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The state-of-charge (SOC) is used to characterize the remaining capacity of power lithium-ion battery. 

Using the simplicity of Thevenin equivalent circuit model, a bidirectional online improvement model 

that distinguishes the charging and discharging process is proposed to characterize the state of lithium-

ion batteries, and the on-line parameter identification of the model is carried out by using the least square 

method of evolving memory. A novel square root unscented Kalman iterative algorithm based on the 

dynamic state-of -charge of the lithium battery is designed, and the SOC estimation effect of the 

combined dynamic estimation algorithm and the unscented Kalman algorithm (UKF) is compared. The 

dynamic stress test mode (DST) experiment was carried out on the ternary lithium-ion battery at 25℃. 

The simulation results show that the average error of the lithium-ion battery SOC estimation of the 

dynamic joint estimation algorithm and the  unscented Kalman algorithm are 1.23% and 2.11% 

respectively. The experimental results show that the joint algorithm based on the square root unscented 

Kalman algorithm and the fading memory method has better tracking effect, and has higher SOC 

estimation accuracy and stability. 

 

 

Keywords: lithium-ion battery; Fading memory algorithm; state of charge; Square Root Unscented 

Kalman filter algorithm; dynamic stress test. 

 

1. INTRODUCTION 

At present, with the rapid economic development, the pollution and transportation problems 

facing the world are becoming more and more serious [1]. The energy crisis caused by excessive energy 

consumption has attracted widespread attention from countries around the world [2]. Therefore, all 

countries are committed to the development and development of new energy sources. Research to meet 

huge energy demand and alleviate environmental pollution [3]. Among the research results of many new 

energy projects, lithium-ion battery (LIB) has received extensive attention and research due to their 
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advantages such as high energy density , long life, small size, no pollution, no memory effect, and large 

output power [4]. Application has become a key project in the field of new energy development, with 

broad development prospects [5]. While the lithium-ion battery technology is booming, its state-of-

charge (SOC) and state-of-health (SOH) have become the focus and difficulty of lithium battery 

research. For lithium-ion battery, high-accuracy estimation of the state of charge is necessary to give full 

play to its performance [6]. It is exactly significant to real-time state detection and safety control of 

lithium-ion battery, it also plays a key role in improving the efficiency of the Battery Management 

System (BMS) [7]. Because the power lithium battery has strong nonlinearity, its SOC cannot be 

obtained directly by sensors or other measurement methods. It must be measured by measuring the 

battery voltage, operating current, battery internal resistance and other physical quantities and using 

certain mathematical methods to estimate, so that The estimation of the state-of-charge of a lithium 

battery needs to rely on the equivalent model established for the characteristics of the lithium battery 

[8]. Moreover, due to the strong nonlinear characteristics exhibited by the lithium battery under complex 

operating conditions, it is difficult to accurately rely on the equivalent model only, characterize the 

characteristics of lithium batteries [9]. The square root unscented Kalman filter (SRUKF) algorithm 

improved by the unscented kalman Filter (UKF) algorithm is applied to the process SOC estimation of 

lithium batteries [10], and an accurate equivalent circuit model (ECM) is established to improve the 

algorithm estimation effect.  

In the field of lithium-ion battery state estimation, equivalent modeling is an indispensable step 

[11]. The accuracy and stability of the model directly determine the state estimation effect of the lithium-

ion battery [12]. In the process of equivalent modeling, the parameter identification of the model is the 

most important link [13]. Least squares method is a commonly used parameter identification. Compared 

with artificial neural network (ANN) algorithms and fuzzy logic algorithms [14,15], the principle of least 

squares method is simpler and has fewer steps. However, only the least square method cannot meet the 

accuracy requirements of parameter identification [16]. Based on the principle of recursive least squares 

[17], the method of adding a forgetting factor in the iterative process is called fading memory method 

recursive least square (FMRLS). The advantage of this method is that it can continuously increase the 

weight of new data and continuously optimize the lithium battery model to improve the model The 

accuracy and anti-interference ability [18]. Through the capacity and hybrid pulse power characteristic 

(HPPC) [19] experiments on the battery at different temperatures, and analyzing the open circuit voltage, 

ohmic internal resistance [20] and polarization resistance of LIB at different temperatures, the battery 

characteristics and state of charge [21] can be obtained. The parameters of LIB model are identified by 

fading memory recursive least square method. 

Based on the fading memory method and the square root unscented Kalman algorithm, a joint 

iterative algorithm for lithium battery SOC estimation is proposed. Through forgetting factor [22] and 

Kalman gain [23], online lithium battery equivalent modeling and SOC estimation are realized. At the 

same time, the iterative process is optimized to reduce the amount of calculation. 
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2. MATHEMATICAL ANALYSIS 

2.1 Process distinguished online equivalent circuit modeling 

In the process of SOC estimation of lithium battery, it is very important to establish the battery 

equivalent model to simulate the working state and Internal characteristics of batteries. The estimation 

accuracy of SOC largely depends on the degree of characterization of the dynamic characteristics of the 

battery by the equivalent model [24]. Thevenin model is composed of a parallel RC circuit of internal 

resistance model, which has the advantages of simple principle and few parameters [25]. Moreover, the 

RC circuit in the model can better simulate the polarization effect in the process of battery charging and 

discharging, and characterize the internal chemical reaction of battery [26]. Thevenin model is one of 

the common equivalent circuit models, On the basis of Thevenin model, considering the different battery 

characteristics of lithium-ion batteries during charging and discharging, the internal resistance of the 

model is divided into equivalent resistances under different working conditions, so as to optimize the 

model and make it more effective to characterize the working process of lithium-ion batteries [27]. The 

Schematic diagram of the improved model is shown in Figure 1. 
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Figure 1. Improved equivalent circuit model 

 

 

In Figure 1, UOC is the open circuit voltage, UL is the circuit terminal voltage, R1 and R2 are the 

ohmic internal resistance during battery discharging and charging, namely Ro under different working 

conditions. RP is the polarization resistance, and CP is the polarization capacitance. Ro reflects the 

transient change of the battery terminal voltage at the beginning and end of discharge of the lithium 

battery [28]. The parallel circuit of RP and CP characterizes the polarization effect during battery charging 

and discharging. The circuit equation can be obtained from the circuit model in the figure: 

0L OC P L

pP
L P

P

U U U I R

UdU
I C

dt R

  



 


 (1) 

Corresponding to Figure 1, the current direction when the battery is discharged is positive, and 

the current direction is negative when the battery is charged. UP(0) is used to represent the initial voltage 
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of the battery polarization process, and the time domain relationship equation of Thevenin equivalent 

circuit model as shown in equation (2) can be established according  =RPCP. 
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 

      


       

 (2) 

 

2.2 Model optimization of fading memory method 

The fading memory method is a parameter identification method based on recursive least square 

method. By adding forgetting factor, the proportion of new data is continuously increased, so as to 

optimize and update the model. 

First of all, from the basic principle of the least squares method [29], the system error square sum 

is minimized, the parameter matrix is derivated, and the parameter matrix is replaced with the system 

input and output matrix x, y, the basic parameter identification formula of the least square method can 

be obtained: 

1

( ) ( ) ( )

ˆ ( )

T

T T

y k x k k

X X X Y

 

 

  




 (3) 

According to the principle formula in Eq. (2), the iterative formula of the recursive least square 

method can be obtained: 
1
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 
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    
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    

 (4) 

On the basis of the recursive least squares method, a forgetting factor is added to the input and 

output recursive links to increase the weight of subsequent data. 

1, 1,,
( 1) ( 1)
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 
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    
 (5) 

After obtaining the input and output matrix with forgetting factor, use the principle of recursive 

least squares to derive, and get the recursive formula of the iterative algorithm for parameter 

identification of the fading memory method: 
1
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 (6) 

Compared with the recursive least squares method, the fading memory method has the advantage 

that by adding the forgetting factor, the gain is constantly updated in the time domain, so that the model 

is optimized in real time and can more accurately adapt to the variability of the lithium battery working 

environment. The algorithm structure diagram is as follows: 
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Figure 2. Structure diagram of fading memory algorithm 

 

2.3 Square unscented Kalman iterative calculation 

At present, the commonly used methods for estimating the battery state of charge include the 

following methods: ampere-hour integration method, open circuit voltage method, and Kalman filter 

method [30]. Among them, the open circuit voltage method cannot realize the real-time online estimation 

of the battery SOC; although the ampere-hour integration method can meet the requirements of real-time 

SOC estimation, it is not suitable for high-precision SOC because the calculation process is prone to 

large cumulative errors. Estimation occasions; Kalman filter method, which can estimate the SOC value 

in real time and has high estimation accuracy, has become the current research hotspot of SOC 

estimation. The Kalman filter algorithm is a filter theory (Kalman Filter, KF) created by the state space 

theory in the time domain. The core idea of the algorithm is to make an optimal state estimation of the 

system which is with dynamic characteristic in the sense of least mean square[31]. The algorithm system 

of "prediction-estimation-prediction" improves the accuracy of system estimation. However, the Kalman 

filter algorithm is only suitable for linear systems. During the working process of lithium batteries, most 

of them exhibit nonlinear characteristics. Therefore, the application of the Kalman filter algorithm must 

first linearize the nonlinear system, which will introduce errors. 

The Square Root Unscented Kalman Filter (SR-UKF) is an improved algorithm based on the 

Unscented Kalman Filter (UKF) [32]. Like the Unscented Kalman Filter, it eliminates the need for 

nonlinearity. The method of linearizing the function directly deals with the nonlinear system. The biggest 

difference between it and the unscented Kalman algorithm is that the SR-UKF algorithm uses the square 

root of the error covariance of the state variable to replace the error covariance of the state variable, and 

directly transmits the square root of the covariance value to avoid the problem of Re-decompose [33]. 

The advantages of this method are it ensures the positive semi-definiteness and numerical stability of 

the state variable covariance matrix, Moreover, it can overcome the filtering divergence [34]. Compared 
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with UKF, SR-UKF has higher accuracy and anti-interference in lithium battery SOC estimation. The 

flow chart of the SR-UKF algorithm is shown in Figure 3. 
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Figure 3. SR-UKF Algorithm structure diagram 

 

Error! Reference source not found. 

The square root unscented Kalman algorithm uses three powerful linear algebra techniques, 

namely QR decomposition, Cholesky factor update and efficient least squares [35]. The specific 

algorithm mainly consists of four parts, which are respectively named initialization, sigma point 

acquisition, time update and status update. 

(1) Initialization: 

Determine the initial value of the state variable and the initial value P0 of the error covariance. 

S0 is the cholesky decomposition factor of the covariance P0. The initial value is determined as shown 

in Eq. (4). 

 
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 (7) 

(2) Sigma point collection: 
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 (8) 
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Sk
i represents the ith column of the Cholesky factor of the state variable covariance at time k. 

The calculation of the mean weight ωm and the variance weight ωc is consistent with the unscented 

Kalman algorithm. 

(3) Time update: 

On the basis of obtaining the value of the state variable and input variable at k-1 time, one-step 

prediction of the state variable is made through the state equation. 

 | 1 1| 1 1

2

| 1 | 1

0

,

ˆ

i i

k k k k k

n
i i

k k m k k

i

x f x u

x x

   

 



 







 (9) 

Taking the one-step prediction of sampling points into account, QR decomposition of the error 

covariance of the state variable is carried out, considering that the different values of α and k may cause 

the negative value of ωc
0, so Eq. (10) is used to ensure the matrix Positive semi-definite, Sxk represents 

the square root update value of the state variable error covariance at time k [36]. 
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 (10) 

According to the one-step prediction result of the state variable in Eq. (9), the one-step prediction 

value of the observed variable obtained from the observation equation is as follows. Syk represents the 

square root update value of the error covariance of the observed variable at time k 
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 (11) 

(4) Status update 

The cross-covariance between the state variable and the observed variable will directly affect the 

size of the Kalman gain, and the accuracy of the Kalman gain will affect the estimation effect of the 

SOC. The calculation formulas of cross-covariance and Kalman gain are shown in Eq. (12). The system 

state variable update and error covariance update are shown in equation (16), where yk is the 

experimental measurement value at time k. 
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
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


 (12) 

The system state variable update and error covariance update are shown in equation (16), where 

yk is the experimental measurement value at time k. 
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In the SR-UKF algorithm, through a Cholesky factorization, the filter is initialized by calculating 

the square root of the state variable covariance matrix. However, in subsequent iterations, the spread and 

updated Cholesky factor directly formed the sigma point. The time update Sxk of the Cholesky factor is 

calculated using the QR decomposition of the composite matrix containing the weighted propagation 

sigma points plus the square root of the process noise covariance matrix, and the subsequent Cholesky 

update is essential. These two steps replace the time update of Px,k|k-1 in the covariance update of state 

variables, overcome the shortcomings of poor stability of the UKF algorithm, and ensure the positive 

semi-definiteness of the covariance matrix. 

 

 

 

3. EXPERIMENTAL ANALYSIS 

Choose the ternary lithium-ion battery for discharge experiment. The rated capacity of the battery 

is 70Ah. The instruments used in the test include a high-power battery charge and discharge tester, a 

three-layer independent temperature-controlled laboratory (BTT-331C) and other auxiliary experimental 

equipment. Considering the influence of temperature changes of model parameters, experiments were 

carried out at multiple different temperatures. The test equipment is shown in Fig.4. 

 

 
 

Figure 4. The experiments equipment 



Int. J. Electrochem. Sci., 16 (2021) Article ID: 210737 

  

9 

3.1 OCV-SOC relationship curve fitting 

In the process of using the FMRLS method to identify the parameters of the lithium-ion battery 

online model, the SOC and OCV of the battery will be iteratively calculated as variables in the state 

space equation. In the process of estimating the parameters, the difference between SOC and OCV The 

functional relationship is one of the necessary initial information [37], and an accurate OCV-SOC 

relationship curve is the key to improving the accuracy of model parameter identification according to 

the experiment results in literature [38]. Considering the influence of temperature on the working status 

of lithium-ion batteries, the experiment was carried out under different temperature conditions to 

improve the dynamic stability of the model and explore ways to improve the accuracy of online 

parameter identification. 

Before performing various tests on the lithium battery, it is necessary to calibrate its capacity 

first to obtain its nominal capacity information. The specific calibration method steps are as follows: 

(1) The battery is charged at a constant current rate of 1 C, and the charging cut-off voltage 

is set to 4.2V. Then it is converted to constant voltage charging. The charging cut-off current is 0.02C 

to ensure that the battery is saturated. 

(2) In order to obtain a stable battery voltage, the battery is shelved after charging. Because 

of the capacity of the selected lithium battery, the settling time is set to 40 minutes. 

(3) The battery discharges at a constant current rate of 1 C and reaches the cut-off voltage of 

2.5V. 

After calibrating the capacity of the lithium-ion battery, conduct a fixed-stage discharge 

experiment at different rates. Taking into account the impact of discharge rate on the discharge efficiency 

of lithium-ion batteries, a fixed-stage charge and discharge experiment under different charge and 

discharge rates was carried out to explore ways to improve the accuracy of OCV-SOC calibration. The 

specific test method is as follows: 

1) Charge the lithium-ion battery with constant current, and judge whether it reaches the full 

state according to whether the segment voltage reaches 4.2V. After charging is complete, set the lithium-

ion battery for 40 minutes. 

2) Discharge the lithium battery at a specific rate. After the discharge capacity reaches 10% 

of the total capacity, the lithium battery is set for 10 minutes. 

3) After each discharge, detect the voltage of the lithium-ion battery segment, if the segment 

voltage reaches 2.5V, stop the discharge. 

The charging process of a lithium ion battery has the opposite judgment conditions for the 

discharge process, and the test process is the same. The flow chart of the charge and discharge test 

method is as follows: 
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Figure 5. OCV-SOC calibration experiment flow chart 

 

After calibrating the capacity of the lithium-ion battery, the nominal capacity of the battery is 

70.21Ah. Under the temperature condition of 25℃, the battery is subjected to a fixed-stage discharge 

test. Discharge the battery with constant current at 0.33C, 1C, 2C discharge rates, record the open circuit 

voltage of the battery at a specific SOC node, and obtain a continuous OCV-SOC relationship curve 

through curve fitting according to the discrete relationship between open circuit voltage and state of 

charge, According to the curve relationship, use the least square method to simulate the discharge voltage 

of the lithium battery, and compare it with the experimental test voltage to find the optimal discharge 

rate. The figure below shows the comparison between the fitted curve and the simulation results and 

errors. 
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C. Partial enlarged view of simulation curve 

 
D. Simulation error comparison curve 

 

Figure 6. Comparison results of simulation and experiment 

 

It can be seen from the experimental results that, as verified by B.Ng, M.O and others in the 

literature [39-40], under the same temperature conditions, appropriately reducing the discharge rate of 

lithium-ion batteries can improve their discharge efficiency, and help establish a more accurate SOC-

OCV relationship. 

 

3.2 Online parameter identification 

For the purpose of verifying the on-line identification efficiency of the algorithm, the dynamic 

stress test of lithium-ion battery is carried out. The parameters in the equivalent circuit model of lithium 

battery are identified by the voltage and current obtained. After the results are obtained, the real-time 

estimated values of each parameter are added into the circuit model to obtain the simulation voltage. The 

accuracy of parameter identification is verified by comparing simulation voltage with test voltage.  

To verify the effectiveness and generality of the limited memory method, the lithium battery was 

tested under HPPC condition and DST condition, and the experimental results were compared with the 

identification simulation results, and the voltage curve comparison results were shown in Fig.7 and Fig.8. 
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Figure 7. Comparison and error diagram under HPPC condition 
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(a) Real value and predicted value of SOC 

  
 (b) SOC prediction error(DST) 

Figure 8. Comparison and error diagram under DST condition 

 

It can be seen from the results that the least square on-line parameter identification method has a 

good identification effect. In the HPPC operating condition where the experimental curve is relatively 

smooth, the average error between the model simulation voltage and the experimental voltage is only 

1.37%,Compared with the offline identification method proposed by Ng in literature [41], this algorithm 

increased the accuracy by about 0.5% under the same experimental conditions. And the online 

identification method is more real-time and authentic. 

In the DST operating condition where the experimental voltage curve is more complicated, the 

average error between the model simulation voltage and the experimental voltage is only 2.56 %. 

Moreover, It can be seen from the comparison error that in the process of model characterization, the 

simulation curve has no obvious jump compared to the experimental curve, and the maximum error is 

within a reasonable range, which effectively improves the stability and robustness of the 

model.Compared with the improved online identification method of PNGV model proposed by Xie in 

literature [42], this method has a simpler model and a more stable identification process. 

 

3.3 SOC estimation accuracy verification under multiple working conditions 

Dynamic stress test (DST) is a kind of complex working condition after the simplification of 

urban operation condition in the United States, which plays an important role in verifying the SOC 

estimation effect of the algorithm [43]. In order to further test the SOC estimation accuracy of SR-UKF 

algorithm, DST condition test is carried out for ternary lithium battery with rated capacity of 70ah at 25 

℃, SOC value of lithium battery is estimated by using model and algorithm, and the estimation results 

of UKF algorithm and SR-UKF algorithm under the same conditions are compared, as shown in Fig.9 

(a), and Figure 8 (b) is the estimation error comparison of the two algorithms. 
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(b) Prediction error comparison curve 

 

Figure 9. Comparison of SOC estimation results of DST algorithm 

 

 

As is shown in Fig.9. The SR-UKF algorithm has a greater improvement in the SOC estimation 

accuracy than the UKF algorithm. The experimental results show that under DST condition, SR-UKF 

algorithm has a high accuracy in estimating SOC value of lithium battery, and the estimation error is 

stable within 0.58%. However, it fails to judge whether the estimation error of the algorithm stabilizes 

over time according to the curve in the figure. 

As mentioned in literature [44], the BBDST (Beijing Bus Dynamic Stress Test) operating 

condition and HPPC (Hybrid Pulse Power Characteristic)  condition can more accurately test the stability 

and anti-interference of the state estimation of lithium-ion batteries by analyzing the characteristics of 

the battery and electric vehicle operating conditions. To further verify the accuracy and stability of the 

SOC estimation of the SR-UKF algorithm, the BBDST and HPPC condition were used to compare the 

actual SOC value of the lithium-ion battery with the estimated simulated SOC value. The results are 

shown in Fig.10 and Fig.11. 

 

 

 
(a) SOC comparison curve 

 
(b) Estimated error comparison curve 

Figure 10. SOC estimation result under BBDST condition 
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(a) SOC comparison curve 

 
(b) Estimated error comparison curve 

Figure 11. SOC estimation result under HPPC condition 

 

 

As is shown in Fig.10 and Fig.11. SR-UKF algorithm not only has the advantages of reducing 

the calculation amount, but also has a more effective processing of non-linear characteristics of lithium 

battery at the beginning and end of discharge, and has a higher SOC estimation accuracy. In more 

complex BBDST conditions, the SOC estimation error of the SR-UKF algorithm remains at about 

1.46%, compared with EKF algorithm mentioned in literature [45],under the same experimental 

conditions and experimental temperature conditions, its lithium battery SOC estimation accuracy is 

2.16%, indicating that SR-UKF algorithm has better stability and robustness. The improvement value of 

the algorithm is verified, which has a certain significance for the estimation of the state of charge of 

lithium battery. 

The online lithium-ion battery identification model obtained by using the least squares of the 

fading memory method is in good agreement with the SR-UKF algorithm. In the BBDST experiment, 

the error between the SOC curve of the lithium ion battery obtained by the algorithm simulation and the 

SOC curve of the lithium ion battery obtained according to the real experimental data is only 0.91%; in 

the HPPC experiment, the difference between the simulated SOC curve and the real SOC curve The 

error is only 0.94%. Compared with the UKF algorithm [46-47], the SR-UKF algorithm not only greatly 

improves the accuracy of lithium-ion battery SOC estimation, but also greatly improves the stability and 

robustness of the estimation, making the entire simulation process more stable and smooth. 

 

 

 

4. CONCLUSIONS 
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to characterize the characteristics of lithium battery and simulate its working state. The current and 
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with the second-order Thevenin model and its parameter identification method proposed in Literature 1, 

it simplifies the model identification workload and improves about 0.4% in terms of the model 

representation accuracy. Meanwhile, the characterization of the charging and discharging process of 

lithium batteries is more targeted. 

The SOC estimation accuracy of the square root unscented Kalman filter (SR-UKF) algorithm 

was verified by Dynamic Stress Test (DST), Beijing Bus Dynamic Stress Test(BBDST) and Hybrid 

Pulse Power Characteristic (HPPC) test. The prediction errors are all within 1%. The adaptive Kalman 

filter estimation method mentioned in literature [47] achieves the fast convergence of the estimation of 

the state of charge of lithium batteries through an improved adaptive factor; the improved extended 

Kalman filtering estimation method proposed in literature [48] reduces the iterative calculation process 

of the internal parameters of the lithium battery model by removing the redundant Taylor expansion, and 

improves the estimation speed. Compared with the above algorithm, the proposed algorithm in this 

article greatly improves the stability and robustness of the estimation, reduces the sudden change caused 

by noise during the estimation of the lithium-ion SOC, and improves the estimation accuracy of the 

lithium-ion battery state of charge by 0.4%~0.6 %, and to a certain extent improve the stability of the 

energy supply of lithium-ion batteries. It provides an improved idea for the lithium battery SOC 

estimation algorithm, which has certain research significance.  
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