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This paper presents the approximate analytical expression for transient and steady-state concentration
profiles of enzymes, mediator, substrate and current. The transport and kinetics of the reaction in the
diffusion layer with a rotating disc electrode are described using closed-form solutions of homogeneous
systems. These new approximate analytical expressions are valid for all values of parameters.
Furthermore, in this work, the numerical simulation is also presented using the Matlab program. The
analytical results are compared with simulation results, and satisfactory agreement is noted.
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1. INTRODUCTION

Nonlinear differential equations are used in many fields such as rotating disc electrode [1-7],
biosensors [8-12], biofuel cells [13-16], biofilms [17-18], bioreactors [19], biofilters [20] and
ultramicroelectrodes [21-22] etc. It is very important to solve the nonlinear equations, but exact solutions
for such equations are not available [23]. So we can use some asymptotic methods like homotopy
perturbation method [24-28], Adomian decomposition method [29-30], variational iteration method [31-
34], Taylor series method [35], Akbari Ganji’s method [36-37], Pade approximant method [7,9] to solve
nonlinear equations.

Nonlinear equation occurs in the homogeneous mediated enzyme reaction mechanism. Albery
and coworkers [38] presented a comprehensive theoretical treatment for an amperometric enzyme
electrode that uses a mediator interacting in a homogeneous solution to transfer the electrons. Bartlett
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and Pratt [39] presented the results of a study of the glucose, glucose oxidase, ferrocene monocarboxylic
acid system using the rotating disc electrode. The limiting current during the anodic dissolution of
tungsten rotating disk electrode in alkaline solutions, as well as the distribution of ionic concentrations,
partial currents, and potential near the anode, are all numerically solved by Volgin et al. [40]. Schwartz
and coworkers [41] investigated the nonlinear behaviour of a sinusoidally modulated rotating disk
electrode to determine the flow and concentration field interactions that trigger resonance and
nullification conditions in the system's electrochemical response. Using the variational iteration method,
Loghambal and Rajendran [42] proposed an approximate analytical solution of steady-state nonlinear
differential equations describing the transport and kinetics of the enzyme and mediator in the diffusion
layer of the electrode. Saravanakumar et al. [43] provided an approximate analytical expression of
current for the non-steady-state convection-diffusion equation of the rotating disk electrode for all time.

Saravanakumar and coworkers [44] derived an analytical expression of concentration and current
by solving the reaction convection-diffusion equations for the EC’ and ECE reaction mechanism. Chitra
Devi et al. [45] solved a system of convection-diffusion equations in the pseudo-first-order EC-catalytic
mechanism at a rotating disk electrode. Visuvasam et al. [46] studied the analytical and numerical
solution of nonlinear diffusion equations for the chronoamperometric limiting current generated from
the electrochemical reaction in a rotating disk electrode for second-order ECE reactions when the
chemical step is irreversible.

Albery and coworkers [38], Bartlett and Pratt [39] analysed the comprehensive theoretical
treatment for an amperometric enzyme electrode that uses a mediator interacting in a homogeneous
solution to transfer the electrons at the rotating disc electrode for steady-state conditions. However, to
the best of our knowledge, there was the no rigorous analytical expression corresponding to the
concentrations and current for non-steady-state conditions reported. In this communication, the
approximate analytical expressions of the enzyme, mediator, substrate concentrations and transient and
steady-state current are derived.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

The homogeneous kinetics of mediated enzyme reactions which describe overall two-electron
processes are expressed by [38,39]:

K (1)
M —{M
M+E —“>M +E (2)
E+S—=>E +P (3)

where kg = k.4:So/(Km + S) and S, is the substrate concentration in the bulk solution.
Substrate present to regenerate reduced form of the enzyme, E’. Building upon earlier work for these
mechanisms, Albery et al. [38] and Bartlett et al. [39] presented a concise discussion and derivation of
the mass transport equation for these mechanisms for non-steady-state condition, which is summarized
briefly for completeness. The following schematic diagram depicts the reaction system.
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Figure 1. A schematic diagram of the homogeneous system.

The oxidized and reduced forms of the mediator species are represented by M and M ',
respectively. The oxidized and reduced enzyme species are E and E'. k,, is a bimolecular rate constant
and kz a pseudo-first-order rate constant for the reaction between E and S. When the substrate
concentration is high enough, the enzyme becomes saturated and kj equals k... Nonlinear reaction
diffusion-reaction equations for the four species [38,39] can be written as follows:

om(z,t) . o'm(z.t) ,

Fa Dy 7 -k,,e'(z,t)m(z,t) (4)
om'(z,1) o°m'(z,1) ,

=Dy ke @m(z,) (5)
oe'(z,1) 0%'(z,t) ,

e D, = —k,e'(z,t)m(z,t) + kee(z,t) (6)
oe(z,1) 0%e(z,1) ,

. A GELICORCAY ()

In the above analysis, the only diffusion of enzyme and mediator is examined. We assume that
substrate is present in excess, so the reaction-diffusion of S may be neglected. If not, the further reaction-
diffusion equation must be considered, and the equation of the substrate is as follows:

0S(z,t) D 0°S(z,1) B K€y S(2,1)
ot * ozt K, +S(z,t)

where m, m'and €,€'are the concentrations of oxidized and reduced form mediator and enzyme.
S is the concentration of substrate. D,, and D are the diffusion coefficients of species M,M "and E,E'
respectively. Ds is the diffusion coefficients of the substrate. The concentration of total enzyme ey in

(8)

the solution is considered to be uniform. This means that the oxidized and reduced forms of the enzyme
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have the same diffusion coefficients. Then at any place and any time in the solution e +¢e' =ey.
Assuming that the diffusion coefficients of the oxidized and reduced forms of the mediator are equal and
that the mediator is totally reduced in bulk solution. i.e m+m'=my = m',, = m,. Here my, is the total
concentration of the mediator, m',, is the bulk concentration of the reduced mediator. m, is the
concentration of M at the electrode surface. The initial and boundary conditions are [38,39]

Att=0, m=m'=my,e=e'=e;,and S=S, (9)
Atz=Z,, m=0,m=my,e=0,e'=e; and S=S, (10)
oe oe' 0S
Atz=0,m=my,m=0,—=0,—=0and — =0
= oz oz oz (11)
The current I is calculated from the flux of mediator reacting at the electrode:
om
| =-nFAD,, | — 12
g ( 82 jz-O ( )
The following dimensionless variables are used in this model.
m . m e S z Dyt my
u:_’u:_lV:_lW:_lZ:_’T: 21}/:_’
ms my ey S, VAN Z, ey
sDe o D g S kol _keZy' _kaZo'e (13)

b, b, K, ™ "p T p. " koD,

Here Z is the Levich diffusion layer thickness given by

Z, =0.64v"° DY? /W (14)

where v is the kinematic viscosity and W (Hz) is the rotation speed. Now the Eq. (4), Eq. (6)
and Eq. (8) are reduced in dimensionless form as follows:

u(y,7) _d°u(x,7)

. o Uz, 0)v(x.7) (15)
ov(y, ov(y,
20 SUBD) e unnv(e) + Qv o) (16)
T oy
ow (x,7) _5.62W(z,f) Kk W(x7) (17)
or oy’ 1+ Bw(y,7)

The corresponding initial and boundary conditions for the above two equations are given by,
=0, u=1 v=1 w=1 (18)
y=Lu=0 v=1 w=1 (19)
ZzO,Uzl,ﬂ:O,a—Wzo (20)

oy oy

In dimensionless terms the current becomes [39]

W=—IZD [ (21)
nFAD,, m, oy -0
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3. ANALYTICAL EXPRESSION OF CONCENTRATION OF THE SPECIES USING NEW
APPROACH OF HOMOTOPY PERTURBATION METHOD (HPM)

Solving systems of nonlinear equations, which is one of the most fundamental problems in
mathematics, can be used to solve several applied problems. In the physical and chemical sciences, novel
methods have recently been used to solve nonlinear problems [23]. HPM is a common method used to
solve a differential equation.

The HPM was proposed by He in 1999 [24]. This approach has recently been used in
nanotechnology to solve nonlinear oscillator problems [25-26]. This method is also applied to solve
coupled nonlinear differential equations in the microelectromechanical system [27], and axial vibration
system [28], etc. Using the new approach of HPM, the approximate analytical expressions for the
concentration of the mediator, enzyme and substrate are obtained (Appendix-A) as follows:

! (Z, T) B Sin:(iﬁlh_(j;Kn;(M )+ %i (_r?n {UKMUS,lnhf_(g];;gnﬂ) - Sinh(nﬂ'}()}e(ﬂm +(nm)?)r (22)

Ay

cosh(g K{HH
V(1) ~ J Ll (D e (M4 (& f,(n) +4(E + Ay))cos(y (2n +1)z/2)

n=1 2 1 fl
cosh[ K{HM)J 73 (2n+1) (n)
¢
(23)
W(y,7)~ COSh(Z\/E)Jr 1 & (D° e_(fZ(n»r/A(A'(Df'—(g 1) fz(n))COS(;( (2n +1)7T/2) (24)
cosh(Jp) ~ 7&' & (2n+1) f,(n)
The dimensionless current is given as follows:
0 _1)n B )
— th _2 _1 n 77K|v| ( _1 (nrey +(n7z)7) 7
4 \/UKM co (\/UKM) nz_l:( ) {UKM +(n72')2 }e (25)

Where,
f.(n)= 72(2n +1)2§+4KE(§+/17/), f,(n) = bop+r*(2n+1)° 0= %and n sech{ KE(“Q]

(26)

4. LIMITING CASES

Here we have derived the concentration of the mediator, enzyme and corresponding expression
of current for various special cases.
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4.1. Limiting case 1: Enzyme-mediator kinetics and high reaction rate

We begin by considering the case where =1, ¥ <<1 (enzyme-mediator reaction is rate
limiting) and x<<1 (the most E will escape from the diffusion layer before regenerated to £°). The rate
of reaction is sufficiently high («,, >>1and M will be more likely to react than escape). Since both u
and v are less than unity, the term yx,, U(y,7)vV(y,7) and xE(1-Vv(y,7)) are neglected. In this
situation the Eqgs. (15) and (16) becomes as follows:
ou(y,z) o%u (z,7)

aT = 8/1/2 _KM U(Z,T)V(Z’T) (27)
N (r.7) _ N (1.1)
ot oy’® 28

Using the initial and boundary conditions (18-20), we can solve Egs. (27) and (28) to obtain exact
analytical expressions for mediator and enzyme concentrations (Appendix B).

_sinh((@- ) ) 2 & (<D)" [k (in((z ~Dnr)) —
Uz.m) = sinh(\/a) +;nz=1: n Ky +(n7)? ~sin(nzz) e (29)

v(y,7)=1 (30)

The current becomes

‘//:\/acoth (\/a) 22( 1 |: 1) ’;MZ _]]e(lcmm%z)f (31)

K, +N°m

The steady-state current y_ =./x,, When y <<l and x<<1. This is the limiting case | result
of Bartlett et al. [39].

4.2. Limiting case 2: Enzyme-substrate kinetics and high rate of reaction

When the rate of reaction is sufficiently high («,, >>1and M will be more likely to react than
escape) and x; <<1 (the most E will escape from the diffusion layer before regenerated to E'), and
y >>1 (enzyme-substrate reaction is the rate limiting step), =1 (equal diffusion coefficients of
enzyme and mediator), the nonlinear reaction diffusion equations (15-16) becomes as follows:

ou(y,r) o%u(x,r) e UV 7) (32)

or oy’
2
avgm) = V(ji’r) —yu(z.o)v(z.7) 33
T oy

The approximate expressions of mediator and enzyme concentrations are obtained by solving the
above two equations with the boundary conditions (18-20).

Sinh((l_l)\/ ToKm )_,_Ei (_1)n {UOKM Sinh((l_l)nﬂ') _Sinh(nﬂ%)}e—(ﬂom +(nz)?)r (34)

sinh (7705, ) ok + (N7)°

u(y,z)=
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v(;(,r)~COSh(Z /17) 16172 -D" ( MijOS[Mje“s(“”’/“

~ cosh(\/27) “ (2n +1)° f,(n) 2 (35)
The current is
_ Mok (-1)" (s 0 ¢
v —\/ﬂOKM coth (\/%KM) 22( 1)" {UOKM -|-(n7r) 1}6 (36)
where f,(n)=7z2(2n+1)%+4A4y, 1, =Sec h(\/_) A= Smh(“ 7o /2) (37)

Slnh(\/UOKM )
When x, is very large and the maximum value of 7, = sech(\/;)zj, from the Eq. (36) we get

l//ss:\/E'

4.3. Limiting case 3: Enzyme-mediator kinetics and low reaction rate

When the rate of reaction is sufficiently low ( x,, <<1 and the most M escapes from the diffusion
layer without reacting) and x.<<1(the most E will escape from the diffusion layer before regenerated to
E’), y <<1(enzyme-mediator reaction is rate limiting), the reaction diffusion equations (15-16)

becomes

ou(y,r) _ou(y.r) (38)
or oy’

v (x.7) _ 9'v(x.1) (39)
ot oy’

Using the initial and boundary conditions (18-20), we get exact solution as follows:
u(y,r)=1-y —Ezﬂsin(nﬂz)ef(“”)zf (40)
e N
The current is
W= 1+ 22 (_1)ne—[n27r2]r (42)

When both y <1, x,<1, the current for steady-state y =1. This result is also confirmed in

Bartlett et al. [39]. Approximate analytical expressions of dimensionless concentrations and current for
the above different limiting cases is also given Table. 1.

5. RESULT AND DISCUSSION

Equations (22), (23) and (24) are the new, general and simple analytical expressions of
concentration profiles for the mediator (u), enzyme (v) and substrate (S) for transient conditions. Albery
and co-workers [38], Bartlett and Pratt [39] derived the different approximate solutions for various
limiting cases for steady-state only. Logambal and Rajendran [42] applied He’s variational iteration
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method to find an approximate analytical solution of steady-state nonlinear differential equations
describing the transport and Kinetics of the enzyme and of the mediator in the diffusion layer of the
electrode. But in this method, it is very difficult to find the unknown parameter in the concentration.

We have also derived analytical expressions of concentration of mediator, enzyme and current
for transient conditions for the three main limiting cases such as (i) Enzyme-mediator kinetics and high
reaction rate, (if) Enzyme-substrate kinetics and high rate of reaction, (iii) Enzyme-mediator kinetics and
low reaction rate. Approximate analytical expressions of concentration of mediator and current are also
validated with the numerical results and limiting case result in Tables 2-3 and Fig. 2. A satisfactory
agreement is noted. Also, from the Table, it is observed that when the distance from the electrode surface
increases, the concentration of mediator decreases.

Table 2. Comparison of dimensionless concentration of mediator, U(y,7) (Eq.(25)) with simulation
results for x,, =Lk =1, =1y =0.1

7 =0.05 7=0.1 =5
Ana
d Num ?(:.a(ZS) Error % | Num Eq. Error % | Num ?:.&](25) Error %
(25)
0 1 1 0 1 1 0 1 1 0
0.25 | 0.94 | 0.96 2.13 0.86 0.88 2.32 0.7 0.71 1.43
0.5 0.84 | 0.85 1.11 0.67 0.69 2.98 0.44 0.46 4.54
0.75 | 0.55 | 0.56 1.82 0.39 0.4 2.56 0.22 0.23 4.55
1 0 0 0 0 0 0 0 0 0
Average Error % 1.03 Average Error % | 1.57 Average Error % | 2.1

Table 3. Comparison of dimensionless concentration of mediator, U(y,7) (Eq. (25)) with simulation
results for «,, =10,k =0.1,£ =1y =0.1.

7=0.05 7=0.1 =5

“ Num ?:?(25) Error % | Num é:.a(25) Error % | Num é:.a(zs) Error %
0 1 1 0 1 1 0 1 1 0

0.25 | 0.68 0.69 1.47 0.54 0.54 1.85 0.45 0.45 0

0.5 0.55 0.56 1.82 0.33 0.34 3.12 0.19 0.20 5.3
0.75 | 0.35 0.36 2.86 0.17 0.18 5.88 0.075 0.08 6.7

1 0 0 0 0 0 0 0 0 0
Average Error % 1.23 Average Error % 2.2 Average Error % 2.4




Int. J. Electrochem. Sci., 16 (2021) Article ID: 210946 9

= l i w
3 Ky=10
= A Kvr —
Eﬂ . M =5
¥
- 7 -
= < Increasin
E ( 2
[ Fa]
O Ky =1
=
=
@ .
E - -2 K'u :D]'
': H:E:*ll]-
. ¥ =10
0 ' : . .
0 02 04 . 0.6 0.8 1

Figure 2. Comparison of dimensionless current, v (Eq. (25)) (solid line) with limiting current (Eq. (36))
(dotted line) wversus dimensionless time, 7 for all values of the parameter
ke =107,y =107,& =1 and for different values of parameter «,, .

Eqg. (25) is the new expression of transient expression of current for all time in terms of parameter
Ky ,Kg,&,and y. The parameter «,, in these equations represents the chance of the mediator M

escaping from the diffusion layer before reacting with the enzyme. If x,, >1, M is more likely to respond
rather than escape. If k,, =1, the majority of M exits the diffusion layer without reacting.

Similarly, the x describes the chance of enzyme E being converted to E' by substrate inside
the diffusion layer. If k. >1, the majority of E formed in the diffusion layer is transformed back to E'
inside the layer. If s <1 is valid, the maximum of E will leave the diffusion layer before being
regenerated to E'.

The local steady-state between the two enzyme forms at the electrode surface is defined by the
parameter ». If » is less than unity (x,, < x;), the predominant form E' at the electrode surface is the
same as the bulk form. If » is greater than unity, the predominant form at the electrode surface will be
E; somewhere in the diffusion layer, the predominant form will switch from E to E' if the kinetics are

quick enough to maintain the steady-state. The transient current profiles for different values of the
chemical reaction parameter x,, ,k=,&, and » are displays in the Figs. 3(a-d). From Figures 3(a-d), it

is inferred that, the value of the current increases when x,, (dimensionless rate constant of mediator)
and & (ratio of diffusion coefficients of the enzyme to the mediator) increases. It is also notice that an
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increase in x (dimensionless rate constant of enzyme) and j (ratio of total concentration of the
mediator to the enzyme) leads to decrease current values. Also the current reaches the steady-state value
when z > 0.5 for all values of other parameters. The three-dimension plot (Fig.4(a-c)) of current versus
other parameters also confirm this results.

(a)
1.5
Ky =5
= =
o Ky=1 ‘5
= =
E 0 5
= Ky = 4]
& M 0.1 -
4-; (Increasing) =
2 @
g 05 Kg =5 g
E ¥=01 a
=]
f=1
0 02 04 - 0.6 08 1 1
(c)
¥=0.1
14
12 f=10 *&=15
=1
= y 121
= 1 3 =5
- =
E ¥=5 y=10 E 14
g E {=1
= 0.8 . =
o (Decreasing) o
o i 0.8
2 06 & (Increasing)
2 — T o6
[4] M=2 w
= =
E 04 Kg =5 E 0.4
-: .
02 f=1 [ 02
0
0 02 04 06 08 1 0 02 04 06 03 1
T T

Figure 3. Dimensionless current, v (EQ.(25)) versus dimensionless time, z for various values of the
parameter (a) xz =5,y =0.1,£=1and for different values of parameter «,,. (b) «,, =5,
y=0.1¢&=1 and for different values of parameter x;. (c) «z =5k, =5¢&=21and for
different values of parameter ». (d) «,, =10,k =5, =5, and for different values of parameter

Ky -
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Figure 4. Three dimensionless plot of current (Eqg. (25)) versus (a) «,, and = for k. =1, =1 y =0.1.
(b) k¢ and 7 for x, =5, =1Ly =0.1. (c) » and 7 for xc =1 =1k, =5.

6. CONCLUSIONS

The approximate solutions of a second-order system of nonlinear differential equations
describing the transport and kinetics of the enzyme and the mediator in the diffusion layer of the
electrode are derived. The exact (Limiting case-1 and 3) and approximate (Limiting case-2) analytical
solutions of the diffusion-reaction equations for transient conditions are also provided. The simple
closed-form of expressions of concentrations of mediator, enzyme and current are derived for all values
of parameters. The numerical and analytical results are compared for some of the experimental value of
the parameter. The Tables and figures show that analytical results are in good agreement with the
simulation result.



Int. J. Electrochem. Sci., 16 (2021) Article 1D: 210946

ACKNOWLEDGEMENT

12

This work was supported by Academy of Maritime Education and Training (AMET), Deemed to be
University, Chennai.The authors are thankful to Shri J. Ramachandran, Chancellor, Col. and
Dr. M. Jayaprakashvel, Registrar, Academy of Maritime

Dr.G.Thiruvasagam, Vice-Chancellor,

Education and Training (AMET), Chennai, Tamil Nadu for the encouragement.

1. Analytical expressions of dimensionless concentrations and current for different cases.

Cases

Dimensionless concentration of mediator, U (}(, T)

Dimensionless concentration of enzyme, V (}[1 T)

Dimensionless current, i/

sinh((l - N Km )
sinh(w LY )

) ? n (AW (-1) ~(nxy +(n/:)2) T
] 2 22y YT -1
2w | o, slnh((;( - 1)nzz) (e +(n2)?) 7 L2 ,,:1( ) 2 ’
Forallvaluesof | +— 2 2 - sinh\nzz ) e N mwy * ()
parameters "o oy + () :
L )l ar - -/:)
1 o, (-1) e kNt (n) + a4+ ) )eos\ (20 + )2/ 2
_ 5 E 1
n=1
z (2n + 1) fl(n)
Limiting ! h((1 ) ) ( )
sin - N &
case 1 N AV MJ Yo e\,
7 sinh(1 K\ ) n
1 » (1) « ( )
n M B CYRLIE 4
K<< 1, 2L () 1 e
et 22
K +n

ko>l E=1

2

gt (nz)

n=1
z n

n
2 o (-1) I3 (sin((;(—l)n/r)) . 2
2 Z_{M—Sm(w) A on? )

Limiting S,nh((1 ) ) msh( ‘. ) : (\ )
il - Nak Y
case 2 B N K VI d 1ok < \|7p%),
sinh(‘ 9K\ ) oosh(\/;) "
I(E <«< 1, P 2
N N , E ) n oM ) (g +(n7) ) T
2 o) | gy, Sinh((l —1)nzr) ST A 4 @+ D3 | (tg(n)efa A 2 M
KM > 1 +— 2 —_— - Sinh(nn;() e + _3 2 3 1+ cosf —  |e n k- + (nr)
n=1 2 n=1 Y
y>>1,6=1 x n oKy + (07) = (2n +1) fa () 2
Limiting
case 3
n
2 o (1) (1)’ 1 § n —[nzfrzlr
y<<1,A'M <l| 1-4-—2 sin\nmy Je 1+22 (-1) e
n=1 n=1
T n
KE<< 1
where,

2 2 2 2
fiM =7 @n+1) S+4xp(E+A) fg(n) =7 (2n+1) +44y, ¢ =

$'1+4)

K 7
S , n=sech KE(].Jr_ ,nO:sech(\/;),i:
¢
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Table 4. Previous results of current by Bartlett et al. [39] for all limiting cases:

Limiting case Dimensionless current Dimension current

<<l k<<l
Casel:y Ke NON nFAm, /D, K,, €

(Limiting case-1)

CaseIV: k. <<1, x,, >>1 Ky |V Ke nFAD.e, /Z,
Case VI: y <<1, k>>1 V2K ]y nFA,/2D,,m ke,
Case VII: k¢ >1, k,, >>1 kw7 JKe nFAe, \/Dck,,
Vill: ¥ <1, x,,<1
Case VIIl: 7 <% K 1 NFAD,,m; /Z,,
(Limiting case-3)
NOMENCLATURE:
Parameter Meaning Units
M and M’ Mediator in oxidized and reduced form -
Eand E’ Enzyme in oxidized and reduced form -
m and m’ Concentration of mediator in oxidized and reduced form mol cm3
eande’ Concentration of enzyme in oxidized and reduced form mol cm™3
S Concentration of substrate mol cm™3
t Time S
K, K, Ky Rate constants st
Dy, Diffusion coefficients of species M,M' cm? st
D Diffusion coefficients of species E,E". cm? st
D, Diffusion coefficients of substrate cm? st
Mms,ex Total concentration of mediator and enzyme mol cm3
Ky Michaelis—Menten constant mol cm™3
Seo Substrate concentration in the bulk solution mol cm3
m' o, Concentration of reduced mediator in the bulk solution mol cm3
my Concentration of M at the electrode surface mol cm™3
Z, Levich diffusion layer thickness m
14 Kinematic viscosity cm? st
w Rotation speed Hz
I Current UA
F Faraday constant C mol?
A Universal gas constant J Kt mol?
u Dimensionless concentration of the mediator None
\ Dimensionless concentration of the enzyme None
w Dimensionless concentration of the substrate None
X Dimensionless distance from the electrode/membrane | None
interface
T Dimensionless time None
Y Ratio of the rates of the enzyme-substrate and None
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enzyme-mediator reactions at the electrode surface
i Diffusion coefficient ratio of the enzyme to the mediator None
¢ Diffusion coefficient ratio of the substrate to the mediator None
Ky Dimensionless rate constant of the mediator None
Ke Dimensionless rate constant of the enzyme None
4 Dimensionless current None
Appendix-A

We can construct the homotopy [17] for the equations (15-16) are as follows:

- p)[au (r.7) d°u(x.7)

+xy U(y,7)v(x=0,7 200)}

or oy’
2
; p[a” rn) 2820, U(Z,T)V(z,r)}O (A1)
T oy
v (z, o (y,
- p){ 28 OYLD |y ku(y=L2s=0)v(,0) —KEé(l—v(z,r))}
T oy
ov(y, o™V (y, A2
+p{ 28 SYNED ke uavinnn) —Kgé(l—V(z,r))} -0 A2
T oy
The approximate solution of Eg. (15) and Eqg. (16) are
U=u,+ pu, + pu, +... (A3)
V=V, + pv, + p3V, +... (A4)

Substituting equations (A3) and (A4) into equations (A1) and (A2) and equating the coefficients of like

powers of p, we get

p°: 0%, (1:7) _6U0 (x.7)

6}(2 or +icy Up (7,7) V(0,7 =00) =0 (A5)
ov(y,t) lov(yr) v (1 j
0. L= L Loul S r=0 V(x,1)+ Kk (1-V(x,7)=0 A6
A b (1:0)+ kell=v(z.7) (1)
For solving the above equations, we need to take Laplace transformation. Therefore, Egs. (A5) and (A6)
becomes,
d’d,(x,s _
S, (5 =1 (A7)
X
d?v,(y,s) (1 _ 1
;7— E(SJFM/KE)JF’CE Vo(Z,5)=—E—KE (A8)

The corresponding boundary conditions are
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7=0, U(O):lls,%:o (A9)
¥=1,00=0, v,=1/s (A10)

where S is the Laplace variable and an over bar indicates a Laplace-transformed quantity,
n=V,(0,z=0)and A=u,(1/2,7=) Solving the Eq. (A8), and using the boundary conditions and
(A9) and (A10) we can find the following results

coshﬂ\/WW{E)JrKE }(J
% (2.5) :|:K'E§(1—S)+/17K‘E} ¢ N 1+ k&

S(s + K& + Ayie) Osh(\/(smm)”} S+ Ked +AyKe (A11)
5 E

Now, we indicate how Eq. (A11) can be inverted using the complex inversion formula. If y(s) represents

the Laplace transform of a function y(z), then according to the complex inversion formula we can state

that

1 1 —
y(@) =— ——— = {exp[sc] y(s)ds
27[.[;_@ exp[szly(s)ds 27 i: (A12)

where the integration in Eq. (A12) is to be performed along a line S=c¢ in the complex plane where
S =X+1Y.The real number C is chosen such that S=c¢ lies to the right of all the singularities, but is

otherwise assumed to be arbitrary. In practice, the integral is evaluated by considering the contour
integral presented on the right-hand side of Eq. (A12), which is then evaluated using the so-called

Bromwich contour. The contour integral is then evaluated using the residue theorem which states for

any analytic function F(z).

{F(2)dz =271y Res[F(2)],.,, (A13)
where the residues are computed at the poles of the function F(z). Hence from Eq. (A13), we note that
y(z) = Res[exp[s]y(s)],., (A14)

From the theory of complex variables we can show that the residue of a function F(z) at a simple pole
at Z=a isgiven by

Res[F(2)],., = Izigwa{(z -a)F(2)} (A15)

Hence, in order to invert Eq. (A11), we need to evaluate
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cosh[z\/W + Kg J

T

The poles are obtained from s(s+ x.& + Ay )=0 and Cosh(\/(?’%ﬂfd g J — 0. Hence there is

Res {KE5(1—8)+/1}/KE}

1+ k. & A16
{ E } -
S(S + KE§+/1}/KE)

S+ K+ Ay ke

asimple pole at s=0, S=—(x:&+ Ay k) and there are infinitely many poles given by the solution of

£ 4

1,2, ... . Hence we note that

—7%(2n+1)?
the equation Cosh(\/wﬂ%j:o and so S, = 7 )'s —(ke&+ Ay k:) where n =0,

cosh[;(\/(HMKE)qLKE]
keE(L-9)+ Ay ke &

Res

|:S(S+KE§+/17/KE)}

L Js=0
cosh| 7 (S+/17KE) i
—Res|: keé(-8)+ Ay kg } ¢
s(s+reé+rey )iy ke (s+Ayxe)
cosh| .[———— +k¢
I 4
cosh[;( SJFMKEMcE] cosh{;g S+7KE+/<E]
+Res |:KE§(1—S)+17/KE:| 4 +Res |:KE§(1—S)+KE}/:| 4
s(s+xe&+Ay ke) S+ Ay kg s(s+xeé+xey) S+yKg
osh TﬂcE cosh : +KE
s=—(kg&+Ay kg) s=s,
(AL17)

(500" (ke£-5) + 17 KE)Cosh[ , (5”57'@)%]

B $—0
cosh{ H?KELKEJ N s(s+xeé+ Ay KE)COSh[ (SH?KEJH(E]
s=0

es kgS(l—s)+ Ay ke
S(S+KE§+/1yKE)

Ay k
cosh[ TE+ Ke J (A18)
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cosh V4 LQ/KE)_FKE
o5 {KE§(1—5)+ZJ/K’E 4

S(S+KE§+KE7)} cosh[ S+ Ay kg e j
]’75 E

(s+xgé+Ayxg)e’” (KE§(1—S)+/17 Kg )cosh[;( M-FKE ]

s=—(kg{+Ay Kg)

_ 4
- sa—(xllrgl—/ly Kg)
S(s+ K& + Ay kg )cosh[ /W;KE} +KE ]
= e IEEH T (] 4 g £) (A19)
cosh[;(\/(SJ”?KE)JrKEJ

Res KeE(d—S)+ Ay k¢
S(S+KE§+/1;/KE)

ds=s,

(s—s,)e™ (k&) + Ay k¢ )cosh{;(\/(SJ”?/KE) + K J

= lim VTN (A20)
s(s+ K&+ Ay ke )cosh(\/H;/’(E + i J
Applying L-Hospital rule in the above equation,
ST (S + /17/ KE )
e (KE§(1— S)+ Ay k¢ )cosh x T +Kg

=lim| 2

n S\/(S+/1}//<E)+KE Sinh(\/(s+/lyKE)+KEJ

4 4
Ly (D" e O el () + Alred + Ay g ))cos(y (20 +1)x)2) (A21)
74 (@n+) f,(n)

Res 1+x:& — lim (s+xe+Ayxe)e’ L+ ke é)

S+xé+ Ay ke ey gy | eSTRED) (s+rel+Ayne)

=g (SR (1 4 g &) (A22)

Ay ke
COSh * KE n —(fy(n))z/4
v(y,7)~ Ll (D) e (e & f,(n) +A(xcc & + Ay i) )cos(y 2n+ 1)z /2)
, [ Ay ke j 73 (2n+1) f.(n)
cosh + K¢




Int. J. Electrochem. Sci., 16 (2021) Article 1D: 210946

(A23)
Where, f (n)=7z"(2n+1)*E+4(x &+ Ay k)
Using Eqg. (A23), Eq. (A7) can be written as follows
du, _ (A24)
dogl) _(S+77KM )uo(l) =-1
X
1
Where 717 = (A25)

]

On solving Eq. (A24), we get

_ 1 Ky Sinh((;(—l),ls+77KM )_ Sinh(;(,/s+77KM ) (A26)
S+ Ky s(s+77KM)sinh(,/s+771<M) (s+77KM)sinh(,/s+77KM)

Applying the complex inversion formula for the above equation similar to Eg. (A11) we get,

N sinh((l—;()\/mcM ) 2& (D" {77/(,\,, sinh((x —Dnz) . }e(qkw(m)z), AD7
u(y,7) = sinh(M) +7rnz:1: . o g sinh(nzy) (A27)

Appendix B:

For the limiting case 1 (Enzyme-mediator kinetics and low reaction rate), the equation for the

concentration of mediator and enzyme are given by

ou(x.7r) _0%u(x.7)

—Kku U(z, 7)V(x,7)

or oy’ (B1)
v (x.7) _0*v(x1)
or oy’ (B2)

with boundary conditions

r=0, u=1 v=1 (B3)
7=1 u=0yv=1 (B4)
7=0,u=1, %:o (BS)

The Laplace transformation for the Eq. (B2) is as follows:

18
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2
L{’S)_sv(z’s):_l (B6)

The corresponding boundary conditions are

dv
— =0, v() =1/s
ay @ (B7)

2=0
On solving Eqg. (B6) with respect to the boundary conditions (B7), we get

V(y,s)=1/s (B8)
Using the complex inversion formula, Eq. (B8) becomes

V(z,7)=1 (BY)
Substituting Eq. (B9) in Eg. (B1) we get the following equation,

ou(y,r) _ 82u(;(,r) B
or | g2 M 1 (z:) (B10)

The Laplace transformation for the above equation is as follows:

2
%—(SH{M )T (x,8)=-1 (B11)

With the corresponding boundary condition

u@)=1/s, u@®=0 (B12)
On solving Eq. (B11) with respect to the boundary condition (B12), we get
1 Ky sinh((;(—l),/s+sz )_ sinh(;( S+ Ky ) (B13)

U(%’T):Sjtlc,\,I s(s+KM)sinh(M) (S+Km)5inh(\/3+’fm)

Applying the complex inversion formula for the above equation we get,

Csinh(@- ) ) 2 & (1) [ 5, sin((x —Dnz)) Sl (B4
“lre) = sinh(\/x,, ) +;n2=1: n i, +(n7)? —sin(nzz) e (B14)

For the limiting case 3 (Enzyme-mediator kinetics and high reaction rate), the equation for the

concentration of mediator and enzyme are given by

ou(y,7r)  o°u(y,r) (B15)
or oy’

ov(x.7) 82V(;(,r) (B16)
or oy’

The Laplace transformation for the above equations are as follows:

90 _giy6 -1 (817)
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2
d V(;g,S) sU(z.8) =1 (B18)

The boundary conditions are as follows:

u)=1/s, u@)=0 (B19)
dv o
ol 0, V(1) =1/s (B20)

On solving Eq. (B17) and Eq. (B18) with respect to the above boundary conditions, we get

s :%_% (B21)

V(y,s)=1/s (B22)

Using the complex inversion formula, the above two equations becomes,

0 =1- 7 23 Y in(ny e oo (823)
TN

V)=t (B24)

Appendix C. Illustrative Mathlab code.
Matlab coding for Eq. (15) and Eq. (16):

function pdex4

m =0;

x = linspace(0,1);

t = linspace(0,10);
sol = pdepe(m,@pdex4pde, @pdex4ic,@pdex4bc,X,t);
ul =sol(:,:,1);

u2 =sol(:,:,2);

figure
plot(x,ul(end,:))
%cftool(x,ul(end,:))
title('ul(x,t)")
xlabel('Distance x')
ylabel('u1(x,2)")
%figure
%plot(x,u2(end,:))
%title('u2(x,t)")
%xlabel('Distance x’)
%ylabel('u2(x,2)")
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c=[1;1];

f=[1; 1].*DuDx;

20
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km=10;

r=b;

ke=0.1;

e=1;

F1 =-km*u(1)*u(2);

F2 = -r*ke*u(1)*u(2)+ke*e*(1-u(2));
s = [F1;F2];

function u0 = pdex4ic(x)

u0 =[1; 1];

function [pl,ql,pr,qr] = pdex4bc (xI,ul,xr,ur,t)
pl = [ul(1)-1;0];

ql = [0;1];

pr = [ur(1);ur(2)-1];

qr = [0; 0];

Matlab coding for Eqg. (22):

function umani
x=linspace(0,1);

km =10; % parameter
gamma=5;

ke=0.1;

e=1,

t=0.1;

s = 0; % initial sum

N = 100;% number of terms
forn=1:N;

L = 1/cosh((gamma*ke/e+ke)™(1/2));

s = s+(((-1))/n)*((L*km)*(sin((x-1)*n*pi))/(L*km+(n*pi)"2)-sin(n*pi*x))*exp(-

t*(L*km+(n*pi)*2));

u = sinh((L-x)*((L*km)™(1/2)))/sinh((L*km)A(L1/2)) +(2/pi)*s;

plot(x,u);
end
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