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The model provides reports of diffusion inside the modifier layer situated on the electrode surface of a 

reactant and charge carrier. This model is based on the system of strongly nonlinear equations containing 

the nonlinear term related to second-order chemical reaction and Michaelis-type redox reaction. In this 

paper, approximate analytical solutions are obtained for nonlinear equations under non-steady-state 

conditions using the well-established homotopy perturbation technique. Lucid and approximate 

polynomial expressions have been obtained for the reactant, reaction product and charge carrier 

concentrations and current density. The amperometric current response has been reported as a function 

of reactant concentration. The numerical simulation of the problem is done using a Matlab programme. 

The analytical results are compared with simulated data and previously published limiting cases. A 

reasonable agreement is observed. This paper also presents an analytical expression describing the 

sensitivity and response time of the biosensor electrode for all values of parameters. 

 

 

Keywords: Mathematical Modeling, Nonlinear equations, Electrocatalysis, Modified electrodes, 

Sensitivity of biosensor. 

 

 

1. INTRODUCTION 

The electrocatalytic process is an important phenomenon which is widely exploited with regard 

to the development of biofuel cells, biosensor and electrosynthetic systems. Redox electrocatalysis 

within thin surface films deposited on electrode surfaces (Chemically Modified Electrodes) has been a 

topic of very significant worldwide interest and activity for many years. These electrodes contain an 

organic or inorganic thin layer, which as well as being conductive, contain active sites which can catalyse 

solution-phase film reactions either at the solution/film interface or inside the layer. Typical examples 

include the electrocatalytic reduction of hydrogen peroxide[1,2], the electro-oxidation of ascorbic 
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acid[3] and the electro-oxidation of some organic species at electroactive polymer modified electrodes 

such as  for example poly(neutral red)[4], poly(toluidine blue)[5] and polyaniline[6-8], as some examples 

among the many electrocatalytic systems of this type so far identified. 

Recently, Puida et al. [9] developed a mathematical model describing transport and 

electrocatalytic kinetics within surface immobilized conducting polymer modified electrodes that 

operate using two types of redox interaction: simple chemical second-order and a Michaelis-type adduct 

formation reaction. No general analytical solution for the reactant, reaction product and charge carrier 

concentration has been published yet, to the best of our knowledge. This communication aims to 

analytically solve the transient Fick reaction diffusion equations and thereby generate the analytical 

expressions for the reactant, reaction product and charge carrier concentration along with current for 

various values of pertinent parameters such as rate constant and carrier diffusion coefficient. 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

It is presumed that a flat electrode surface is coated by a uniform film of conducting polymer of 

uniform thickness d. The diffusion of reactant into a layer of polymer is defined by the law of the Fick. 
𝜕𝑅(𝑥,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑅(𝑥,𝑡)

𝜕𝑥2                    (1) 

where R is the concentration of reactant, t is the time, x is a space coordinate, and D is the 

diffusion coefficient for reactant. 

 

 
 

Figure 1. Schematic diagram for electrocatalysis that follows Michaelis-Menten mechanism 

 

 

The electrochemical conversion (anodic oxidation or cathodic reduction) of reactants into 

product is influenced by the use of an appropriate electrode potential. Chemical transformation of 

reactant to product can either exhibit bimolecular reaction kinetics represented by the following 

expression [9]:  

𝑅 + 𝑛 = 𝑃                    (2) 

Here, R and P denote reactant and reaction product, respectively, and n is a charge carrier 

(electron or hole). 
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The pace of this reaction is defined by the kinetic rate expression: 
𝑑𝑃(𝑥,𝑡)

𝑑𝑡
=  −

𝑑𝑅(𝑥,𝑡)

𝑑𝑡
=  𝑘𝑅(𝑥, 𝑡)𝑛(𝑥, 𝑡)               (3) 

where k is the second-order chemical reaction rate constant. The second conversion of R to P 

proceeds according to the Michaelis–Menten type mechanism, that involves the formation of an adduct 

complex of R with active centres (such as polarons) carrying electric charges, followed by the 

decomposition of the adduct to form product P with regeneration of the active site. The schematic 

representation is given in Figure1. 

𝑅 + 𝑛 = [𝑅 ∗ 𝑛]                     (4) 
[𝑅 ∗ 𝑛] = 𝑃                     (5) 

where [R∗ n] represents the adduct complex. The complex formation Eq. (4) in this mechanism 

proceeds in forward and backward directions, characterized by the rate constants 𝑘−1 and 𝑘1 

corresponding to forward and backward reactions, while complex break-down Eq. (5) is a one-

directional process characterized by first-order catalytic rate constant 𝑘𝑐𝑎𝑡. 

In the redox processes within the porous electronically conducting polymer thin film, we assume 

that the polymer backbone gets oxidized then the polymer contains delocalized fixed charged sites and 

migrating charge carriers. Charge neutrality is accomplished by diffusing counter ions in the solution 

filled pores and are pinned by the fixed charged defects on the polymer chain therefore ensuring local 

electroneutrality. The oxidized polymer site is assumed to be catalytically active and reacts with the 

substrate. In so doing the product is formed and the reduced polymer site is regenerated. The reaction 

between reactant and oxidized polymer site will take place either within the bulk of the polymer film or 

in a surface reaction zone near the polymer/solution interface. Hence we can relate the carrier 

concentration n to the concentration of oxidized polymer sites. The position of the reaction zone depends 

on the conductivity of the polymer and its porosity.  

The mass balance equations for these mechanisms can be described by the following nonlinear 

reaction diffusion equations for reactant (R), reaction product (P) and charge carrier (n) as follows [9]: 
𝜕𝑅(𝑥,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑅(𝑥,𝑡)

𝜕𝑥2 − 𝛼𝑘𝑅(𝑥, 𝑡)𝑛(𝑥, 𝑡) − (1 − 𝛼)
𝑘𝑐𝑎𝑡𝑅(𝑥,𝑡)𝑛(𝑥,𝑡)

𝐾𝑀+𝑅(𝑥,𝑡)
             (6) 

𝜕𝑃(𝑥,𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑃(𝑥,𝑡)

𝜕𝑥2 + 𝛼𝑘𝑅(𝑥, 𝑡)𝑛(𝑥, 𝑡) + (1 − 𝛼)
𝑘𝑐𝑎𝑡𝑅(𝑥,𝑡)𝑛(𝑥,𝑡)

𝐾𝑀+𝑅(𝑥,𝑡)
             (7) 

𝜕𝑛(𝑥,𝑡)

𝜕𝑡
= 𝐷𝑛

𝜕2𝑛(𝑥,𝑡)

𝜕𝑥2 − 𝛼𝑘𝑅(𝑥, 𝑡)𝑛(𝑥, 𝑡) − (1 − 𝛼)
𝑘𝑐𝑎𝑡𝑅(𝑥,𝑡)𝑛(𝑥,𝑡)

𝐾𝑀+𝑅(𝑥,𝑡)
              (8) 

where 𝑥 ∈  [0, 𝑑], and 𝑡 > 0, d is the polymer layer thickness. 𝑅(𝑥, 𝑡), 𝑃(𝑥, 𝑡) and 𝑛(𝑥, 𝑡) are 

the reactant, reaction product and charge carrier concentrations respectively. D is diffusion coefficient 

for reactant and product, 𝐷𝑛 is diffusion coefficient for charge carriers. 𝛼 is a dimensionless coefficient, 

𝑘 is a second-order reaction rate constant, 𝑘𝑐𝑎𝑡 is the catalytic rate constant and 𝐾𝑀 is the Michaelis 

constant. The initial conditions for Eqs. (6)-(8) are[9] 

𝑅(𝑑, 0) = 𝑅0 and 𝑅(𝑥, 0) = 0, 0 ≤ 𝑥 < 𝑑                (9) 

𝑃(𝑥, 0) = 0, 𝑥 ∈ [0, 𝑑]               (10) 

𝑛(𝑥, 0) = 𝑛0, 𝑥 ∈ [0, 𝑑]               (11) 

The boundary conditions for 𝑡 > 0 are 

[
𝜕𝑅

𝜕𝑥
]

𝑥=0
= 0, 𝑅(𝑑, 𝑡) = 𝑅0,                          (12) 

[
𝜕𝑃

𝜕𝑥
]

𝑥=0
= 0, 𝑃(𝑑, 𝑡) = 0              (13) 
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𝑛(0, 𝑡) = 0 , [
𝜕𝑛

𝜕𝑥
]

𝑥=𝑑
= 0                (14) 

The current density 𝐼(𝑡) at time t is defined by [9] 

𝐼(𝑡) = 𝑛𝑒𝐹𝐷𝑛
𝜕𝑛(𝑥,𝑡)

𝜕𝑥
|

𝑥=0
              (15) 

We introduce the following dimensionless variables 

𝑟 =
𝑅

𝑅0
, 𝑝 =

𝑃

𝑅0
, 𝑁 =

𝑛

𝑅0
, 𝑋 =

𝑥

𝑑
, 𝑇 =

𝐷𝑡

𝑑2 , 𝑘0 =
𝑘𝑅0𝑑2

𝐷
, 𝑘1 =

𝑘𝑐𝑎𝑡𝑘0

𝐾𝑀𝑘
, 𝜀 =

𝐷𝑛

𝐷
, 𝛽 =

𝑅0

𝐾𝑀
            (16) 

Hence Eqs. (6)-(8) can be reduced to the following dimensionless form: 

𝜕𝑟(𝑋,𝑇)

𝜕𝑇
=

𝜕2𝑟(𝑋,𝑇)

𝜕𝑋2
− 𝛼𝑘0𝑟(𝑋, 𝑇)𝑁(𝑋, 𝑇) − (1 − 𝛼)

𝑘1𝑟(𝑋,𝑇)𝑁(𝑋,𝑇)

1+𝛽𝑟(𝑋,𝑇)
         (17) 

𝜕𝑝(𝑋,𝑇)

𝜕𝑇
=

𝜕2𝑝(𝑋,𝑇)

𝜕𝑋2 + 𝛼𝑘0𝑟(𝑋, 𝑇)𝑁(𝑋, 𝑇) + (1 − 𝛼)
𝑘1𝑟(𝑋,𝑇)𝑁(𝑋,𝑇)

1+𝛽𝑟(𝑋,𝑇)
           (18) 

𝜕𝑁(𝑋,𝑇)

𝜕𝑇
= ε

𝜕2𝑁(𝑋,𝑇)

𝜕𝑋2 − 𝛼𝑘0𝑟(𝑋, 𝑇)𝑁(𝑋, 𝑇) − (1 − 𝛼)
𝑘1𝑟(𝑋,𝑇)𝑁(𝑋,𝑇)

1+𝛽𝑟(𝑋,𝑇)
           (19) 

The corresponding initial and boundary conditions are [10]: 

At 𝑇 = 0, 𝑟 = 1, 𝑝 = 0, 𝑁 =
𝑛0

𝑅0
             (20) 

At 𝑋 = 0,
𝜕𝑟

𝜕𝑋
= 0,

𝜕𝑝

𝜕𝑋
= 0, 𝑁 =

𝑛0

𝑅0
             (21) 

At 𝑋 = 1, 𝑟 = 1, 𝑝 = 0,
𝜕𝑁

𝜕𝑋
= 0               (22) 

The dimensionless current density is [10] 

𝜓(𝑇) =
𝐼(𝑇)𝑑

𝑛𝑒𝐹𝐷𝑛𝑅0
=

𝜕𝑁(𝑋,𝑇)

𝜕𝑋
|
𝑋=0

              (23) 

 

 

 

3. APPROXIMATE ANALYTICAL EXPRESSION OF CONCENTRATIONS AND CURRENT  

UNDER NON-STEADY-STATE CONDITION USING NEW APPROACH TO HPM 

Be it autocatalysis or heat exchange kinetics, numerous phenomena in engineering and the 

chemical sciences have been depicted using nonlinear equations. Finding solution to these nonlinear 

equations is of prime importance, as it helps to predict behaviour of the systems and provides an insight 

on the effects of parameters under consideration. 

Recently some of the nonlinear equations have been solved via the use of variation iteration 

method (VIM) [11], the Taylor series method [12], hyperbolic functions [13], the residual method [14], 

the series solution technique [15], a  new analytical method [16], use of the Green’s function coupled 

with a fixed point iteration scheme [17] and the beneficial Akbari-Ganji method [18]. Among all these 

methods, an efficient and powerful approach for finding a solution to a system of nonlinear 

equations without the need for a linearization process is the homotopy perturbation method (HPM). 

J.H. He introduced this method for the first time in 1998 [19,20]. The HPM is a combination of the 

perturbation expansion and homotopy methods. This technique can take advantage of the conventional 

method of perturbation while eliminating its limitations, such as finding the small parameter and 

applying it to the equation. 
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In recent years many developments of this method has been presented, which have successfully 

solved many linear and nonlinear equations in science and engineering. Recently, K. Sayevand [21] 

proposed a new extension of the homotopy perturbation method, to tackle nonlinear partial differential 

equations (PDE) of fractional order that appear in chemical sciences. For time-dependant conditions 

Femila et al. [10] obtained the approximate analytical solutions for the nonlinear PDE using HPM. In 

his work on delay differential equations (DDE) Jameen et al. [22] introduced an approximation system 

algorithm for solving linear fuzzy DDE with double parametric form fuzzy numbers using HPM. B. N. 

Kharrat and G. A. Toma [23] proposed expanding the application of HPM that is based on Taylor series 

to solve nonlinear algebraic equations. Moreover, a new approach to HPM was carried out to obtain 

analytical expressions for transient current and concentration in redox enzymatic homogenous system 

for steady and non-steady-state conditions [24]. 

The approximate analytical expression of the dimensionless concentration of reactant (r), 

reaction product (p) and charge carrier (N) in catalytic process using a new approach to homotopy 

perturbation method can be obtained as follows (Appendix - A,B): 

𝑟(𝑋, 𝑇) =
cosh(√𝜇1𝑋) 

cosh(√𝜇1)
+ 16𝜇1 ∑

cos(
𝜋(2𝑗+1)𝑋

2
)𝑒

−(
𝜋2(2𝑗+1)2

4
+𝜇1)𝑇

[𝜋2(2𝑗+1)2+4𝜇1][(2𝑗+1)𝜋] sin(
𝜋(2𝑗+1)

2
)

∞
𝑗=0       (24) 

𝑝(𝑋, 𝑇) = 1 − 𝑟(𝑋, 𝑇)               (25) 

𝑁(𝑋, 𝑇) =
𝑛0

𝑅0
(cosh √

𝜇2

𝜀
𝑋 − tanh√

𝜇2

𝜀
sinh√

𝜇2

𝜀
 X ) +

16𝑛0𝜇2

𝑅0
∑

cos(
𝜋(2𝑗+1)

2
(1−𝑋))𝑒

−(
𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇

[𝜀𝜋2(2𝑗+1)2+4𝜇2][(2𝑗+1)𝜀𝜋] sin(
𝜋(2𝑗+1)

2
)

∞
𝑗=0    (26) 

where 

𝜇1 =
𝛼𝑘0𝑛0

𝑅0
+

(1−𝛼)𝑘1𝑛0

𝑅0(1+𝛽)
, 𝜇2 = 𝛼𝑘0 +

(1−𝛼)𝑘1

(1+𝛽)
            (27) 

The dimensionless current using Eq. (23) is given by 

𝜓(𝑇) =
𝐼(𝑇)𝑑

𝑛𝑒𝐹𝐷𝑛𝑅0
=

𝑛0

𝑅0
(√

𝜇2

𝜀
tanh√

𝜇2

𝜀
−

 8𝜇2 

𝜀
∑

𝑒
−(

𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇

[𝜀𝜋2(2𝑗+1)2+4𝜇2]
∞
𝑗=0 )       (28) 

where current density I(T) is given by, 

𝐼(𝑇) =
𝑛𝑒𝐹𝐷𝑛𝑛0

𝑑
(√

𝜇2

𝜀
tanh√

𝜇2

𝜀
−

 8𝜇2 

𝜀
∑

𝑒
−(

𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇

[𝜀𝜋2(2𝑗+1)2+4𝜇2]
∞
𝑗=0 )        (29) 

Also from Eq. (28) and Eq. (34) we get the following equation. 

𝜓(𝑇)

𝜓𝑠𝑠
= 1 −

8

𝜀
coth√

𝜇2

𝜀
 ∑

(−1)𝑗𝑒
−(

𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇

[𝜀𝜋2(2𝑗+1)2+4𝜇2]
∞
𝑗=0          (30) 

 

 

4. ANALYTICAL EXPRESSION OF TIME-INDEPENDENT CONCENTRATIONS AND  

CURRENT 

The analytical expressions of reactant (r), reaction product (p) and charge carrier (N) 

concentration in dimensionless form for steady-state condition can be obtained by applying 𝑇 → ∞ in 

Eqs. (24)-(26) as follows:  

𝑟𝑠𝑠(𝑋) =
cosh(√𝜇1𝑋) 

cosh(√𝜇1)
                           (31) 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 210452 

  

6 

𝑝𝑠𝑠(𝑋) = 1 −
cosh(√𝜇1𝑋) 

cosh(√𝜇1)
                 (32) 

𝑁𝑠𝑠(𝑋) =
𝑛0

𝑅0
(cosh √

𝜇2

𝜀
𝑋 − tanh√

𝜇2

𝜀
sinh√

𝜇2

𝜀
 X )            (33) 

The new analytical expression of steady-state current is 

𝜓𝑠𝑠 =
𝑛0

𝑅0
√

𝜇2

𝜀
tanh√

𝜇2

𝜀
               (34) 

The steady-state current density is given by 

𝐼𝑠𝑠 =
𝑛𝑒𝐹𝐷𝑛𝑛0

𝑑
√

𝜇2

𝜀
tanh√

𝜇2

𝜀
              (35) 

where 𝜇2 = 𝛼𝑘0 +
(1−𝛼)𝑘1

(1+𝛽)
=

𝑅0𝑑2

𝐷
(𝛼𝑘 +

(1−𝛼)𝑘𝑐𝑎𝑡

𝐾𝑀+𝑅0
)     (36) 

The response time of the biosensor 𝑇𝑅 is the time when the value of the absolute current slope 

drops below a specified small value normalised by the current value. In other terms, the time taken to 

attain a a specific non-dimensional rate of decay 𝛿 is used [26]. 

𝑇𝑅 = min
𝐼(𝑇)>0

{𝑇:
1

𝐼(𝑇)
|

𝑑𝐼(𝑇)

𝑑𝑇
| < 𝛿}                     (37) 

 = min
𝐼(𝑇)>0

{𝑇: 2 |∑
[exp(−(

𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇)]

[𝜀𝜋2(2𝑗+1)2+4𝜇2]
𝜇2

∞
𝑗=0 | [√𝜇2𝜀 tanh√

𝜇2

𝜀
− 8𝜇2 ∑ (

exp(−(
𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇)

[𝜀𝜋2(2𝑗+1)2+4𝜇2]
)∞

𝑗=0 ]

−1

< 𝛿}

               (38) 

The resultant relative output signal function 𝐼∗(𝑇) can be expressed as: 

𝐼∗(𝑇) =
𝐼(𝑇𝑅)−𝐼(𝑇)

𝐼(𝑇𝑅)
= 8√

𝜇2

𝜀
coth√

𝜇2

𝜀
∑

𝑒
−(

𝜀𝜋2(2𝑗+1)2

4
+𝜇2)𝑇

[𝜀𝜋2(2𝑗+1)2+4𝜇2]
∞
𝑗=0                  (39) 

where 𝐼(𝑇𝑅) = 𝐼𝑠𝑠 and  I(T) is the output current density at time t as in Eq. (29) and 𝐼𝑠𝑠 is the 

steady-state current. Also, 0 ≤ 𝐼∗(𝑇) < 1 at all T ≥ 0, 𝐼∗(𝑇𝑅)  < 1 and 𝐼∗(𝑇𝑅) =  0. 

One of the main aspects of the biosensor process is sensitivity. The dimensionless sensitivity to 

the reactant concentration 𝐵𝑠  can be evaluated as follows [25]: 

𝐵𝑠(𝑅0) =
𝜕𝐼𝑠𝑠(𝑅0)

𝜕𝑅0
×

𝑅0

𝐼𝑠𝑠(𝑅0)
          

   (40) 

where 𝐵𝑠 is biosensor sensitivity. Therefore from Eq. (34) 

𝐵𝑠(𝑅0) =
[𝑘𝛼(𝐾𝑀+𝑅0)2+(1−𝛼)𝑘𝑐𝑎𝑡𝐾𝑀][1+2√

𝜇2
𝜀

𝑐𝑜𝑠𝑒𝑐ℎ(2√
𝜇2
𝜀

) ]

2(𝐾𝑀+𝑅0)[(𝑘𝛼(𝐾𝑀+𝑅0)+(1−𝛼)𝑘𝑐𝑎𝑡]
            (41) 

 

 

5. THE VALIDATION OF THE RESULTS WITH PREVIOUS LIMITING CASE RESULTS [10]  

AND NUMERICAL SIMULATION 

Recently, Femila et al. [10] obtained approximate polynomial expressions for the current and 

concentration of reactant, reactant product and charge carrier in terms of diffusion coefficient and rate 

constant by homotopy perturbation method. On substituting 𝛼 = 1 in Eqs. (24) - (26), the concentration 

of reactant, reaction product and charge carrier is identical with Eqs. (18) - (21) in [10]. In addition, our 

current expression Eq. (34) is similar to the Eq. (25) of [10]. The system of differential equations was 

resolved numerically to analyse the accuracy of the solution obtained using new approach to HPM with 
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a finite number of terms. In Matlab software, the function pdex4 (Euler's method), which is helpful to 

solve boundary value problems is used to solve Eqs. (17) and (19) numerically.  The comparison of 

analytical and numerical results is shown in Figures 2, 3 and (S1)-(S3) graphically. The comparison 

confirmed that our obtained analytical results were concordant with the numerical results. It can be 

inferred from Table 2, that the maximum percentage error deviation is 0.05.  

 

 

6. RESULTS AND DISCUSSION 

Eqs. (24) - (26) are the novel simplified analytic expression for concentration of the reactant, 

reactant product and charge carrier for all values of parameters. In Table 1, the parameter values used in 

[9] and in this work is given. 

 

Table 1. Numerical values for the parameters under consideration. 

 

Parameter Description Unit Numerical value [9] 
Numerical Value 

[This work] 

𝑘𝑐𝑎𝑡  Catalytic rate constant 𝑠−1 1, 10, 102  1, 10, 50, 102 

𝑛0 Concentration of charge carrier 𝑚𝑜𝑙 𝑚−3 4 × 103 4 × 103 

𝑅0 Concentration of reactant 𝑚𝑜𝑙 𝑚−3  1 to 10  1 to 50 

D 
Diffusion coefficient for reactant 

and product 
𝑚2 𝑠−1 10−9 

10−9, 
1.5 × 10−9,  
2 × 10−9, 
2.5 × 10−9 

𝐷𝑛 
Diffusion coefficient for charge 

carriers 
𝑚2 𝑠−1 10−11, 10−10, 10−9 

10−11, 10−10, 10−9, 
1.5 × 10−9,  
2 × 10−9, 
2.5 × 10−9 

𝐾𝑀 Michaelis constant 𝑚𝑜𝑙 𝑚−3 5 5 

k Second-order reaction rate constant 𝑚3 𝑚𝑜𝑙−1 𝑠−1 10−2, 10−1, 1 10−2, 10−1, 1,10, 50, 102 

d Thickness of a polymer layer 𝑚 10−6 

10−4, 10−5, 10−6, 
1.5 × 10−6 , 
2 × 10−6, 
2.5 × 10−6,  
3 × 10−6 

𝛼 Dimensionless coefficient none 
0 to 1  

 

0 to 1  

 

𝛽 Dimensionless parameter none 0 to 2 0.1, 1, 5, 10, 10−2 

𝑘0 Dimensionless parameter none 0 to 10−2 0.1, 1, 5, 10, 10−2 

𝑘1 Dimensionless parameter none 0 to 0.2 0.1, 1, 5, 10, 10−2 

 

Table 2. Comparison of dimensionless concentration of reactant (𝑟), reaction product (p) and charge 

carrier (N) with simulation results for 𝛽 = 0.5, 𝑘0 = 10, 𝑘1 = 0.1, 𝑇 = 1.  
 

X 

Concentration of reactant (𝒓) Concentration of reaction product (𝒑) Concentration of charge carrier (N) 

𝛼 = 0.1 𝛼 = 0.1 𝛼 = 0.5 

Numerical 
Analytical 

Eq. (24) 

% of 

deviation 
Numerical 

Analytical 

Eq. (25) 

% of 

deviation 
Numerical 

Analytical 

Eq. (26) 

% of 

deviation 

0 0.6447 0.6448 0.02 0.3553 0.3552 0.03 1 1 0.00 
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0.1 0.6480 0.6480 0.00 0.352 0.352 0.00 0.7962 0.7961 0.01 

0.2 0.6577 0.6577 0.00 0.3423 0.3423 0.00 0.6359 0.6359 0.00 

0.3 0.6740 0.6740 0.00 0.326 0.326 0.00 0.5105 0.5105 0.00 

0.4 0.6971 0.6971 0.00 0.3029 0.3029 0.00 0.4131 0.4131 0.00 

0.5 0.7273 0.7273 0.00 0.2727 0.2727 0.00 0.3383 0.3382 0.03 

0.6 0.7650 0.7649 0.01 0.235 0.2351 0.04 0.2820 0.2819 0.04 

0.7 0.8105 0.8104 0.01 0.1895 0.1896 0.05 0.2411 0.2410 0.04 

0.8 0.8645 0.8643 0.02 0.1355 0.1357 0.15 0.2134 0.2133 0.05 

0.9 0.9275 0.9273 0.02 0.0725 0.0727 0.28 0.1973 0.1973 0.00 

1 1 1 0.00 0 0 0 0.1921 0.1921 0.00 

 

 
Figure 2. Profiles of dimensionless concentrations of the reactant (1,4), reaction product (2,5) and charge 

carrier (3,6) along the polymer film at steady-state. Solid line represents time T = 5 and dotted 

line represents T = 0.5. The numerical values of other parameters are 𝛼 = 0.1, 𝛽 = 100, 𝑘0 =
10, 𝑘1 = 100, 𝜉 = 1, 𝑟0 = 1 and 𝑁0 = 1. 
 

Figure 2 represents the steady-state concentration of reactant r, reaction product p and charge 

carrier N respectively. From the same figure, it can be noted that the concentration of reactant r and 

reaction product p are increasing functions whereas the charge carrier N is a decreasing function from 

the film/solution interface to the electrode.  

Figure S1 shows that, the concentration of reactant r increases with a fall in 𝑘0 and 𝑘1  values 

and it reaches the steady-state for 𝑘0, 𝑘1 ≥ 100. The reactant concentration r is directly proportional to 

𝛽, also when  𝛽 ≥ 1000 this concentration becomes uniform. As 𝛼 increases from 0 to 1, r increases. 

Figure S1 and Figure S2 indicate that the influence of the parameters 𝑘0, 𝑘1, 𝛼 and 𝛽 on reaction product 

concentration p and reactant concentration r are inversely proportional. 

In Figure S3, the concentration of charge carriers N varies inversely with 𝑘0 and 𝑘1, while 

𝛼 (dimensionless coefficient) and 𝛽 (dimensionless parameter) are directly proportional to N. Here the 

concentration of charge carriers N is uniform when 𝛽 is greater than 100. 

 

 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 210452 

  

9 

 

 

 
 

Figure 3. Current versus time for various values of (a) dimensionless coefficient  𝛼, (b) thickness of 

polymer layer 𝑑, (c) second-order reaction rate constant 𝑘, (d) Diffusion coefficient 𝐷 and (e) 

catalytic rate constant 𝑘𝑐𝑎𝑡 Eq. (28). Solid line represents numerical results and dotted line 

represents analytical results.  
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Figure 4. Current 𝐼 Eq. (29) versus initial concentration of reactant 𝑅0 for different parameter values. 

The common fixed values of the parameters [9] are 𝐷 = 10−9𝑚2 𝑠−1 , 𝐾𝑀 = 5 𝑚𝑜𝑙 𝑚−3, 𝑑 =
10−6𝑚 

(a) 𝑛0  =  4 × 103𝑚𝑜𝑙 𝑚−3, 𝑘𝑐𝑎𝑡 =  102 𝑠−1, 𝑘 = 0.1𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝑡 = 0.001 𝑠, 𝐷𝑛 =
10−9𝑚2 𝑠−1. 

(b) 𝑛0  =  4 × 103𝑚𝑜𝑙 𝑚−3, 𝑘𝑐𝑎𝑡 = 0.1 𝑠−1, 𝑘 = 102𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝑡 = 0.001 𝑠, 𝐷𝑛 =
10−9𝑚2 𝑠−1 . 

(c) 𝛼 = 0, 𝑘𝑐𝑎𝑡 =  0.1 𝑠−1, 𝑘 = 1𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝐷𝑛 = 10−9𝑚2 𝑠−1, 𝑡 = 0.001 𝑠. 

(d) 𝛼 = 0, 𝑘𝑐𝑎𝑡 =  0.1 𝑠−1, 𝑘 = 1𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝑛0  =  4 × 103𝑚𝑜𝑙 𝑚−3. 

 

 

Figure 3 signifies that as 𝑇 → 1, the current becomes stable for all values of experimental 

parameters. Also it can be established that, current is directly proportional to thickness of the polymer 

film d. An increase in the parameters 𝑘𝑐𝑎𝑡, 𝑘  and 𝛼 leads to an increase in current. However, the 

diffusion coefficient D varies inversely with current.  

Figures 4 (a) and (b) represents current versus reactant concentration for various value of 𝑘𝑐𝑎𝑡 ,

𝑘  and 𝛼. It can be noted that the current response to concentration rises, at increasing α for 𝑘 > 0.1𝑘𝑐𝑎𝑡 

𝑚3 𝑚𝑜𝑙−1or decreasing α for 𝑘 < 0.1𝑘𝑐𝑎𝑡 𝑚3 𝑚𝑜𝑙−1. From Figures 4 (a) and (b) it is also observed that 
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the concentration-current curve is linear when 
𝑘1

𝑘0
=

𝑘𝑐𝑎𝑡

𝐾𝑀𝑘
 is large and 𝛼 = 1, The caliberation curve of 

reactant concentration versus current is a straight line when 
𝑘1

𝑘0
=

𝑘𝑐𝑎𝑡

𝐾𝑀𝑘
 is very small corresponding to 𝛼 =

0. 

Figures 4 (c) and (d) represent the concentration-current (hyperbolic) curves for pure Michaelis-

Menten mechanism, corresponding to 𝛼 = 0. Indeed, an increase of 𝑛0 means a progressive increase of 

current and same is observed with a decrease of D.  The electron transition range is enhanced due to 

increase of concentration of charge carrier 𝑛0 and 𝑅0 this inturn increases current. 

 

 
 

Figure 5. The reponse time graph with variation in 𝛼 (a) and polymer film thickness 𝑑 (b). 

Response time is the time for having 95% of the response or it can be defined as the time taken by the 

sensors to give a fixed value for the minimum amount of analyte.  
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Figure 6.  Sensitivity of biosensor 𝐵𝑠 Eq. (41) versus initial concentration of reactant 𝑅0 for various 

values parameters. The common fixed values of the parameters are 𝑛0 = 4 × 103𝑚𝑜𝑙 𝑚−3,
𝐾𝑀 = 5 𝑚𝑜𝑙 𝑚−3. 

(a) 𝐷𝑛 =  𝐷 = 10−9𝑚2 𝑠−1, 𝑘 = 1 𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝛼 = 0.5, 𝑑 = 10−6𝑚 

(b) 𝐷𝑛 =  𝐷 = 10−9𝑚2 𝑠−1, 𝑘𝑐𝑎𝑡 = 1 𝑠−1, 𝛼 = 0.5, 𝑑 = 10−6𝑚 

(c) 𝐷 = 10−9𝑚2 𝑠−1, 𝑘 = 1 𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝑘𝑐𝑎𝑡 = 1 𝑠−1, 𝛼 = 0.5, 𝑑 = 10−6𝑚 

(d) 𝐷𝑛 =  𝐷 = 10−9𝑚2 𝑠−1, 𝑘 = 1 𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝑘𝑐𝑎𝑡 = 1 𝑠−1, 𝛼 = 0.5 

(e) 𝐷𝑛 =  𝐷 = 10−9𝑚2 𝑠−1, 𝑘 = 1𝑚3 𝑚𝑜𝑙−1 𝑠−1, 𝑘𝑐𝑎𝑡 = 100 𝑠−1 
 

From Figure 5 it can be inferred that a decrease in thickness of polymer film, prolongs the 

response time. For higher 𝛼 value or as the reaction follows a simple redox process, the response time is 

reduced.  Here the overall response time is less than 2 s for all values of other parameters. 

Figures 6. (a)–(e) depicts a non-monotonic biosensor sentivity 𝐵𝑠. When the initial concentration 

of reactant 𝑅0 is small, 𝐵𝑠  reaches the value 1. Sensitivity attains the steady-state value of 0.5, when the 

initial concentration of reactant is very large. One can see from the figures that the shape of all the curves 

of sensitivity is similar. 

An increase in second order reaction rate 𝑘, increases the biosensor sensitivity 𝐵𝑠, however same 

effect on 𝐵𝑠 is observed for decreasing values of catalytic rate constant 𝑘𝑐𝑎𝑡. A fall in sensitivity 𝐵𝑠 can 

be noted, for increasing thickness of the polymer film 𝑑. When 𝑑 ≤ 10−6 𝑚  sensitivity has negligible 
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increment and maintains the same curve. Moreover, as the reaction follows a Michaelis-Menten type of 

mechanism 𝛼 = 0, a decrease in sensitivity 𝐵𝑠 is registered. With a rise of charge carrier diffusion 

coefficient 𝐷𝑛, sensitivity rises evidently. The linear range of the biosensor sensitivity calibration curve 

over 𝑅0 is observed whenever 𝑅0 < 1 𝑚𝑜𝑙 𝑚−3 for all other parameters values. 

 

 

7. CONCLUSION 

An essential mathematical study of the diffusion of reactant and charge carriers inside the 

modifier layer situated at the electrode surface and the redox interaction between the reactant and the 

active centre bearing charge carriers has been reported. By resolving the nonlinear reaction-diffusion 

equation using the new approach to the homotopy perturbation method, an approximate analytical 

expression of reactant, reaction product and charge carrier concentration and current is obtained. 

Analytical results are compared with simulation results. The effect of electrocatalytic parameters on the 

sensitivity of biosensors has been noted. Such analytical results are helpful in predicting and optimising 

the kinetic parameters of modified electrodes. 
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APPENDIX-A. Approximate analytical solution of the nonlinear Eqs. (17) and (19) using the new 

approach to HPM  

In this Appendix, we stated how to evaluate the solution of Eq. (17) using boundary conditions 

Eqs. (20)-(22). The homotopy to solve Eq. (17) can be constructed as follows: 

(1 − 𝑙) [
𝜕𝑟

𝜕𝑇
−

𝜕2𝑟

𝜕𝑋2 + 𝛼𝑘0𝑟𝑁(𝑇 = 0) + (1 − 𝛼)
𝑘1𝑟𝑁(𝑇=0)

1+𝛽𝑟(𝑇=0)
] + 𝑙 [

𝜕𝑟

𝜕𝑇
−

𝜕2𝑟

𝜕𝑋2 + 𝛼𝑘0𝑟𝑁 + (1 − 𝛼)
𝑘1𝑟𝑁

1+𝛽𝑟
] = 0

             (A.1) 

(or) 

(1 − 𝑙) [
𝜕𝑟

𝜕𝑇
−

𝜕2𝑟

𝜕𝑋2 +
𝛼𝑘0𝑛0𝑟

𝑅0
+ (1 − 𝛼)

𝑘1𝑛0𝑟

𝑅0(1+𝛽)
] + 𝑙 [

𝜕𝑟

𝜕𝑇
−

𝜕2𝑟

𝜕𝑋2 + 𝛼𝑘0𝑟𝑁 + (1 − 𝛼)
𝑘1𝑟𝑁

1+𝛽𝑟
] = 0       (A.2) 

The initial and boundary conditions are 

At 𝑇 = 0, 𝑟 = 1, At 𝑋 = 0,
𝜕𝑟

𝜕𝑋
= 0, At 𝑋 = 1, 𝑟 = 1                 (A.3) 

The approximate solution of Eq. (A.2) is 

𝑟 = 𝑟0 + 𝑙𝑟1 + 𝑙2𝑟2 + ⋯                       (A.4) 

Substituting Eq. (A.4) into Eq. (A.2) and arranging the coefficients of powers 𝑙, we get 

𝑙0 ∶  
𝜕𝑟0

𝜕𝑇
−

𝜕2𝑟0

𝜕𝑋2
+ 𝜇1𝑟0 = 0                                (A.5) 

where 𝜇1 =
𝛼𝑘0𝑛0

𝑅0
+

(1−𝛼)𝑘1𝑛0

𝑅0(1+𝛽)
                     (A.6) 

The initial and boundary conditions for Eq. (A.5) becomes 

At 𝑇 = 0, 𝑟0 = 1, At 𝑋 = 0,
𝜕𝑟0

𝜕𝑋
= 0, At 𝑋 = 1, 𝑟0 = 1                 (A.7) 
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In the Laplace plane, the PDE Eq. (A.5) and the corresponding boundary conditions Eq.(A.7) become 

as follows: 
𝑑2�̅�0

𝑑𝑋2
− (𝑠 + 𝜇1)�̅�0 + 1 = 0                              (A.8) 

The corresponding boundary conditions are 

At 𝑋 = 0,
𝜕�̅�0

𝜕𝑋
= 0, At 𝑋 = 1, �̅�0 = 1 𝑠⁄                   (A.9) 

where s is the Laplace variable and �̅�0 is the Laplace transformed variable of  𝑟0. 
Using the boundary conditions Eq. (A.9), we can get the following solution of Eq. (A.8) as 

�̅�0(𝑋) =
1

𝑠+𝜇1
+

𝜇1

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
                            (A.10) 

By means of complex inversion formula 

𝑟0(𝑋, 𝑇) =
1

2𝜋𝑖
∫ 𝑒𝑠𝑇  �̅�0(𝑋, 𝑠)𝑑𝑠

𝛾+𝑖∞

𝛾−𝑖∞
= sum of the contributions from all the poles of the integrand.   

                                    (A.11) 

Res(
𝑒𝑠𝑇

𝑠+𝜇1
) = 𝑒−𝜇1𝑇                                   (A.12) 

Hence, in order to invert Eq. (A.10), we need to evaluate 

Res[
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]                             (A.13) 

There is a simple pole at 𝑠 = 0 and 𝑠 = −𝜇1. Also, there are infinitely many poles given by the solution 

of the equation cosh(√𝑠 + 𝜇1) = 0 and they are 𝑠𝑗 = −
(2𝑗+1)2𝜋2

4
− 𝜇1 where 𝑗 = 0,1,2, … 

Hence  

Res[
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
] =Res[

𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]

𝑠=0
+ Res[

𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]

𝑠=−𝜇1

 

                + Res [
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]

𝑠=𝑠𝑗

                         (A.14) 

The residue at 𝑠 = 0 is given by 

Res[
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]

𝑠=0
= 𝑙𝑖𝑚

𝑠→0
[

(𝑠−0)𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
] =

cosh(√𝜇1𝑋)

cosh(√𝜇1)
                      (A.15) 

The residue at 𝑠 = −𝜇1 is given by 

Res[
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]

𝑠=−𝜇1

= 𝑙𝑖𝑚
𝑠→−𝜇1

[
(𝑠+𝜇1)𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
] = −𝑒−𝜇1𝑇                     (A.16) 

The residue at 𝑠 = 𝑠𝑗 is given by 

Res[
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)

cosh(√𝑠+𝜇1)
]

𝑠=𝑠𝑗

= 𝑙𝑖𝑚
𝑠→𝑠𝑗

[
𝜇1𝑒𝑠𝑇

𝑠(𝑠+𝜇1)

cosh(√𝑠+𝜇1𝑋)
𝑑

𝑑𝑠
cosh(√𝑠+𝜇1)

] 

            = 16𝜇1 ∑
𝑒

−(
𝜋2(2𝑗+1)2

4
+𝜇1)𝑇

cos(
(2𝑗+1)𝜋𝑋

2
)

[𝜋2(2𝑗+1)2+4𝜇1](2𝑗+1)𝜋 sin(
(2𝑗+1)𝜋

2
)

∞
𝑗=0                       (A.17) 

From Eqs. (A.10) - (A.17) we get Eq. (24) in the text. Similarly, using complex inversion formula we 

can solve Eq. (19). 

 

APPENDIX-B. Relation between 𝑟(𝑋, 𝑇) & 𝑝(𝑋, 𝑇) 

On adding Eq. (17) and Eq. (18), we get 
𝜕[𝑟(𝑋,𝑇)+𝑝(𝑋,𝑇)]

𝜕𝑇
=

𝜕2[𝑟(𝑋,𝑇)+𝑝(𝑋,𝑇)]

𝜕𝑋2
                                (B.1) 

If 𝑓(𝑋, 𝑇) = 𝑟(𝑋, 𝑇) + 𝑝(𝑋, 𝑇), then Eq. (B.1) becomes 
𝜕𝑓(𝑋,𝑇)

𝜕𝑇
=

𝜕2𝑓(𝑋,𝑇)

𝜕𝑋2                         (B.2) 

The corresponding initial and boundary conditions are 

At 𝑇 = 0, 𝑓 = 1, At 𝑋 = 0,
𝜕𝑓

𝜕𝑋
= 0, At 𝑋 = 1, 𝑓 = 1                  (B.3) 
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In the Laplace plane, the PDE Eq. (B.2) and the corresponding boundary conditions Eq. (B.3) become 

as follows: 
𝑑2�̅�

𝑑𝑋2
− 𝑠𝑓̅ + 1 = 0                      (B.4) 

The corresponding boundary conditions are 

At 𝑋 = 0,
𝜕�̅�

𝜕𝑋
= 0, At 𝑋 = 1, 𝑓̅ = 1 𝑠⁄                    (B.5) 

On solving Eq. (B.4) using Eq. (B.5), we get 

𝑓(̅𝑋, 𝑠) =
1

𝑠
                          (B.6) 

Taking inverse Laplace transform of Eq. (B.6) we obtain 

𝑓(𝑋, 𝑇) = 1                       (B.7) 

Thus, 𝑝(𝑋, 𝑇) = 1 − 𝑟(𝑋, 𝑇)                      (B.8) 

 

NOMENCLATURE 

 

Symbol Description Unit 

𝑅 Concentration of reactant 𝑚𝑜𝑙 𝑚−3 

𝑃 Concentration of reaction product 𝑚𝑜𝑙 𝑚−3 

𝑛 Concentration of charge carrier 𝑚𝑜𝑙 𝑚−3 

𝑘𝑐𝑎𝑡 Catalytic rate constant 𝑠−1 

𝐼 Density of the current 𝐴 𝑚−2 
D Diffusion coefficient for reactant and product 𝑚2 𝑠−1 

𝐷𝑛 Diffusion coefficient for charge carriers 𝑚2 𝑠−1 

𝑥 Distance from electrode 𝑚 

𝐹 Faraday’s constant 𝐶 𝑚𝑜𝑙⁻¹ 

𝑅0 Initial concentration of reactant (𝑥 = 𝑑) 𝑚𝑜𝑙 𝑚−3 

𝑛0 Initial concentration of charge carrier 𝑚𝑜𝑙 𝑚−3 

𝐾𝑀 Michaelis constant 𝑚𝑜𝑙 𝑚−3 

𝑘 Second-order reaction rate constant 𝑚3 𝑚𝑜𝑙−1 𝑠−1 

𝑑 Thickness of a polymer layer 𝑚 

𝑡  Time 𝑠 

𝛼 Dimensionless coefficient None 

𝑟 Dimensionless concentration of reactant None 

𝑝 Dimensionless concentration of reaction product None 

𝑁 Dimensionless concentration of charge carrier None 

𝑟𝑠𝑠 Dimensionless concentration of reactant at steady-state None 

𝑝𝑠𝑠 Dimensionless concentration of reaction product at 

steady-state 

None 

𝑁𝑠𝑠 Dimensionless concentration of charge carrier at steady-

state 

None 

𝜓 Dimensionless current None 

𝜓𝑠𝑠 Dimensionless current at steady-state None 

𝑋 Dimensionless distance from electrode 𝑁𝑜𝑛𝑒 

𝛿 Dimensionless decay rate 𝑁𝑜𝑛𝑒 

𝑘0 Dimensionless parameter None 

𝑘1 Dimensionless parameter None 

𝛽 Dimensionless parameter None 

𝑇 Dimensionless time 𝑁𝑜𝑛𝑒 
𝑛𝑒 Number of electrons None 

𝜀 Ratio of diffusion coefficient None 
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Figure S1. Comparison between analytical (dotted) and numerical (solid) results for the dimensionless 

concentration of reactant (r) against the dimensionless space coordinate (X) for various values of 

the parameters (Eq. (24)). 

 

 

 
Figure S2. Comparison between analytical (dotted) and numerical (solid) results for the dimensionless 

concentration of reaction product (p) against the dimensionless space coordinate (X) for various 

values of the parameters (Eq. (25)). 
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Figure S3. Comparison between analytical (dotted) and numerical (solid) results for the dimensionless 

concentration of charge carrier (N) against the dimensionless space coordinate (X) for various 

values of the parameters (Eq. (26)). 
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