( ) T Tβ X X X Y  (4) 

from which we can calculate that 0 1 2, , ,...,ˆ ˆ ˆ ˆ ˆ 
 

T

kβ β β β β . Then, the MLR model obtained is as 

follows:  

0 1 1 2 2
ˆ ˆ ˆ ˆˆ      k ky β β x β x β x  (5) 

 

2.2. Multiple nonlinear regression model 

Multiple nonlinear regression (MNLR) is a nonlinear regression in which the dependent 

variable is affected by two or more independent variables. This paper uses SPSS (version 23.0) and 

1stOpt (version 15.0) to establish and analyse the MNLR model [30]. First, the optimal unitary 

nonlinear regression model of y on each independent variable xi is established in an exploratory way. 

All the curve models in SPSS (version 23.0) are selected to fit the training set, and the optimal unitary 

curve model is selected by comparing the coefficient of determination (R2). The larger the coefficient 

of determination, the better the model fitting effect. Second, all the optimal unitary curve models are 

artificially synthesized into a multiple nonlinear model. Then, the parameters of the multiple nonlinear 

model are estimated by using 1stOpt (version 15.0), and finally, the MNLR model is acquired. The 

process for establishing the MNLR model is shown in Figure 1. 
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Figure 1. Process for establishing the MNLR model 

 

2.3. Principal component analysis 

Principal component analysis (PCA) is a data dimension reduction method in statistics. PCA 

transforms the original multiple correlated variables into a few unrelated principal components, and 

each principal component is a linear combination of the original variables. The selected principal 

components should retain most of the information of the original variables as much as possible to 

reduce the data dimension. PCA can eliminate the linear correlation between variables, eliminate the 

redundancy of data, reduce the dimension of the model input variables, simplify the structure of 

networks, and improve the model training and prediction speed. 

Suppose 
nmX  is a matrix composed of n samples and each sample is m-dimensional. The 

matrix form is written as follows:  

11 12 1

21 22 2

1 2

           

           

                      

          

 
 
 
 
 
 

m

m

nm

n n nm

x x x

x x x
X

x x x

 (6) 

Principal component analysis (PCA) can be divided into the following five steps: 

1) Standardizing the original data. The original data are standardized according to Eq. (7), and 

the standardized matrix *

nmX  is obtained.  
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where 
1

1


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j ij
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x x
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,  
2
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1
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j ij j
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n

.  

2) Establishing the correlation coefficient matrix. The correlation coefficient is calculated by 

the standardized matrix *

nmX  according to Eq. (8), and the correlation coefficient matrix 
nmR  is 

obtained. 

  

   

* * * *

1

2 2
* * * *

1 1



 

 


 



 

n

ki i kj jk

ij
n n

ki i kj jk k

x x x x
r

x x x x

 (8) 

3) Solving the eigenvalues and eigenvectors of the correlation coefficient matrix. The formula 

  0 E Rλ  is used to solve the eigenvalue   λ   1,2,...,i i m , and the eigenvalues are arranged in 

descending order: 
1 2λ  λ ... λ 0   m

. Then, the formula  λ 0 iE R A  is used to solve the 

eigenvector  1 2, ,...,
T

i i i imA a a a  of the corresponding eigenvalue  λi
. 

4) Calculating the explained variance and cumulative variance of each principal component. 

The explained variance of the ith principal component is: 
1

  λ / λ


 
  

 


m

i i j

j

G , where 1,2,...,i m . The 

cumulative variance of the first l principal components is:  
1


l

i

i

G l G . If  G l  is more than 80%, then 

the first l principal components are taken as the input variables of the networks; thus, the input 

dimension of the networks is reduced from m to l. 

5) Calculating the principal component matrix. The principal component matrix    nlP  composed 

of n samples corresponding to l principal components is obtained as follows: 
*nl nm mlP X A  (9) 

where *

nmX  is the standardized matrix and  

11 21 1

12 22 2

1 2

1 2

           

           
, ,...,

                     

          

 
 
  
 
 
 

l

l

ml l

m m lm

a a a

a a a
A A A A

a a a

.  

 

2.4. Extreme learning machine 

Extreme learning machine (ELM) is a new type of feedforward neural network with a single 

hidden layer [31]. ELM replaces the iterative process of traditional parameter optimization by solving 

linear equations. The solution obtained is taken as the weight of the output layer network so that the 

training of the network can be completed at one time without iteration. In addition, in the training 

process of ELM, the input weight matrix ( w ) and the hidden layer biases ( b ) are randomly generated 

without adjustment, which simplifies the parameter selection of the algorithm. This process also 

overcomes the shortcomings of traditional feedforward neural networks, such as the complex training 

parameters, slow training speed and ease of falling into the local minima [32-33].  
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Assume N arbitrarily different training samples   
1

,


N

i i i
x t , where  1 2, ,..., 

T n

i i i inx x x x R  is the 

n-dimensional input vector of the ith sample, and  1 2, ,..., 
T m

i i i imt t t t R is the corresponding expected 

output vector. Assuming that the number of hidden layer nodes is L and the activation function is g(x), 

then the ELM model can be written as follows: 

Hβ T  (10) 

where      

   

   

1 1 1 1

1 2

1 1

g g

, ,...,

g

=

g


   
     
   

L L
T

T T T

N

N L N L N L

w x b w x b

H h x h x h x

w x b w x b

. 

Here,  1 2, ,...,
T

i i i inw w w w  is the weight between the input layer and the ith hidden layer node, 

ib  is the bias of the ith hidden layer node,  1 2, ,...,
T

Lβ β β β  is the output weight matrix connecting the 

hidden layer nodes and the output layer, and  1 2, ,...,
T

NT t t t  is the expected output sample matrix. The 

input weight matrix ( w ) and the hidden layer biases ( b ) are randomly generated. To minimize the 

training error, the output weight matrix ( β ) in Eq. (10) can be obtained by calculating the least squares 

solution as follows: 
ˆ β H T  (11) 

where H  is the Moore–Penrose generalized inverse of the output matrix of hidden layer H . 

In summary, the basic steps of ELM are as follows [34]: 

a) Given N arbitrarily different training samples   
1

,


N

i i i
x t , set the number of hidden layer 

nodes and the activation function; 

b) Randomly set the input weight matrix w  and the hidden layer biases b ; 

c) Calculate the output matrix of hidden layer H ; 

d) Calculate the output weight matrix β̂  using Eq. (11). 

 

2.5. The indicators of the prediction accuracy 

In this study, the mean absolute error (MAE), mean absolute percentage error (MAPE) and root 

mean square error (RMSE) are used as the indicators of the prediction accuracy of the model. The 

smaller the above error values are, the better the prediction accuracy. The equations are expressed as 

follows: 

1

1
ˆ



 
N

i i

i

MAE y y
N

 
(12) 

1

0
ˆ1

1 0



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N
i i

i i

y y
MAPE

N y
 

(13) 

 
2

1

1
ˆ


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N

i i

i

RMSE y y
N

 
(14) 

where 
iy  and ˆ

iy  represent the measured and predicted values of the ith sample in a testing set, 

respectively; N is the number of samples in a testing set. 
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2.6. The measurement of data 

To predict the stray current of buried gas pipelines in Guangzhou, Guangdong Province, China, 

20 points along the high-pressure pipelines were selected. At each testing point, we measured the pipe-

to-soil potential, the soil moisture content, the soil resistivity, the buried depth of the pipeline, the pH 

of the soil and the stray current. Among the measurements, the measurement process of the pipe-to-soil 

potential included a testing pit to be dug at a depth of 0.5m directly above the pipeline and a reference 

electrode to be placed. A small test piece, which was made of the same material as the pipeline and set 

close to the reference electrode to eliminate the IR drop as much as possible, was connected to the 

pipeline through the test pile. A multimetre was used to measure the potential between the small test 

piece and reference electrode for 1 hour, and the average value was taken as the pipe-to-soil potential. 

The soil moisture content and pH were measured as follows: according to "GB/T 19285-2014 

Corrosion protection engineering inspection of buried steel pipeline" (hereinafter referred to as 

"Standard"), five soil samples were randomly selected from the testing pit for analysis, and the average 

values of the analysis results were taken as the soil moisture content and pH of the testing point. The 

soil resistivity was measured as follows: according to the "Standard", the grounding resistance 

measurement instrument was applied and the equidistant four-electrode method was used to measure 

soil resistivity 5 times continuously, and the average value was taken as the soil resistivity of the 

testing point. The buried depth of the pipeline was measured using an RD8100 pipeline detector. As 

shown in Figure 2, after measuring the pipeline current of each testing point and the current provided 

by the cathodic protection power supply, the absolute value of the subtraction of these two currents 

was taken as the stray current of the corresponding testing point. 

 

 

 

 

Figure 2. Measurement of (a) the pipeline current and (b) the cathodic protection current 
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Using the above measurement methods, 20 samples were obtained, as shown in Table 1. 

Fifteen samples (Nos. 2, 4~7, 9~14, 16~17, and 19~20) were randomly selected from Table 1 as the 

training set of each prediction model for establishment, and the remaining 5 samples (Nos. 1, 3, 8, 15, 

and 18) were selected as the testing set of each prediction model to test the prediction performance. 

To simplify the expression, y is used to represent the stray current of buried gas pipelines and 

1 2 3 4 5, , , ,x x x x x  are used to represent the pipe-to-soil potential, the soil moisture content, the soil 

resistivity, the buried depth of pipeline and the pH of the soil, respectively.  

 

Table 1. Measurement data 

 

No. 

The pipe-

to-soil 

potential 

/V 

The soil 

moisture 

content 

/% 

The soil 

resistivity 

/(Ω·m) 

The buried 

depth of 

pipeline 

/m 

The pH   

of the soil 

The stray 

current 

/A 

1 -1.26 22.3 179.7 1.5 7.1 2.27 

2 -1.11 19 473.7 5.3 7.5 1.02 

3 -1.75 25 279.7 1.25 7.5 3.07 

4 -1.73 24.7 396.7 1.46 7.1 1.35 

5 -1.32 16.7 822.3 1.8 8.1 1.65 

6 -2.94 14.7 1039 3.7 6.8 2.40 

7 -1.35 27.7 104.7 1.88 7.9 2.32 

8 -1.82 18 162.8 1.4 7.1 2.25 

9 -1.42 18 393 1.5 6.7 2.03 

10 -1.37 19.7 232.7 2.74 6.7 1.95 

11 -1.87 16.3 1204 1.6 6.6 1.87 

12 -1.21 23 305 1.5 7.4 2.33 

13 -0.97 18 1255.3 1.8 8 0.72 

14 -3.15 15 1655.7 3.7 7.6 2.21 

15 -1.37 20.3 224.7 1.88 6.4 2.19 

16 -2.72 25 100.1 1.4 6.5 3.92 

17 -1.31 21 421.8 1.5 6.3 2.25 

18 -1.61 24.7 225.4 2.74 6.1 2.64 

19 -1.93 17 1004 1.6 6.1 2.07 

20 -1.38 25.7 261.7 1.5 6.8 2.45 

 

 

3. RESULTS AND DISCUSSION 

3.1. The MLR model 

In an MLR model, if there is a linear correlation between the independent variables, then there 

will be an increase in the standard error, resulting in a decrease of the prediction accuracy of the model 

[35]. To eliminate the influence of multicollinearity, this paper utilizes the training set and the stepwise 

regression method of SPSS (version 23.0) to establish the MLR model of the stray current of buried 

gas pipelines [36]. The fitting results and coefficient analysis are separately shown in Table 2 and 

Table 3. 
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Table 2. Fitting results of the MLR model 

 

Model 
Correlation 

coefficient R 

Coefficient of 

determination R2 
Adjusted R2 F Significance 

1 

2 

3 

0.549 

0.842 

0.894 

0.301 

0.709 

0.799 

0.247 

0.661 

0.744 

5.603 

14.636 

14.546 

0.034 

0.001 

0.000 

 

It can be seen from Table 2 that the correlation coefficient and coefficient of determination of 

Model 3 are the largest of all the models, indicating that Model 3 fits the training set best. In addition, 

the correlation coefficient of Model 3 is 0.894, meaning that the independent variables in Model 3 

have a high correlation with the dependent variable [37]. Furthermore, the significance of the t-test is 

less than 0.05, which indicates that Model 3 is statistically significant. In Table 3, the variance 

inflation factor (VIF) of each variable in Model 3 is less than 4, indicating that there is no collinear 

error among the independent variables. The significance of the t-test for each variable in Model 3 is 

less than 0.05, which indicates that the independent variables in Model 3 are significant and the fitting 

is significant [38]. However, based on the stepwise regression method, the independent variables 
2x  

and 
5x  did not enter Model 3. In statistical theory, this indicates that the soil moisture content and the 

pH of soil have no significant influence on the stray current of buried gas pipelines [39]. According to 

the coefficient analysis results of Model 3 presented in Table 3, the MLR model of the stray current is 

obtained as follows:  

1 3 41.471 0.946 0.001 0. 9ˆ 19   y x x x  (15) 

 

Table 3. Coefficient analysis of the MLR model 

 

Model Variate 

Unstandardized coefficients 

t Significance VIF 
B 

Standard 

error 

1 
Constant 1.029 0.456 2.255 0.042  

1x  -0.586 0.248 -2.367 0.034 1.000 

2 

Constant 1.180 0.308 3.824 0.002  

1x  -0.899 0.183 -4.916 0.000 1.210 

3x  -0.001 0.000 -4.104 0.001 1.210 

3 

Constant 1.471 0.299 4.924 0.000  

1x  -0.946 0.160 -5.899 0.000 1.232 

3x  -0.001 0.000 -4.186 0.002 1.261 

4x  -0.199 0.090 -2.210 0.049 1.099 

 

The prediction results of using Eq. (15) to predict the testing set are given in Figure 3. It can be 

seen from Figure 3 that the predicted values are not very close to the measured values. After 

calculation, the coefficient of determination of the predicted values is only 0.091, which is far smaller 
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than that of the training set (R2=0.799). Therefore, the generalization performance of the MLR model 

is not satisfactory, which may lead to the poor prediction accuracy [40-41]. 
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Figure 3. Predicted results of the MLR model 

 

3.2. The MNLR model 

Table 4. Statistical results of each model during the fitting on 
1x  

 

Curve models 
Statistical summary  The estimation of the parameters 

R2 F Significance Constant 
Parameter 

1 

Parameter 

2 

Parameter 

3 

Linear  0.301 5.603 0.034 1.029 -0.586 
  

Logarithmic curve  —— —— ——  —— —— —— —— 

Inverse function 

curve  
0.376 7.822 0.015 

 
3.448 2.154 

  

Quadratic curve 0.369 3.513 0.063  -0.965 -2.798 -0.533 
 

Cubic curve  0.373 2.179 0.148  0.400 -0.438 0.738 0.212 

Compound curve 0.280 5.051 0.043  1.118 0.734 
  

Power function 

curve 
—— —— —— 

 
—— —— —— —— 

S-curve  0.416 9.247 0.009  1.457 1.241 
  

Growth curve  0.280 5.051 0.043  0.112 -0.309 
  

Exponential curve  0.280 5.051 0.043  1.118 -0.309 
  

Logistic curve  0.280 5.051 0.043  0.894 1.363 
  

 

 

In this paper, SPSS (version 23.0) and 1stOpt (version 15.0) are applied to establish the MNLR 

model of the stray current of buried gas pipelines. First, the optimal unitary nonlinear regression model 
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of y on each independent variable 
ix (i=1,...,5) is established using SPSS (version 23.0). The 

independent variable 
1x  is taken as an example. All the curve models in SPSS (version 23.0) are 

selected to perform curve fitting on the training set, and the statistical results of each model during the 

fitting on 
1x  are obtained in Table 4. 

Since the values of the independent variable 
1x  are all negative, it is impossible to establish a 

logarithmic model and power function model for the dependent variable y to the independent variable 

1x . Comparing the coefficient of determination (R2) of each curve model presented in Table 4, we find 

that the R2 of the S-curve model is the largest and the significance of the t-test is less than 0.05, which 

indicate that the S-curve model is statistically significant. Therefore, the S-curve model is selected for 

fitting, and the optimal unitary curve model of the dependent variable y to the independent variable 
1x  

is: 

1

1.241
1.457

 xy е  (16) 

Using the same method, the optimal unitary curve models of the dependent variable y to the 

independent variables 
2 3 4 5  , , ,x x x x  are established, and the results are as follows: 
2

2 26.973 0.549 0.015  y x x  (17) 

3

156.505
1.557 y

x
 (18) 

2 3

4 4 411.853 11.074 3.694 0.376   y x x x  (19) 
50.316

17.766


 
x

y е  (20) 

Second, the above optimal unitary curve models (16) ~ (20) are artificially synthesized into a 

multiple nonlinear model as follows: 
2

1
10 51 2 2 35

0 3 2 4 2 6 4 7 4 8 4 9

3



        

β
β

β xx β
y β е β x β x β x β x β x β е

x
 (21) 

Then, the parameters of Eq. (21) are estimated by 1stOpt (version 15.0), and the results are 

presented in Table 5. In Table 5, the correlation coefficient (R) of the MNLR model is 0.939, meaning 

that the independent variables in the MNLR model have very high correlation with the dependent 

variable [37]. In addition, the coefficient of determination (R2) is 0.882, which is higher than that of 

the MLR model (R2=0.799). Therefore, the MNLR model fits the training set better than the MLR 

model. Finally, the MNLR model of the stray current of buried gas pipelines is obtained as follows:  

51

0.030
2.270

1.8272 2 3

2 2 4 4 4

3

147.602
0.0002 0.032 0.001 9.313 3.218 0.333 55890.27ˆ 5




        
xxy е x x x x x е

x
   

(22) 

 

Table 5. Parameter estimation of the MNLR model 

 

No. 
Projects 

calculated 
Results obtained Parameters 

Estimated 

results  

1 Algorithm Levenberg-Marquardt 0β  0.000198 

2 Iterations 79 1β  2.270343 

3 RMSE 0.243531 2β  0.030144 
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4 SSE 0.889612 3β  -0.032231 

5 R 0.938958 4β  0.001071 

6 R² 0.881643 5β  147.602363 

7 Chi-Squared 0.284817 6β  -9.313477 

8 F-Statistic 96.837368 7β  3.218090 

9 
  8β  -0.333109 

10 
  9β  55890.274765 

11 
  10β  -1.826901 

 

Eq. (22) is applied to predict the testing set, and the results are shown in Figure 4. From Figure 

4, the predicted values slightly fluctuate compared with the measured values, which is similar to the 

predicted results of the MLR model. After calculation, the coefficient of determination of the predicted 

values is 0.368, which is far less than that of the training set (R2=0.882). Therefore, similar to the MLR 

model, the MNLR model also has poor generalization, which may affect the prediction accuracy of the 

model [40-41]. 

0 2 4 6 8 10 12 14 16 18

2.0

2.5

3.0

3.5

S
tr

ay
 c

u
rr

en
t 

/A

Numerical order of testing samples

 The measured values

 The predicted values

 
 

Figure 4. Predicted results of the MNLR model 

 

3.3. PCA 

In this study, PCA is applied to preprocess the original data into a set of linearly uncorrelated 

variables, which are called principal components. This technique reduces the dimension of the data, 

which reduces the computational memory and time. Table 6 shows the explained variance and 

cumulative variance of each principal component. It can be seen from Table 6 that the cumulative 

variance of the first three principal components is 83.410%, which explains 83.410% of the total 

variance and contains the acceptable information of the total variance. Therefore, the first three 

principal components are extracted as evaluation indexes and are taken as the new input variables of 

the networks, meaning that the input dimension of the networks has been reduced from 5 to 3. After 
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extracting the principal components, the new dataset processed by PCA is obtained, as shown in Table 

7. Later, we will utilize the data in Table 7 to train the ELM model and apply the trained ELM model 

to predict the stray current of buried gas pipelines. 

 

Table 6. Explained variance and cumulative variance of each principal component 

 

Principal components Explained variance/% Cumulative variance/% 

1 44.947 44.947 

2 23.238 68.185 

3 15.224 83.410 

4 12.759 96.168 

5 3.832 100.000 

 

Table 7. New dataset processed by PCA 

 

No. 
Principal 

component 1 

Principal 

component 2 

Principal 

component 3 

1 -1.19688 0.30228 -0.14317 

2 1.07341 1.62349 2.54641 

3 -1.17087 0.42684 -0.29740 

4 -0.97066 -0.04661 -0.16813 

5 0.75729 1.79345 -0.93310 

6 2.91109 -0.99909 0.71549 

7 -1.74951 1.37360 0.45119 

8 -0.26685 -0.19166 -0.44203 

9 -0.25391 -0.34043 -0.50868 

10 -0.26908 -0.13659 0.77577 

11 1.36225 -0.66866 -1.14454 

12 -1.12201 0.78205 -0.25644 

13 0.88611 2.04275 -1.21584 

14 3.92938 0.05077 0.10937 

15 -0.74030 -0.68164 0.14276 

16 -0.86664 -1.76572 0.21993 

17 -0.78542 -0.78465 -0.28409 

18 -0.93918 -1.15102 1.21630 

19 0.96305 -1.44384 -0.84730 

20 -1.55125 -0.18533 0.06353 

 

3.4. The ELM model 

This paper uses MATLAB (version R2018) to establish the ELM neural network model to 

predict the stray current of buried gas pipelines. Five factors that affect the stray current of buried gas 
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pipelines (the pipe-to-soil potential, the soil moisture content, the soil resistivity, the buried depth of 

pipeline and the pH of the soil) are taken as the input parameters of the ELM model, and the stray 

current of buried gas pipelines is taken as the output parameter. 

The activation function and the number of hidden layer nodes have strong influences on the 

prediction accuracy of ELM neural networks [42]. If the number of hidden layer nodes is too small, 

then the ELM networks cannot learn well and the prediction error will be large. If the number of 

hidden layer nodes is too large, then the training time of networks will increase and the phenomenon of 

overfitting is prone to occur. According to the Kolmogorov theorem [43], for single hidden layer neural 

networks, if the number of input layer nodes is n, then the number of hidden layer nodes should be at 

least 2n+1. In addition, the maximum number of hidden layer nodes is N, which is the number of 

samples. In this study, the number of input layer nodes is 5 and the number of samples is 20. To take 

into account the performance and training costs of the networks, this paper adopts the local 

optimization method to find the number of hidden layer nodes within the range of 11 to 20 by using the 

testing set so that the ELM model has the best prediction accuracy. 

In the optimization process, the input weight matrix ( w ) and the hidden layer biases ( b ) of the 

networks are randomly set. The activation function is separately set as the sigmoid function, sine 

function and hardlim function. Then, the training set is used to train the networks with different 

numbers of hidden layer nodes, and the testing set is predicted to output the root mean square error 

(RMSE) of the predicted results. The results are presented in Figure 5. As seen from Figure 5, when 

the activation function is the sigmoid function and the number of hidden layer nodes is 13, the RMSE 

is the smallest, meaning that the ELM model has the best prediction accuracy. Therefore, the activation 

function is set as the sigmoid function and the number of hidden layer nodes is set to 13. 
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Figure 5.  Testing results of the hidden layer nodes and the activation function 
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Figure 6. Predicted results of the ELM model 

 

The testing set is input into the trained ELM model to predict the stray current of buried gas 

pipelines, and the predicted values are shown in Figure 6. In Figure 6, the stray current values 

predicted by the ELM model are close to the measured values. After calculation, the coefficient of 

determination of the predicted values of ELM model is 0.922, which is greater than 0.9, indicating that 

the prediction accuracy and generalization performance of the ELM model are better than those of the 

MLR model and MNLR model [44-45]. 
 

3.5. The PCA-ELM model 

Taking the three principal components presented in Table 7 as the input parameters of the ELM 

model and the stray current of buried gas pipelines as the output parameter, the PCA-ELM neural 

network model is established using MATLAB (version R2018). The activation function and the 

number of hidden layer nodes also have strong influences on the prediction accuracy of the PCA-ELM 

model. Referring to Section 4.4, the optimal number of hidden layer nodes ranges from 7 to 20. Using 

the same method as described in Section 4.4, the testing results are calculated and presented in Figure 

7. The RMSE is the lowest in the case that the activation function is the sine function and the number 

of hidden layer nodes is 18. Therefore, the activation function of PCA-ELM model is set as the sine 

function and the number of hidden layer nodes is set to 18. 

The predicted values when using the trained PCA-ELM model to predict the stray current of 

buried gas pipelines are presented in Figure 8. In Figure 8, the stray current values predicted by the 

PCA-ELM model are very close to the measured values. After calculation, the coefficient of 

determination of the predicted values of the PCA-ELM model is 0.976, which is close to 1, indicating 

that the PCA-ELM model has a high prediction accuracy and maintains a good generalization 

performance for prediction after principal component analysis [46]. 
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Figure 7. Testing results of the hidden layer nodes and the activation function 
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Figure 8. Predicted results of the PCA-ELM model 

 

3.6. Comparison of model prediction results 

The MLR model, MNLR model, ELM model and PCA-ELM model are applied to predict the 

stray current of the testing set, and the predicted values are obtained as shown in Figure 9. Compared 

with the other models, overall, the predicted values of the PCA-ELM model are the closest to the 

measured values. After calculation, the coefficients of determination of the predicted values of the 

MLR model, MNLR model, ELM model and PCA-ELM model are 0.091, 0.368, 0.922 and 0.976, 

respectively. The higher the coefficient of determination is, the better the prediction accuracy of the 

model will be. Thus, the preliminary analysis shows that the prediction accuracy of the PCA-ELM 

model is the best, followed by the ELM model and MNLR model, and the MLR model has a poor 
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prediction accuracy. Furthermore, the neural network models provide a higher prediction accuracy and 

better generalization capability than the traditional multiple regression models. 
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Figure 9. Predicted values of the four models 

 

 

To further compare the prediction accuracy of the different models, the MAE, MAPE and 

RMSE are calculated. The results are presented in Table 8. Among the four models, the MAE, MAPE 

and RMSE of the PCA-ELM model, which are 0.06 A, 2.50% and 0.07 A, respectively, are the 

smallest. After calculation, these errors are reduced by 80.00%, 78.56% and 80.56%, respectively, 

compared with the MLR model; decreased by 72.73%, 72.07% and 74.07%, respectively, compared 

with the MNLR model; and decreased by 40.00%, 32.25% and 58.82%, respectively, compared with 

the ELM model. Meanwhile, the MAE, MAPE and RMSE of the ELM model are all the second 

smallest, and those of the MLR model are all the largest.  

 

Table 8. Comparison of the prediction accuracies 

 

The indicators of 

prediction 

accuracy 

The MLR 

model 

The MNLR 

model 

The ELM 

model 

The PCA-

ELM model 

MAE/A 0.30 0.22 0.10 0.06 

MAPE/% 11.66 8.95 3.69 2.50 

RMSE/A 0.36 0.27 0.17 0.07 

 

 

Therefore, the PCA-ELM model provides the best prediction performance, followed by the 

ELM model and MNLR model, and the MLR model has a poor prediction accuracy. Cao [10] used the 
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BP neural network (BPNN) model to predict the stray current density of a buried pipeline, and the 

MAPE of the BPNN model was calculated to be 5.25%, which was larger than those of the ELM 

model and PCA-ELM model. Thus, the proposed ELM model and PCA-ELM model both have a 

higher prediction accuracy than the BPNN model. After similar comparison, the proposed PCA-ELM 

model has a higher prediction accuracy than the particle swarm optimization neural network (PSO-NN) 

model to predict the stray current density [11]. 

 

 

4. CONCLUSIONS 

In this paper, the multiple linear regression model, multiple nonlinear regression model, 

extreme learning machine model and extreme learning machine processed by principal component 

analysis model are utilized to predict the stray current of buried gas pipelines. Based on the analysis of 

the prediction results, the following conclusions can be drawn. 

(1) After analysing the indicators of the prediction accuracy of the four models, the PCA-

ELM model is the best, followed by the ELM model and MNLR model, and the MLR model is the 

worst. Therefore, the PCA-ELM model has more advantages than the other three models in term of the 

prediction accuracy and provides a reference method for the actual evaluation of the stray current of 

buried gas pipelines. 

(2) Compared with traditional multiple regression models, the neural network models 

provide a higher prediction accuracy and better generalization performance. Thus, artificial neural 

networks are potential tools for the prediction of the stray current of buried gas pipelines, guiding us to 

take necessary measures in a timely manner to reduce stray current corrosion of buried pipelines. 

(3) Principal component analysis is combined with an extreme learning machine to forecast 

the stray current of buried gas pipelines. Using PCA, we obtained three variables that explained more 

than 80% of the information provided by the original five variables. The predicted results show that 

PCA not only reduces the data redundancy but also improves the prediction accuracy of the ELM 

model. In addition, the generalization of the ELM model is also maintained. Thus, PCA can be used as 

a feasible data processing method for the prediction of stray current or in other prediction studies. 

(4) The activation function and the number of hidden layer nodes are sensitive to the 

prediction accuracy of the ELM model. In this study, the sigmoid function, preferably with 13 hidden 

layer nodes, is more suitable than the sine function or hardlim function for the ELM model to predict 

the stray current of buried gas pipelines. However, when the activation function is the sine function 

and the number of hidden layer nodes is 18, the PCA-ELM model has best prediction accuracy. 

 

 

ACKNOWLEDGMENTS 

We are very grateful for the measuring instruments and guidance provided by Guangzhou Gas Group 

Co., Ltd. 

 

 

 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 210253 

  

19 

References 

 

1. L. Bertolini, M. Carsana, and P. Pedeferri, Corros. Sci., 49 (2007) 1056. 

2. J. Shi, Y. Zou, J. Ming, and M. Wu, Corros. Sci., 169 (2020) 108610. 

3. K. Tang, and S. Wilkinson, Constr. Build. Mater., 230 (2020) 117006. 

4. Q. Qin, B. Wei, Y. Bai, L. Nan, J. Xu, C. Yu, and C. Sun, Int. J. Pres. Ves. Pip., 179 (2020) 104016. 

5. K. Zakowski, K. Darowicki, J. Orlikowski, A. Jazdzewska, S. Krakowiak, M. Gruszka, and J. 

Banas, Case Studies In Construction Materials, 4 (2016) 116. 

6. H. Bai, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 75 (2020) 42. 

7. W. Thoe, and J.H.W. Lee, J. Environ. Eng., 140 (2014) 472. 

8. A.G. More, and S.K. Gupta, J. Biosci. Bioeng., 126 (2018) 205. 

9. M. Rezaeianzadeh, H. Tabari, A. Arabi Yazdi, S. Isik, and L. Kalin, Neural Computing And 

Applications, 25 (2014) 25. 

10. Cao, L. A, Zhu, J. Qing, Zhang, T. Sheng, Hou, and R. Bao, Anti - Corrosion Methods And 

Materials, 57 (2010). 

11. C. Wang, W. Li, G. Xin, Y. Wang, and S. Xu, Complexity, 2019 (2019) 1. 

12. Y. Wan, S. Song, G. Huang, and S. Li, Neurocomputing, 260 (2017) 235. 

13. Y. Yu, and Z. Sun, Neurocomputing, 261 (2017) 50. 

14. Y. Peng, W. Kong, and B. Yang, Neurocomputing, 266 (2017) 458. 

15. G.B. Huang, X. Ding, and H. Zhou, Neurocomputing, 74 (2010) 155. 

16. Y. Song, S. Zhang, B. He, Q. Sha, Y. Shen, T. Yan, R. Nian, and A. Lendasse, Neurocomputing, 277 

(2018) 53. 

17. L. Wang, X. Li, and Y. Bai, Energ. Convers. Manage., 162 (2018) 239. 

18. Z. Li, L. Ye, Y. Zhao, X. Song, J. Teng, and J. Jin, Protection And Control Of Modern Power 

Systems, 1 (2016). 

19. S. Li, P. Wang, and L. Goel, Electr. Pow. Syst. Res., 122 (2015) 96. 

20. G. Feng, Z. Qian, and N. Dai, Neurocomputing, 82 (2012) 62. 

21. Y. Guo, J. Wang, H. Chen, G. Li, J. Liu, C. Xu, R. Huang, and Y. Huang, Appl. Energ., 221 (2018) 

16. 

22. X. Li, H. Xie, R. Wang, Y. Cai, J. Cao, F. Wang, H. Min, and X. Deng, Neural Comput. Appl., 27 

(2016) 67. 

23. Z. Yang, L. Ce, and L. Lian, Appl. Energ., 190 (2017) 291. 

24. Z. Liu, J. Shao, W. Xu, H. Chen, and Y. Zhang, Nat. Hazards, 73 (2014) 787. 

25. S. Li, L. Goel, and P. Wang, Appl. Energ., 170 (2016) 22. 

26. G.B. Huang, H. Zhou, X. Ding, and R. Zhang, IEEE Transactions on Systems Man & Cybernetics 

Part B, 42 (2012) 513. 

27. M. Rezghi, and A. Obulkasim, Expert Syst. Appl., 41 (2014) 7797. 

28. H. Cardot, and D. Degras, International Statal Review, 86 (2017) 29. 

29. Dobriban and Edgar, Ann. Stat., 45 (2016). 

30. X.S. Wang, X.J. Ding, and Y.L. Xie, Advanced Materials Research, 168-170 (2010) 217. 

31. G.B. Huang, L. Chen, and C.K. Siew, IEEE Transactions On Neural Networks, 17 (2006) 879. 

32. Y.H. Zhang, H. Wang, Z.J. Hu, M.L. Zhang, X.L. Gong, and C.X. Zhang, Advanced Materials 

Research, 608-609 (2012) 564. 

33. R. Ahila, V. Sadasivam, and K. Manimala, Appl. Soft Comput., 32 (2015) 23. 

34. X. Luo, X. Chang, and X. Ban, Neurocomputing, 174 (2016) 179. 

35. D. Broadhurst, R. Goodacre, A. Jones, J.J. Rowland, and D.B. Kell, Anal. Chim. Acta, 348 (1997) 

71. 

36. I.M.M. Ghani, and S. Ahmad, Procedia - Social And Behavioral Sciences, 8 (2010) 549. 

37. A.G. Asuero, A. Sayago, and A.G. González, Crit. Rev, Anal. Chem., 36 (2007) 41. 

38. Y. Yamamoto, Y. Takahashi, E. Suzuki, N. Mishima, K. Inoue, K. Itoh, Y. Kagawa, and Y. Inoue, 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 210253 

  

20 

Epilepsy Res., 101 (2012) 202. 

39. R.A. Jeffree, S.J. Markich, and A.D. Tucker, Sci. Total Environ., 336 (2005) 71. 

40. A. Bianchini, and P. Bandini, Comput-Aided Civ. Inf., 25 (2010) 39. 

41. J. Fan, X. Wang, F. Zhang, X. Ma, and L. Wu, J. Cleam. Prod.,., 248 (2020) 119264. 

42. X. Bian, S. Li, M. Fan, Y. Guo, and J. Wang, Anal Methods-Uk, 8 (2016) 4674. 

43. P. Thomas, and M.C. Suhner, Neural Process. Lett., 42 (2015) 437. 

44. E. Mohammadian, S. Motamedi, S. Shamshirband, R. Hashim, R. Junin, C. Roy, and A. Azdarpour, 

Environ. Earth Sci., 75 (2016). 

45. S.S. Abdullah, M.A. Malek, N.S. Abdullah, O. Kisi, and K.S. Yap, J. Hydrol., 527 (2015) 184. 

46. A. Castaño, F. Fernández-Navarro, and C. Hervás-Martínez, Neural Proccess. Lett., 37 (2013) 377. 

 

 

© 2021 The Authors. Published by ESG (www.electrochemsci.org). This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

 

http://www.electrochemsci.org/

