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Lithium-ion batteries are widely used in new energy vehicles, energy storage systems, aerospace and 

other fields because of their high energy density, long cycle life and high-cost performance. Accurate 

equivalent modeling, adaptive internal state characterization and accurate state of charge estimation are 

the cornerstones of expanding the application market of lithium-ion batteries. According to the highly 

nonlinear operating characteristics of lithium-ion batteries, the Thevenin equivalent model is used to 

characterize the operating characteristics of lithium-ion batteries, particle swarm optimization algorithm 

is used to process the measured data, and adaptive optimization strategy is added to improve the global 

search ability of particles, and the parameters of the model are identified innovatively. Combined with 

extended Kalman algorithm and Sage-Husa filtering algorithm, the state-of-charge estimation model of 

lithium ion battery is constructed. aiming at the influence of fixed and inaccurate noise initial value in 

traditional Kalman filtering algorithm on SOC estimation results, Sage-Husa algorithm is used to 

adaptively correct system noise. The experimental results under HPPC condition show that the maximum 

error of the model is less than 1.5%. Simulation results of SOC estimation algorithm under two different 

operating conditions show that the maximum estimation error of adaptive extended Kalman algorithm 

is less than 0.05, which realizes high-precision lithium battery model parameter identification and high-

precision state-of-charge estimation.  

 

 

Keywords: Lithium-ion battery, Adaptive particle swarm optimization, Sage-Husa algorithm, 

Adaptive extended Kalman filter, State of charge estimation 

 

1. INTRODUCTION 

With the increasing emphasis on environmental resources in the world, green and safe new 

energy is gradually entering the public's field of vision. Among them, lithium-ion batteries have been 
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widely used in high-end emerging industries such as new energy vehicles, aerospace, rail transit, etc. 

due to their advantages of high specific energy, high-cost performance, and long cycle life[1]. Lithium 

batteries are growing at an annual rate of more than 50%, Promoting the transformation of the modern 

energy landscape[2, 3]. Under the background of increasing market demand for lithium-ion batteries and 

the gradual expansion of application fields, the safe and reliable operation of lithium-ion batteries has 

become a key issue that needs to be broken through. 

The Lithium battery is a system with highly nonlinear operating characteristics. The acquisition 

and modeling of its internal time-varying parameters are important factors that affect the accurate 

characterization and accurate state of charge estimation of lithium-ion batteries[4, 5]. To effectively 

establish the state space expression of lithium batteries, an equivalent model with high adaptability must 

be established[6, 7]. According to different modeling mechanisms, lithium battery equivalent models 

can be divided into electrochemical models, intelligent mathematical models, and equivalent circuit 

models[8]. The electrochemical model can accurately characterize the working characteristics of lithium 

batteries, but the calculation is complex and is not suitable for the battery state detection platform with 

high real-time requirements[9-12]. The intelligent mathematical model is mainly a neural network 

model, which can theoretically complete battery modeling[13]. However, due to the need for a large 

amount of actual data for training, high technical threshold and long processing time, its practical 

application is limited[14]. The equivalent circuit model can simulate the electrochemical reaction inside 

the lithium battery through related circuit components. Its calculation is simple and easy to process in 

real time, so it is widely used at present[15]. Mu et al.combined a lithium battery electrochemical 

impedance spectroscopy to establish a fractional equivalent circuit model. Ability to better characterize 

the battery in the low SOC range[16]. Simone et al. added a thermal model to the equivalent circuit 

model under the premise of considering the influence of external temperature and thermal management 

on capacity and power attenuation and the possible thermal runaway and package imbalance, thus 

reducing the influence of environmental factors on the model characterization effect[17]. 

The state-of-charge (SOC) of lithium-ion battery is an index to describe the remaining capacity 

of the battery, and it is also one of the most important parameters in the use of the battery[18, 19]. SOC 

of lithium-ion battery is affected by its internal electrochemical reaction, charge-discharge mechanism 

and external environmental conditions, including charge-discharge rate, self-discharge, temperature and 

aging[20-22]. These factors will cause some changes in the residual power, so it is difficult to accurately 

estimate the SOC of the battery. At present, the SOC estimation methods of lithium-ion batteries mainly 

include open-circuit voltage method[23], ampere-hour (Ah) integration method, internal resistance 

method[24], neural network method, Kalman filter (KF) method, particle filter(PF) method, etc. [3, 25, 

26].. Open-circuit voltage method uses the one-to-one correspondence between open-circuit voltage and 

charging state, and obtains the charging state value by obtaining the open-circuit voltage value of the 

battery, so as to achieve the estimation purpose[27]. Although this method can measure SOC value, it is 

necessary to let the battery stand for more than one hour before starting measurement. The battery itself 

is easily affected by temperature and reproduction quality. In the same OCV, the difference of SOC 

under different conditions is different[28]. Therefore, it is not suitable for SOC estimation in operation. 

Ampere-hour integration method, also known as current integration method, estimates the state of charge 

(SOC) of the battery by accumulating the charge and discharge amount of the battery during charging 
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and discharging, and corrects the state of charge value by charging and discharging rate and battery 

temperature[13, 29, 30]. This method can not only accurately estimate the state of charge, but also realize 

real-time estimation[31]. The method is simple and the principle is easy to understand. A single method 

is not enough. Its shortcomings may have a significant impact on SOC estimation[32]. For example, the 

essence of ampere-hour integration method is superposition process[33]. If the initial value measurement 

is not accurate enough, it will cause measurement deviation[34-36]. In addition, when collecting current, 

the self-discharge effect, aging condition and charge-discharge rate of the battery itself are not 

considered in the calculation formula[20]. Long-term integration process will accumulate effects, and 

the error will continue to expand, resulting in SOC deviating from the true value in the estimation 

process[37]. The neural network method estimates the charging state of lithium ion batteries by 

processing a large number of real-time input and output data of lithium ion batteries. Kalman filtering 

method obtains the optimal solution in the sense of minimum variance through continuous iterative 

operation.  

In recent years, a large number of scholars have studied the estimation algorithm of SOCunder 

the influence of a complex external environment. Chen et al. proposed an on-line estimation method of 

open circuit voltage based on particle filter, and realized the charge state based on voltage[38]. He et al. 

established a new unbiased equivalent circuit model to eliminate current bias, and based on the unbiased 

equivalent circuit model, proposed a two-layer estimator to estimate charge state by using real-time 

identified model parameters[19]. In this paper, Liu et al. proposed a hybrid model of SOC of lithium-ion 

battery, which is composed of deep beliefnetwork (DBN) and Kalman filter  under dynamic 

conditions[38]. The researchers of Tsinghua University State Key Laboratory of Automotive Safety and 

Energy combined the Ah method with low calculation amount and the adaptive extended Kalman filter 

(AEKF) method with high accuracy on the premise of considering the drift in current and voltage 

measurement. Under the new European driving cycle (NEDC) test conditions, the advantages of this 

method are verified[24, 39, 40]. Because of the complex electrochemical reaction during the use of the 

battery, it often shows strong nonlinear characteristics[41]. The above methods have their own 

advantages and disadvantages. How to improve the existing methods and make the best trade-off 

between estimation accuracy and time cost is a problem that researchers are constantly exploring [42]. 

On the premise of ensuring the accuracy of the model and reducing the calculation cost, the 

Thevenin equivalent model of lithium-ion battery the second-order RC model are taken as the research 

object, and the model parameters that best meet the internal characteristics of lithium battery are 

iteratively calculated by using the improved adaptive particle swarm optimization algorithm, and the 

accuracy of the model parameters is verified under hybrid pulse power characteristic (HPPC) conditions. 

Considering the interference caused by the uncertain noise of lithium-ion battery system to SOC 

estimation, a noise statistical estimator is constructed and combined with extended Kalman iterative 

algorithm to obtain the real-time SOC value estimated by the minimum variance. The verification results 

under two different working conditions show that even if the set initial state-of-charge estimation value 

deviates greatly from the true value, the initial value can still be corrected in a short time to obtain an 

accurate state-of-charge filter value. 
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2. MATHEMATICAL ANALYSIS 

2.1. Equivalent circuit modeling 

At present, the common equivalent circuit models include the internal resistance model, the 

Thevenin model and PNGV model[1, 43]. The internal resistance model is the most basic equivalent 

circuit model, but it can't effectively characterize the polarization effect in lithium batteries. The 

Thevenin model makes up for the defects of the internal resistance model by adding RC circuit based on 

the internal resistance model. PNGV model considers the change of open circuit voltage caused by the 

self-discharge effect of lithium li'zi battery, but it also increases the computational complexity 

accordingly. 

Considering the working principle and characteristics of lithium batteries, combining the 

advantages of common equivalent circuit models, fully considering the internal complex electrochemical 

reactions in the running process of lithium batteries, through the capacity test, charge and discharge 

experiment and experimental data analysis of 4.2V/50Ah ternary lithium-ion batteries, considering that 

the self-discharge rate of lithium batteries has been greatly reduced due to the improvement of the 

manufacturing process, the Thevenin model with simple structure and good effect is selected to 

characterize the internal state of lithium-ion batteries, as shown in Figure 1. 
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Figure 1. The equivalent circuit model structure 

 

 

In the figure, 𝑈𝑜𝑐 represents the open-circuit voltage of lithium battery, and variable resistor R0 

represents the ohmic internal resistance of the lithium-ion battery, and the voltage at both ends is 𝑈0. 

The parallel circuit composed of 𝑅𝑃 and 𝐶𝑃 is used to characterize the internal polarization effect of 

lithium battery, and the voltage at both ends is 𝑈𝑃. According to Kirchhoff's voltage law, the terminal 

voltage 𝑈𝐿 can be expressed as shown in Eq.(1). 

0L oc pU U U U    (1)  
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According to ohm's law, the relation between 𝑈0, 𝑈𝑃 and their current can be listed as shown in 

Eq.(2)  

0 0

1 1
( 1) ( ) ( )p p

P P P

U IR

U k U k I k
R C C





   


，
  (2) 

According to the current-voltage relationship of the Thevenin circuit, the state space equation of 

the model can be obtained, which provides a theoretical basis for subsequent parameter identification 

and state estimation model construction. 

 

2.2. Improved adaptive particle swarm optimization algorithm 

In order to judge whether the equivalent model of the battery can accurately characterize the 

working characteristics of the lithium battery, the parameter identification of the equivalent circuit model 

shouid be carried out first. At present, the commonly used parameter identification methods include the 

curve fitting method, least square method, KFmethod, etc. The lithium battery is a typical nonlinear 

system. Considering the limitation of least square method and curve fitting method to nonlinear system, 

an improved particle swarm optimization algorithm is used to identify circuit parameters. 
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Figure 2. PSO algorithm flow chart 

 

 

The standard particle swarm optimization algorithm originates from the study of bird predation 

behavior. The PSO algorithm uses random particles in the M-dimensional solution space as the solution 

of the problem to be solved, and uses its position to represent. Each particle judges its degree of 

conformity with the optimal solution through the fitness function. At the same time, the particles update 

the current position through speed and position transformation. The update of speed and position is not 
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random, but global search is performed by the globally optimal particles and the individual's historical 

optimal to converge to the optimal solution. The iterative process of particle swarm optimization 

algorithm is shown in Figure 2  

As shown in Figure 2, the improved particle swarm optimization algorithm is used for parameter 

identification, and the specific steps are as follows. 

Step 1: Let i=0 and initialize a group of particles with dimension m. Each particle represents a 

possible solution in the solution space. In order to have faster convergence speed and calculation 

accuracy, it is necessary to set the scope of the solution space and the maximum search speed according 

to historical experience. Initialize a group of three-dimensional particle swarm according to the number 

of parameters to be identified, including the number, speed and position setting of particle swarm. 

Step 2: Calculate the fitness of particle population at time i. Calculate the fitness of each particle. 

The fitness function is a standard for judging the advantages and disadvantages of the particle position. 

In order to make the identified parameters accurately characterize the space state of the lithium battery, 

the absolute difference between the model output value corresponding to the particle position and the 

actual output value of the battery is selected as the fitness function j, as shown in Eq.(3). 

1

ˆ( ( ) ( , ) )
n

m m

j

J U k U k 


   (3) 

In the formula, 𝑈𝑚(𝑘)  represents the actual output voltage of the lithium ion battery, and 

𝑈𝑚(�̂�, 𝜃) represents the model output voltage under the identified parameters.  

Step 3: Selecting particles. Selecting the particle pbest𝑖 with the best fitness from the particle 

swarm at the time t=i, even if j is the local optimal value; Then, from each local optimum in t=1 to t=i, 

the position gbest𝑖  with the best fitness is selected. Judging whether gbest𝑖  meets the convergence 

condition, if so, the global search ends, and the identification result is the position corresponding to 

gbest𝑖, If not, proceed to the next step. 

Step 4: Update the speed and position of particle swarm. The speed update formula and position 

update formula are shown in Eq.(4). 
1

1 2

1 1

* 1* *( ) 2* *( )k k k k k k

id id id id gd id

k k k

id id id

v w v c P x c P x

x x v

 





 

     


 
 (4) 

Among them, 𝑣𝑖𝑑
𝑘+1is the speed at the moment of k+1, ω is the inertia weight coefficient, which 

generally taken as a value between 0.4 and 0.9. The larger the value of ω, the larger the range of particle 

search, but the convergence speed will also slow down correspondingly. c1 and c2 are self-cognitive 

weight coefficient and social cognitive weight coefficient, respectively, and their values determine the 

following situation of particle position with local optimum and global optimum. 𝜂1and𝜂2 are random 

numbers between (-1,1). 

Step 2-Step 4 is carried out cyclically and iteratively, and keeps approaching the optimal value 

until the convergence condition is reached. 

Particle Swarm Optimization (PSO) algorithm is easy to fall into local optimum, so it is 

considered to improve PSO algorithm with adaptive adjustment strategy to improve the convergence 

speed and estimation accuracy of the algorithm as a whole. It can be seen from Eq.(4) that the search 
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speed of particles changes with the value of inertia weight w, and a larger inertia factor is beneficial to 

jump out of the local minimum and facilitate global search, while a smaller inertia factor is conducive 

to accurate local search of the current search area to facilitate algorithm convergence; However, if ω is 

too large, it will easily lead to premature convergence and oscillation near the global optimal solution in 

the later stage of the algorithm. In order to make a proper trade-off between search speed and accuracy 

of results, a PSO algorithm based on adaptive weight is established, and an improved PSO algorithm 

whose inertia weight ωdynamically changes with iteration times and particle position is established. The 

formula of dynamic change of inertia factor ω is shown in Eq.(5) 

max min min

min

min

max

( - )*( )
,

,

avg

avg

avg

w w J J
w w J J

J J

w w J J


   

  

 (5) 

In the formula, J represents the current target function value of particles, and Javg represents the 

average target value of particles. According to the iteration times of the algorithm and fitness function 

of particles, the inertia weight ω  will increase when the target values of each particle tend to be 

consistent or local optimum, but decrease when the target values of each particle are scattered. 

Meanwhile, for particles whose target function value is better than the average target value, the 

corresponding inertia weight factor is smaller, thus retaining the particle. On the contrary, for particles 

whose target function value is worse than the average target value, the corresponding inertia weight 

factor is larger, which makes the particle orientation better. 

PSO algorithm is a process of iterative optimization, so it needs the discrete state space equation 

of lithium battery. According to the current-voltage relationship of equivalent circuit model and 

Kirchhoff's law, the differential equation is discretized to obtain its difference equation, and its recursion 

process is shown in Table 1. 

 

 

Table 1. Difference Equation of Equivalent Circuit Model 

 

Step 1: List the state 

equation of the model 
   

Step 2: Discretization of 

Equation 

p

( ) ( 1) 1
( 1)

( ) ( ) ( )*

( 1) ( 1) ( 1)*

p p

p

p p

p oc L

p oc L

U k U k I
U k

T R C C

U k U U k I k R

U k U U k I k R

 
   




  


     



 

Step 3: Organize and 

Simplify 
0( ) ( 1) ( ) ( ) ( 1)

p p p p p

m m

p p p p p p

R C TR RR C
U k U k R I k I k

R C T R C T R C T
     

  
  

 

Adaptive particle swarm optimization (APSO) algorithm has good advantages in the field of 

multi-parameter identification. Compared with curve fitting, it has less computation and less hardware 

requirements, and is suitable for identifying the equivalent model parameters of lithium-ion batteries. 
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2.3. Extended Kalman filter 

As a parameter that can directly evaluate the remaining capacity of lithium batteries, whether 

SOC can be accurately estimated in real time has become the most important factor affecting the safe 

and reliable operation of lithium batteries. At present, the SOC estimation method commonly used in 

the market is generally the Ah method, but the Ah method has accumulated SOC errors that cannot be 

eliminated, which leads to increasing estimation errors. Considering the strong nonlinear characteristics 

of lithium-ion batteries, the input and observation data are obtained by designing experiments under 

actual working conditions, and the state of charge of lithium batteries is iteratively estimated according 

to extended Kalman filter (EKF) algorithm. In order to improve the adaptability of the equivalent 

modeling process, the HPPC experimental voltage curve is used to obtain the model parameters that 

change with the state of charge in real time, so as to realize accurate state of charge estimation. 

KFalgorithm is an autoregressive algorithm which observes input and output signals on the basis of 

constructing the state space equation of linear system, corrects the estimated value of the system by 

denoising the observed value, and iterates continuously to reach the optimal value. EKFsolves the defect 

that KF algorithm can only be applied to linear systems by Taylor expansion of iterative matrix. The 

flow chart of KF algorithm is shown in Figure 3. 
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Figure 3. KF algorithm flow chart 

 

 

As shown in the flow chart, firstly, it is necessary to set boundary conditions for KF algorithm, 

that is, initialize the state vector x and its error covariance vector p containing the parameter SOC to be 

estimated. The main part of the algorithm includes five parts: state variable time update, error covariance 

time update, gain matrix update, state variable measurement update and error covariance measurement 

update. For linear systems, the best filtering results can be achieved by iterative estimation of the system 

state vector using KF algorithm. For nonlinear systems, EKF algorithm is needed to linearize the space 

state equation by Taylor expansion. For a typical nonlinear system, its state equation and observation 

equation can be expressed as shown in Eq. (6). 
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+1 ( , )

( , )

k k k k

k k k k

x f x u

y g x u





 


 
 (6) 

Among them, system noise ω𝑘 and observation noise v𝑘 are Gaussian white noises, and their 

specific definitions are shown in Eq. (7). 

( ) 0 [ ] ( )

( ) 0 [ ] ( )

k k t k

k k t k

E E Q k t

E v E R k t

   

  

  


  

，

，
 (7) 

In Eq. (6)., 𝑥𝑘  is the state vector, 𝑢𝑘  is the input vector, and 𝑦𝑘  is the observation vector. 

f(𝑥𝑘, 𝑢𝑘) is a nonlinear state equation function of the system, which represents the cumulative change of 

state quantity under the action of input vector 𝑢𝑘, and g(𝑥𝑘, 𝑢𝑘) is a nonlinear observation equation 

function of the system. The nonlinearity of state equation and observation equation will limit the 

recursive iterative process of KF algorithm, and it is necessary to carry out the first-order Kalman 

expansion of f(𝑥𝑘, 𝑢𝑘) and g(𝑥𝑘, 𝑢𝑘) at each sampling point as shown in Eq. (8). 

ˆ

ˆ

( , )
ˆ ˆ( , ) ( , )+ ( )

( , )
ˆ ˆ( , ) ( , )+ ( )

k k

k k

k k

k k k k x x k k

k

k k

k k k k x x k k

k

f x u
f x u f x u x x

x

g x u
g x u g x u x x

x






  


  

 

 (8) 

In this formula, �̂�𝑘 is the predicted value of the state vector at k time. after linearizing the space 

state equation, the linear system state equation and observation equation can be obtained as shown in 

Eq. (9). 

+1
ˆ ˆˆ[ ( , ) ]

ˆ ˆˆ[ ( , ) ]

k k k k k k k k

k k k k k k k k

x A x f x u A x

y C x g x u C x





    


   

  (9) 

In this formula, the system matrix �̂�𝑘 and the observation matrix �̂�𝑘 correspond to the first-order 

Taylor expansion coefficients of f(𝑥𝑘, 𝑢𝑘) and g(𝑥𝑘, 𝑢𝑘), respectively, and the specific form is shown in 

Eq. (10). 

ˆ

ˆ

( , )

( , )

k k

k k

k k

k x x

k

k k

k x x

k

f x u
A

x

g x u
B

x






 


 

 

 (10) 

The nonlinear system can be subjected to iterative filtering processing through the linearization 

processing described above. The specific iterative steps of KF algorithm are as follows. 

(1) Initialize state vector and error covariance matrix 

0 0 0 0 0 0
ˆ ( ) var( )| |x E x P x ，  

(2) Time update of state variables 

| 1 1 1| 1 1 1
ˆ ˆ

k k k k k k k kx A x B u q         

(3) Time updating of error covariance 

1 1 1 1 1 1 1 1
ˆ ˆ( )( )T T

k|k - k k|k k k|k k k - |k - k kP E[ x x x x ] A P A Q          

(4) Update the gain matrix 
T 1

1 1( )T

k k|k k k k|k k kK P C C P C R 

    

(5) Measurement and update of state variables 
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1 1
ˆ ˆ ˆ( )k|k k|k k k k k|k k k kx x K y C x D u r       

(6) updating the error covariance measurement 

1k|k k k k|kP (E K C )P    

In this formula, �̂�0|0 and 𝑃0|0 are the initial values of system state and covariance matrix, �̂�𝑘|𝑘−1 

is the estimated value of state, �̂�𝑘|𝑘 is the filtered value of state, 𝑃𝑘|𝑘−1 is the prediction error covariance 

matrix, 𝑃𝑘|𝑘  is the filtering error covariance matrix, and 𝐾𝑘  is the Kalman gain. After the system is 

initialized, the filter estimation value of each sampling point is updated twice by KFalgorithm. Time 

update is to predict the state quantity and error covariance at the previous time according to the filtered 

value and input quantity at the previous time. The measurement update is based on the observed value 

outside the system, and the state prediction value and error covariance prediction value under the system 

noise are considered for correction, so as to obtain the optimal estimation in the sense of minimum 

variance. The obtained optimal filter value will be used as the input when updating the time at the next 

moment, so as to realize continuous "prediction-correction" recursive calculation. 

 

2.4. Sage-Husa adaptive filtering  

In the traditional SOC estimation model, the system error is the ideal white Gaussian noise. 

However, in practical engineering applications, the system noise is often very complex and changeable. 

In order to eliminate the interference caused by the noise error, an adaptive noise statistical estimator 

based on Sage-Husa algorithm is constructed to adaptively correct the system noise. Combining the 

adaptive noise statistical estimator with EKF algorithm, Sage-Husa adaptive filtering algorithm is used 

to constantly modify the process noise covariance and measurement noise covariance in EKF formula, 

so as to obtain unbiased filtering results under time-varying colored noise. The noise update process 

based on Sage-Husa algorithm is as follows. 

1. Update of process noise value  

1 1
ˆ ˆ ˆ(1 ) ( )k k k k k k|kq q x x       

In the formula, 
ˆ

kq  is the updated value of process noise at k time, and k  is the weight based on 

forgetting factor: 𝜆𝑘 =
1−𝑏

1−𝑏𝑘, where b is the forgetting factor and the value is 0.95. 

2.  Covariance update of process noise 

1
ˆ(1 ) ( ( ) )T

k k k k k k k| kQ Q K y y K      

3. Update of measurement noise value 

1 1
ˆˆ ˆ(1 ) ( )k k k k k k k|k k kr y C x D u         

4. . Covariance update of measurement noise 

1
ˆ ˆ(1 ) (( )( ) )T

k k k k k k k kR R y y y y       

Through the above-mentioned four-step filtering calculation, the maximum a posteriori 

estimation algorithm is used to estimate the system noise, and then the statistical characteristics of the 

system process noise and observation noise are estimated and corrected in real time while recursive 

filtering is carried out by using the observation data, so as to achieve the purposes of reducing the model 

error, restraining the filter divergence and improving the filter accuracy. 
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2.5. Iterative estimation of state of charge 

SOC is an index to measure the remaining battery charge. It is usually defined as the ratio 

between the charge stored in the battery and the charge that can be stored when fully charged, and it is 

the most direct reflection of the battery state. Reliable SOC estimation can help Battery management 

system (BMS) manage energy better, and avoid the phenomena such as greatly shortening the service 

life of lithium batteries and thermal runaway. Accurate estimation of SOC value is very important to 

guarantee the working performance of lithium-ion battery. In order to establish a more accurate state of 

charge estimation model, the ampere-hour integration method and the equivalent model space state 

description which can accurately characterize the working characteristics of lithium batteries are 

comprehensively considered. The discrete state space equation of the EKF algorithm is given by the 

ampere-hour integration process, and the state space description of the equivalent model is embodied in 

the observation equation of the EKF algorithm, which can be obtained from the KVL relation of the 

equivalent circuit model, as shown in Eq. (11). 

1 1

+1 =(1 )U

( )

k k k k

N

pk pk k

P P P

k k k 0 pk k

SOC SOC I t
Q

t t
U I

R C C

UL f SOC I R U









   




   



     

(11) 

In which, 𝑄𝑁 represents the rated capacity of the battery, I represents the current, where the 

default discharge point direction is the positive direction, Δt  is the sampling time interval, and η 

represents the charge and discharge efficiency. ω𝑘 stands for process noise, which is Gaussian white 

noise with a mean value of 0 and a variance of Q, and represents the internal error distribution during 

the system operation. U𝐿 is terminal voltage, f(soc) is open circuit voltage, which is a nonlinear function 

of SOC, SOC represents open circuit voltage, 𝑅0 and 𝑅𝑃 represent ohmic resistance and polarization 

resistance in equivalent circuit model respectively, τ is time constant of RC circuit, v𝑘 is observation 

noise, white Gaussian noise with mean value of 0 and variance of R, which represents error distribution 

during observation. Selecting the state vector as X = [𝑆𝑂𝐶 𝑈𝑃], according to the KVL relation of the 

equivalent circuit model, the discrete space state equation can be obtained, as shown in Eq. (12)  

1, 1

1

,2, 1

, , 0,

,

,

0
+

-1

kk

k k k

p kk

T

k

L k oc k k k k

p k

SOCw
X AX Bu X

Uw

SOC
U U R I v

U







   
      

   


  
    

   

 (12) 

Among them, the meanings of state transition matrix A and input matrix B come from the process 

recursion equation, which is the driving matrix for obtaining the state of the next moment from the state 

of the previous moment, which can be obtained from the space state equation of Eq. (11). C is the 

observation matrix. Because the measurement equation is nonlinear, it is necessary to carry out Taylor 

expansion on the measurement equation, and the coefficient of the obtained state variable is the value of 

C. and the specific forms of A , B and C are shown in Eq.(13). 
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n

t
1 0

( )
t ,  , 0

0 1 t ( )
p P

p

Q f SOC
A B C

SOC
R C

C

 
   

                 
 

 (13) 

Because the EKF algorithm omits the higher order term of Taylor expansion in the estimation 

process, and the noise is artificially defined as Gaussian white noise in the estimation process, it may 

lead to the problem of filtering divergence in the estimation process. In order to achieve the best filtering 

effect, an adaptive adjustment factor is considered to correct the error based on the extended Kalman 

algorithm. 

 

 

 

3. RESULTS AND DISCUSSION  

3.1. Experimental platform design 

In order to verify the accuracy of the model parameters and the tracking of the filtered results 

of the SOCand the true values, an experimental platform for lithium batteries was built, and relevant 

experiments were designed according to the actual working conditions to obtain experimental data. 

The experimental platform and the parameters of lithium-ion battery used in the experiment are shown 

in Figure 4. 

 

 

-7

Parameters of lithium ion battery

Host Computer

TT-5166TH

TCP/IP

Power Connect

Temperature 
Setting

Battery test system

 Neware BTS-4000

Lithium-ion battery

Temperature 

chamber 

 
 

Figure 4. experimental equipment 

 

As shown in Figure 4, the lithium battery used in this experiment is a ternary lithium-ion battery 

with a nominal capacity of 50Ah and a charging voltage of 4.2V. The temperature control test box TT-

5166TH can provide a constant temperature environment when the battery is charged and discharged. 

Neware BTS-4000 is a high-power charge and discharge tester for power batteries, which is used for 

charging and discharging lithium batteries. The charging and discharging of lithium battery is connected 

to the master computer of the charging and discharging tester, and the charging and discharging steps 
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are set by the maste computer. Through such a man-machine interaction module, the working condition 

experiment of lithium battery in constant temperature environment can be controlled. 

 

3.2. Working characteristics of lithium battery 

There are two main characteristics that related to SOC estimation of lithium-ion battery: the one 

is Charging and discharging characteristic, the other one is OCV characteristic. 

In order to explore the changes of internal characteristics of lithium-ion batteries at different 

charging and discharging rates, the lithium-ion batteries were charged to the cutoff current in a constant 

current and constant voltage mode, and then discharged to the cutoff voltage of 2.75V at the rates of 

0.5c, 0.8c, 1c and 1.5c respectively. The voltage variation curves and output capacity curves under 

different rate discharge experiments are shown in Figure 5. 

 

 

  

(a) Voltage curve (b) capacity curve 

 

Figure 5.  Discharge curves at different rates 

 

 

It can be seen from Figure 5 that as the discharge speed of the battery increases, the voltage drops 

faster, and the discharged capacity of the battery also decreases. The open-circuit voltage is the terminal 

voltage of lithium-ion battery when it is at rest for a long time. In the static state, the OCV and the state 

of charge of lithium ion batteries have a good mapping relationship. Open-circuit voltage characteristics 

of lithium ion voltage are studied to determine the one-to-one correspondence between OCV and state 

of charge.  

The OCV-SOC calibration experiment of lithium-ion battery is carried out using battery testing 

equipment with set time. In this experiment, the battery is intermittently discharged at a discharge rate 

of 1 C. The discharge time for each cycle is set according to the set discharge rate and the number of 

required relationship coordinate points. In this experiment, 10 relationship coordinate points are needed, 

so each discharge time is 6 minutes. The last discharge experiment will probably not last until the 

expected discharge time, and the discharged capacity can be obtained according to the discharge duration 

and the discharge current, thus obtaining the SOC of the battery after the last discharge. After each 

discharge, the battery is put aside for 1h to stabilize its internal chemical state to obtain its open circuit 
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voltage. As shown in Figure 6, these discrete points are extracted from laboratory data to obtain the OCV-

SOC relationship scatter diagram, and the least square method is used to fit to obtain the OCV-SOC 

relationship curve and relationship polynomial. 

 

 

 
 

Figure 6. OCV-SOC fitting curve 

 

 

Scatter points obtained from experiments are points with high trust, so the curve should pass 

through every point as far as possible, and the curve should accurately reflect the trend of the relationship 

between OCV and SOC as far as possible. Therefore, the fitting curve should be smoothly transitioned 

in the interval between scatter points as far as possible, and the change rate should not be too large. 

Obviously, the higher the order of the fitting polynomial, the better the fitting accuracy. However, the 

limit of the processor's operation ability under actual conditions should also be considered, that is, the 

fitting polynomial should not be too high to reduce the computational complexity. Considering the above 

situation, after repeated tests and comparison of fitting results, it is finally found that the fitting effect of 

5th order polynomial is better, and the complexity is moderate and acceptable for the processor. 

Therefore, the function relation of OCV-SOC obtained by fitting with a 5-order polynomial is shown in 

Eq. (14). 
5 4 3 2

4.277 14.71 18.98 10.63 3.039 3.216UOC SOC SOC SOC SOC SOC            (14) 

 

3.3. Parameter identification 

In the designed circuit model, the parameters to be identified include 𝜃 = [𝑅0, 𝑅𝑝, 𝐶𝑝]. APSO 

algorithm is used to identify the model parameters. Parameters R0, Rp, Cp to be identified are 

represented by three-dimensional particles θ = [𝑅0 𝑅𝑝 𝐶𝑝], which have two attributes: position and 

velocity. Design a particle population with 20 particles. In each iteration process, each particle needs to 

update its position and velocity, judge the output voltage error corresponding to the particle position, 

record the particle position pbest𝑖 corresponding to the minimum error in each iteration and the optimal 

position gbest𝑖 in all time series, and update the position and velocity of each particle according to these 

two positions until the convergence condition is reached. The battery is tested under Beijing bus dynamic 
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stress test (BBDST) condition, and the real-time current and voltage data are collected as the estimation 

basis of APSO. The identified model parameters and errors are shown in Figure 7. 

 

 

  
 (a) Identification result of R0 (b) Identification result of Rp 

  

(c) Identification result of Cp 
(d) Error between model output voltage and 

actual output voltage 

  

Figure 7. Parameter Identification Results 

 

 

It can be seen from the figure that the APSO algorithm can quickly iterate to obtain the optimal 

model parameters, and the adaptive method can greatly avoid local convergence and improve the 

credibility of the identification results. The specific identification results are shown in Table 2. 

 

Table 2.  Parameter Identification Results 

 

R0/Ω Rp/Ω Cp/F 

0.001954 0.000572 2098.71 

 

 

After the identification results are obtained, they are used as the input parameters of the state-of-

charge estimation model to provide data support for state estimation. 

 

3.4. Modelling verification 

After obtaining the mathematical description of each parameter of the model, it is necessary to 
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model, input the same current change as the HPPC test experiment, compare the output voltage response 

of the model with the actual voltage data, verify the model, and optimize and improve the model 

according to the verification results. The verification result of model parameters is shown in. Figure 8. 

 

 

 
 

(a) Current and voltage of HPPC condition (b) Parameter verification platform 

  
(c) Output voltage comparison (d) output voltage error 

Figure 8. Verification results of Thevenin model parameters 

 

As shown in the above figure, Figure 8(a) shows the input current and output voltage of HPPC 

working condition, and Figure 9(b) shows the built parameter verification platform, which includes an 

experimental data input module for simulated working condition, an equivalent circuit model and 

parameter input module, and a model output and actual output comparison module. Through this 

verification platform, the curve comparison between the model output voltage and the actual output 

voltage and the absolute error curve can be obtained.  

As shown in Figure 8 (c), the red curve is the model output terminal voltage, and the blue curve 

is the actual battery output terminal voltage. it can be seen that the model output terminal voltage is in 

good agreement with the actual value, which explains the rationality of the Thevenin equivalent circuit 

model and also proves the feasibility and reliability of the parameter identification method. 

From the error curve in Figure 8(d), it can be seen that the model did not diverge during the 

whole process, and the larger error occurred at the power pulse test stage, because the sudden change of 

battery input current caused the accumulation of chemical reactions inside the battery to increase, 

resulting in a rapid change of terminal voltage. Even in the last stage when SOC is very low and the 

model cannot well reflect the current state of the battery, the maximum error does not exceed 0.06V.  

0 5000 10000 15000 20000 25000 30000 35000

-50

-40

-30

-20

-10

0

t (s)

I 
(A

)

2.8

3.2

3.6

4.0

4.4

 U
 (

V
)

0 5000 10000 15000 20000 25000 30000
3.2

3.4

3.6

3.8

4.0

4.2

U
(V

)

t (s)

 U1

 U2

0 5000 10000 15000 20000 25000 30000
-0.06

-0.04

-0.02

0.00

0.02
er

ro
r 

(1
)

t (s)



Int. J. Electrochem. Sci., 16 (2021) Article ID: 21054 

  

17 

In order to verify the parameter estimation effect of APSO algorithm for different models, the 

second-order RC equivalent circuit model is identified by the same method, and the model parameters 

are used to verify the coincidence between the output voltage of the model and the actual output 

voltage[3, 14, 40, 44]. The verification effect under the parameters of the second-order equivalent circuit 

model is shown in Figure 9. 
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(b) Output voltage comparison 

 
(a) Second-order RC model (c) Output voltage error 

 

Figure 9. Parameter verification results of second-order RC model 

 

 

Figure 9(a) is a second-order equivalent circuit model, and Figure. (b) and (c) are the comparison 

curves of actual output voltage and model output voltage and absolute error curves of the second-order 

RC equivalent model under HPPC operating conditions, where U1 is the output voltage under actual 

operating conditions and U2 is the model output voltage of the second-order RC equivalent model under 

the same operating conditions. 

It can be seen from the Figure 9 that when identifying the equivalent circuit model parameters 

with higher accuracy, the model parameters identified by the APSO algorithm have a higher matching 

degree with the internal characteristics of the lithium ion battery. The average error of the model 

identified by the same algorithm is less than 0.0025, the maximum output error is less than 0.03, and the 

algorithm accuracy is greater than 99.3%. It is proved that the adaptive particle swarm optimization 

algorithm has high accuracy and robustness in identifying the parameters of lithium ion battery model. 

 

3.5. Simulation and verification of algorithms 

In order to verify the robustness of AEKF algorithm under complex working conditions, 

50Ah/4.2V lithium iron phosphate battery was tested with reference to various working conditions 

experiments[9, 43]. The hybrid pulse test experiment was carried out at a constant temperature of 25℃, 

and the input current signal and voltage observation signal under the influence of noise were obtained. 

The verified real state is based on the Ahintegral measurement with the minimum time interval added 
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operating conditions are simulated by data, and the effective number of data is redefined in Matlab 

environment for processing, so as to obey the normal distribution of random noise, that is, Gaussian 

white noise with a mean value of zero and a variance of R, which is superimposed on the input data to 

simulate the actual observed terminal voltage. This data is used as the terminal voltage comparison for 

updating the state of charge estimation. Input current and observed voltage under simulated noise are 

predicted and updated by AEKF algorithm based on improved equivalent circuit model, and the 

estimated value of output SOC is obtained[45]. Meanwhile, in order to simulate the interference to the 

estimation model when the initial value is unknown, the initial value of SOC is designed to be 0.85. The 

simulation results of the algorithm under HPPC condition are shown in Figure 10(a) and (b), and the 

verification results under BBDST condition are shown in Figure. 10(c) and 10(d), where SOC1 is the 

reference value of state of charge, SOC2 and error1 are the estimation result and error based on EKF 

algorithm respectively, SOC3 and error2 are the estimation result and error based on AEKF respectively. 

 

    
(a) SOC estimation result under HPPC 

experiment 

(b) error of soc estimation under HPPC 

experiment 

    
(c) SOC estimation result under BBDST test (d) error of soc estimation under BBDST test 

 

Figure 10. SOC estimation results under different test conditions 

 

 

It can be seen from the estimation results of Figure 10 under two working conditions that the 

algorithm can converge to the real value at a very fast speed even when the initial value of SOC deviates 

greatly from the real value. Compared with EKF algorithm, AEKF algorithm achieves higher estimation 

accuracy by correcting noise interference. Through the analysis of the output results, it can be concluded 

that when the initial value is wrong, the AEKF algorithm has the ability of noise adaptive and automatic 

adjustment. The maximum estimation error under the whole HPPC working condition is not more than 

0.04, and the estimation error under BBDST is less than 0.06, which shows good stability and robustness. 
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4. CONCLUSIONS 

Effective equivalent modeling and accurate state of charge estimation are the key technologies 

of BMS. In order to better monitor the state of battery pack, based on the experimental study of the 

ternary lithium-ion battery, taking the Thevenin equivalent model as the object, APSO algorithm is 

innovatively introduced to realize the parameter identification of the model. The simulation results show 

that the maximum deviation between the simulation value and the actual terminal voltage is less than 

0.06 volts, and the model accuracy can reach more than 98%. On the basis of experimental research and 

accurate battery parameter identification, the AEKFalgorithm is used to estimate the state of charge. The 

algorithm verification results under two different working conditions show that the algorithm has good 

adaptability and robustness. Even when the initial state-of-charge value deviates, the actual state-of-

charge value can be recovered and tracked quickly within 50 seconds, thus realizing accurate estimation 

of the SOC of lithium-ion batteries. This method provides a reliable basis for SOCestimation under 

complex colored noise interference. 
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