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The state of charge (SOC) of Lithidion battery is one of the key parameters of the battery management
system. In the SOC estimation algorithm, the BRdpagation (BP) neural network algorithm is easy

to converge to the local optimal solution, whichdg#o the problem of low accuracy based on the BP
network. It is proposed that the Fireworks Elite Genetic Algorithm @BEpis used to optimize the BP
neural network, which can not only solve the problem of the traditional neural network algorithsn that i
easy to fall into the local maximum optimal solution but also solve the limitation of the traditional neural
network algorithm. The searchability of the improved algorithm has been significantly enhanced, and
the error has become smaller and the propagaipeed is faster. Combining the experimental data of
charging and discharging, the proposed FEneural network is compared with the traditional genetic
neural network algorithm (GAP), and the results are analyzed. The results show that the stBRdard
neural network genetic algorithm predicts error within 7%, while fEEGreduces the error to within

3%.
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1.INTRODUCTION

With the development of society, new energy is been sought to replace traditional fossil fuels,
which has become the focus of attention of all countries. Lithium batteries have some advantages of higf
energy density, long life, high output power, and keglt performandé, 2]. The new energy has been
widely used and developed in the field of nemergy, greatly optimizing the energy system of today's
society. On account of their green and environmental advantages, they have an important position in the
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field of renewable energy. With the increasing application of lithium batteries in the fieddvagnergy,

the ability of people to accurately estimate the SOC of lithium batteries is of great significance for giving
full play to battery performance and realizing fBale status detection and safety control of lithium.
battery. The SOC value cartnbe measured direcfB+5]. Need to use physical quantities (such as
voltage), current and indirect variables of temperature. Currently, commonly used algorithms include
prinaple methods, modeling methods, and methods based on characteristic parameters.

The principle methods include the ampere integral method, internal resistance method, and open
circuit voltage method. These methods are easy to implement, do not needrtactargimplex model,
and artificially reduce the difficulty of the corresponding implementation. The influence of temperature
and aging is great. The opeincuit voltage method is only suitable for SOC estimation in an offline
state, and the hysteresistloe opercircuit voltage will increase the error of SOC estimation.

The method of establishing model estimation has high precision, and the commonly used
methods are the Kalman filter method and synovial fluid observation method.-bass algorithms
improve the accuracy of lithiuion battery SOC prediction to a certain extent, but the production
process of battery models is complicated, and the accuracy of the model often increases the difficulty of
corresponding calculatiof& 7]. Under the cycle life of the battery, the battery capacitytmrqihysical
quantities will change, especially the relationship between the@pmnt voltage and the SOC of the
lithium-ion battery is transparent. The complexity increases accor{ihgly

The datadriven method does not require modeling, and the estimation accuracy is high. The
typical representative of this kind of algorithm is the BP neural netwgidkitim, but only using a
single BP neural network to estimate the SOC, it is difficult to meet thephnégtision estimation
requirements. One of the methods you can try is to optimize neural alg¢8ithijsFor example, you
can reduce the error factors in the experiment process by strictly controlling external interference factors.
The initial weight of the BP neural network and the prediction accuracy of the subsequent network have
a greater impacfThe optimization of the algorithm can improve tracking accyfi&jy The complex
electrochemical reactions inside the power lithium battery and thdimear relationship between
various factors that are constantly changing in operating conditions have led to large errors in traditional
SOC estimation methods. The BReural network algorithm is a new algorithm that simulates the
learning skills of the human br4ir8, 14] No need to build an accurate mathematical model. Establish
an output model byralyzing the corresponding relationship between input and ¢LEpLT]. Since the
BP neural network is a mulkayer feedback network based on back@agation, the algorithm has a
slower convergence speed and is easy to fall into local optimization. Genetic algorithm GA is an
intelligent algorithm that can find the best solution by simulating natural selection and biological
evolution mechanisms. It hadrong convergence and robustness. It can be combined with neural
networks to perfectly solve local optimal problems, and can greatly speed up network integration. Can
greatly help us get the value we ngde 19]

On this basis, a neural network algorithm based on the Fireworks Factor and a genetic algorithm
with an improved elite strategy is proposed. First, introduce the fireworks coef@€i&®]. The
purpose of introducing the Fireworks Factor is to generate new individualgththe fireworks of the
local optimal solution to make up for the lack of population diversity in the optimization process of the
SGA (standard genetic algorithm, SGA) algorithm, thereby improving the analysis algorithm. site.
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Global search function. Fehe elite strategy, consider the outstanding figures of this generation and the
outstanding figures in the highly adaptable history as elites, and provide more crossover
opportunitief23-27]. Based on the above two points, an improved algorithm is proposed, called
Fireworks Elite Genetic Algorithm (FEBP)[28]. According to the experimental data of lithitiom

battery charging and discharging, different working conditions are used to estimate the SOC of the
battery, and a varietyf evaluation indicators are proposed to analyze different predictive performances.

2. MATHEMATICAL ANALYSIS

2.1 FEGBP Algorithm

Elite talents are those with the highest adaptability during the development of the GA team. The
genes in the genetialgorithm do not necessarily reflect the nature of the problem to be solved.
Therefore, genes may not be independent of each other, and if they are only crossed, better combinatior
may be destroyed. In this way, the goal of good gene accumulation chieted, but the original good
genes are destroyed. An elite retention strategy can prevent mixed operations from destroying the bes
individuals.
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Figure 1. GA-BP algorithm flow chart

Population initialization and fitnedanction: The individual coding method is changed to real
number coding, and each real number serves as a chromosome site, which can eliminate coding an
decoding steps and simplify genetic operations. The real number string is divided into four peags, a s
encoding method uses real number encoding, and the encoding content includes all weights anc
thresholds of the neural network.

Obtain the initial weights and thresholds of the BP neural network from the individual, and then
use the training data teain the BP neural network to predict the output of the system, and then predict
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the absolute value of the error between the expected output and the target output. The predicted value
based on the individual fithess F, such as Eq. 1.

F=k(g abgy -9 1
i=1

In the formula: where: n is the number of network output noglésthe expected output value
of thei-th node of the BP neural networ; is the predicted output value of th¢h node; k is the
corresponding coefficient. Selection opayatand crossover operation: Since the individual uses real
number coding when choosing the real number crossover method, the crossover operation of the Ltf
chromosome al and tteh chromosome ki at positigns as follows.

Diversity avoids falling into the singlealue trap. The fitness value of thth node of the neural
network isFi, and the number of individuals in the population is sét tdhe roulette method can most
intuitively and clearly express the randomnesthe overall value of the function, which conforms to
the characteristics of random inheritance of genetic algorithms.

Data normalization and mutation operation: To avoid the increase of the prediction error caused
by the large difference in the ordemoagnitude between the sample data and the target data, the training
sample data is first normalized, and the maximmamimum method is used to normalize the training
sample data. Among themmin and xmax are the minima and maximum values in the data sexue
Randomly select theth gene mutation of individual i, and the mutation results are shown in EQ.3:

e _qu+(qj “8)* (9 r G5
S la+(an 3) 9 roes

o 2,
1 f(g)= rz(%’:k '%max §

In the formulaamin is the lower limit ofaj, amaxis the upper limit of genaj, and r is a random
number of [0,1]amin is the lower bound of the gene; g is the current number of generdiiagss the
maximum number of evolutions.FEEP model: The specific steps of the FHBB algorithm are shown
in the figure:

Stepl. Randomly inglize the population and the number of iterations t to generate the first
generation populatioB; with a size olN. Determine the number of iterations t, and observe whether the
maximum number of iterationsaxis reached, if step 3 is not executed gotvise step 8 is executed.

Step2. Calculate the fitness value in the solution set, use the roulette method to seldédt, copy
excellent individuals, and form a populationly Q: Performcrossover and mutation operation to evolve
the population (at this time, the population still beco@gs

Step3. Sel ect n (n<10) | ocal opti mal sol ut
population is still called). CombineP: andQ: to forma mixed populatiof, and implement the elite
retention strategy. Generate a new popula@onith a scale oN from the mixed populatioR, at this
time t=t+1, and execute stepl.

—_ = == =)
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Step4. Output the calculation result directly and end

2.2 Fireworks Fator algorithm principle

The cross operation of Fireworks Factors can easily lead to a jump in the solution set. Although
the mutation operation can perform a local search, the mutation probability is small, resulting in fewer
execution times of the mutaticoperation. Besides, since the mutation in the solution set is mostly
harmful, the probability of mutation cannot be greatly increased. When solviagonoex functions,
the global search ability of the algorithm is poor. For this reason, some peoplerogosed the FA
operator to solve the problem of global composite function optimization. This operator represents a kind
of explosive search process. From the perspective of the search algorithm, if you want to improve the
search performance of the alglbom, you must perform an explosive search in the optimal solution part,
and the number of individuals generated by the fireworks is large. On the contrary, the optimal solution
is farther away from the result in fewer individuals to search. Since a salgigon firework can
produce multiple new individuals, too many solutions to be exploded will inevitably increase the amount
of calculation and reduce the efficiency of algorithm optimization. Based on the above analysis, this
paper s el e ctiorsfromthe sokitbroset, perimrimsian explosive search, and finally combines
the previous generation solution set to form a "fatwer mixed solution set” for selection, which
effectively improves the algorithm's ability to explore new solution spauiésy. The calculation steps
of solving the number of explosive individuals in xi are as follows:

Stepl. According to the different pros and cons of individuals in the population, the production
(the following one) generates corresponding subgroups.

o Yo F(%) € (4)

L

(Yo~ (%)) €

i=1

C=m

Where: represents the number of individuals generated birttheolution;y is a constant
parameter that controls the total number of individuals generated by n solykigris;the maximum
value of the objective functioim the solution set{represents the minimum constant, which is used to
avoid division by zero errors.

Step2. Correct the Fireworks Factor.

To avoid too many or too few fireworgenerated individuals affect the efficiency and
searchability of the algahm, it needs to be modified. The correction function is defined as (Equation 1
below), and a and b are fixed parameters. In the above formula, a and b are fixed parameters. Whe
Ci>be, a<b<1 needs to be satisfied.

éround(afim if C ar
Czlround(b m i C br (5)
tround(C)  otherwise

In the formula:C; represents the displacement amplitude ofittte solution fireworks;Amax
represents the entire maximum fireworks amplityde;is the minimum value of the objective function
in the solution seth represents the displacement distanté¢he fireworks;rand(-1,1) is one in the
interval [-1,1] random number. The result is shown in Eqg. (5).
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I‘e.A: Anaxﬂ nf (X)_ Yo e
i 8 1(X) Y e (6)

lfth'Hrar;d(-l,:I)

In the following formulax'( i, j) represents a new entity created by the fireworks. If the new
individual generatedoes not satisfy the solution domain space raxge.6 (is ainew individual that
meets the scope of the resolution domairr @id@versionThe result is shown in Eqg. 6.

gxi(i,i)=h (i, j)
Pxi(i ) =xm 4x (i, )| o(xm= x™) (7)

Algorithms based on improved genetic factoit eventually get better convergence, which can
effectively prevent effective factors in genetic algorithms from losing excellent parts due to continuous
genetic mutation.

BP neural network is composed of the input layer, hidden layer, and outpuillagdirst stage
is the signal forward propagation; the input information is processed layer by layer through the input
layer and the hidden layer and the actual output value of each unit is calculated; the second stage is th
backpropagation of the errdfthe expected value does not match it, the output will be output. The error
calculation between the expected value and the expected value is used to adjust the weight paramete
between each layer.

This paper chooses four influencing factors of lithioattery energy E, voltage U, current I, and
resistance R as the input of the BP neural network, and the lithium battery SOC as the output. The returr
of errors is particularly important in the BP neural network. The network output error can be represented
by the correlation function of the weight input layer weighand the hidden layer weighx, as shown
in Eq.8.

goW, =/ EL W
1DV, =h EfV p 8

The negative sign of the above formula in the direction of weight update, that is, the reverse of
gradientdescent. E is the square of the error between the expected output and the actual output. Eq.'
shows that the weight of the hidden layer is updated.

oW, (t+1) W () A ¢y
W (1) W () A 9
tm=Jn 4 a
The n in the above formula i s teénd0,1)liekaaratijn g
the error signals of the output layer and hidden layer, respectively. It reflects the continuous iterative
process of network weight update. In this model, the number of nodes in the input layer is 4, and the
number of nodes in the tput layer is 1.

2.3 Improved Elite Strategy algorithm principle

Compared with traditional algorithms, genetic algorithms can not only work in coding mode, but
also search multiple peaks in parallel, and do not perform operations on the partmeaisedves. It
has good operability, uses probabilistic transition rules instead of deterministic rules, and has a global
optimization function.
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This article uses the elite algorithm instead of the roulette algorithm. Generally, the elite
algorithm has bétr performance. Among various genetic algorithms and genetic programs, the roulette
method used by traditional genetic algorithms obtains the best solution through continuous crossover
and genetics. The elite algorithm continues to increase the propafrgenetic elites to make the results
better. The most important part of the elite strategy is elite retention and elite crossover.

Offspring of
ordinary
individuals

xcellent individual

Genetic manipulation

Cross
operation

Offspring of O
ordinary individuals

Figure 4. Elite crossover strategy

Excellent retention makes the outstanding individuals in this group not participate in crossover
and mutation operations but directly left to the next generation, as shown in the figure. It can be found
that it can effectivelyetain highquality funds and prevent the destruction of longer good genes during
crossover and mutation operations. However, the save operation is only for elites and has not been fully
utilized. The flowchart of this algorithm is shown in Figure 3.

The elte divider retains the best solution of the previous generation of products. As shown in the
figure, in addition to the traditional crossover operation for the group, the elite individuals and each
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individual in the group are also crossed according toelesant probability. It provides more crossover
opportunities for the elite group and increases the number of elite genes in the group. However, the elite
individuals are not well preserved, causing them to be destroyed during the mutation processand ca

be used. The flowchart of this algorithm is shown in Figure 4.

The genetic algorithm is based on a large number of observations and summaries, and an
algorithm that imitates the genetics and mutation of the biological world. The algorithm passed the
observation of nature. By maintaining a set of possible solutions to simulate the biological evolution
process of natural selection, the mudlitiectional search can be performed, and the formation and
exchange of information in these directions can be augp. Compared with the search based on the
point unit, the search based on the surface unit can better find the global optimal solution. The genetic
search algorithm can simultaneously form multiple objects to reach the initial weight and threshold,
thereby quickly optimizing the BP neural network so that the optimized BP neural network can better
predict the function output. The elements of the genetic algorithm used to optimize the BP neural
network include population initialization, fithess functioalestion operation, crossover operation, and
mutation operation.

2.4 Estimation strategy of lithitimon battery SOC based on FEE&P neural network

The specific calculation steps of the elite strategy in the t generation are as follows: (1) For the t
geneation groupSt(X) set the function coverage to reagtfor each vector ii(X), generate a random
number, if the random number is less tharthen A vector in the elite sEt(x) crossesSt(X) if every
vector ofEt(x) can be used, the elementd=tix) are recycled;

(2) For thet-th generation group St(x), after completing the crossover and mutation operations;
calculate the fitness of each vector 81(X), Et(x), and select all the vectors with the highest fitness to
form an elite seBt+1(X)

t-generation
group Generation t
Calculate Elite_ <.
fithess and ¢ s Collection
coverage Cross o
Elite offspring | :
crossover : Elite cross
probability * parents
(r—
e -I Elite cross ..| Elite set
e —— Input offspring : offspring
. . —
I """" P> Output Calculate fitness
y and coverage

o ¢ e t+1
generation
group

The t+1
generation elite

set

Figure 5. Improve the elite strategy flow chart
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Comprehensive analysis of the advantages and disadvantages of the above two elite strategies
combined with the operatioof functional coverage simulation in the actual process, proposes an elite
strategy suitable for the field of functional verification, which can not only retain the excellent elite
carrier but also make full use of it. The calculation process of thesti@tegy in the t generation is
shown in Figure 5.

‘ Start ’

._.—.-._._.-.-.
A 4
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Figure 6. FEGBP algorithm flow chart

The detailed process of the specific process is shown in Figure.6, where a variety of selection
strategies can be used, among whithmore welknown are the roulette method, competition strategy,
elite strategy, and so on. Here, to further enhance the superiority selection function of the algorithm, the
elite strategy is chosen. But the first step, as the initial stage, requirélataavalues and can only use
the roulette method.

3. EXPERIMENTAL RESULT

3.1 Platform construction

The experiment uses a ternary polymer macrguedler lithium battery with a charging eatf
voltage of 4.2V, a capacity of 70Ah, 4.5V as the protection voltage, and verification at 25°C. The
following verification data are collected on the platform shown in figure 7.
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Figure 7. Test platform construction

After connecting the battery and the battery test system (NEWARE4BUS), debug the
corresponding basic data through the upper computer position to set different charging and discharginc
conditions and measure the corresponding current, voltage, eaedygapacity of the battery under
unused conditions, The flow chart is shown in Figure 5. The corresponding data is measured to facilitate
further corresponding verification of the algorithm.

After setting up the corresponding detection platform, userdiftealgorithms for training, and
finally draw more relevant conclusions. First measure the initial capacity of the battery to get the initial
SOC value, this time the initial value of SOC is 100%. Part of the conclusion data is shown in Tabl. In
the following precise and complex working conditions, the comparison betweerBPE&d other
algorithms is carried out. According to the display on the graph, the excellent robustness of this algorithm
can be triggerd@6, 29]

Table 1.Part of the sample data

Step T/ I/A u/v SOC
1 25.0 -70 4.1961 1
2 25.0 -70 4.0060 0.9
3 25.0 -70 3.8789 0.8
4 25.1 -70 3.7636 0.7
5 25.0 -70 3.6675 0.6
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3.2 DST working condition verification and result analysis

In practical applications, the retine current of lithiurAion batteries is complex and variable.
Under different working conditions, the currarften suddenly switches and stops, which puts forward
strict requirements on the dynamic performance of the battery, and also brings difficulties to the SOC
estimation of the lithiumon battery under complex working conditions. To further verify the SOC
estimation model of lithiumon batteries under more complex application conditions, the model has
been simulated and verified through custom DST experimental data. The current and voltage of DST are
shown in Figure 8.

0] e— T J T —Sll - 0.12f ' ' 1057%  —End ]
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Figure 8. SOC verification under DST conditions

In Figure 8(a), S1 is the SOC value calculated by the ampere integral method, S2 is the SOC
value calculated by the EKF algorithm, and S3 is the SOC value calculated dyGF@H-algorithm.
In Figure 8(b), Errl is the EKF error, and Err3 is the FE&Serror. Among them, the maximum error
of SOC of FEGBP is 3.47%, the maximum error of SOC of EKF is 10.57%. fBEGalgorithm has a
better effect in estimating SOC.

3.3 BBDST wdking condition verification and result analysis

For the BP neural network, this experiment uses the Beijing Public Transport Dynamic Stress
Test (BBDST) for model training. The BBDST condition is very complicated and can reflect and better
training datalUsing offline EKF, the current and voltage under BBDST conditions at this time are used
as inputs, and the firstrder model parameters corresponding to the SOC value at this time are added as
inputs to form a fivenput model. The SOC obtained by the aneg®our integration method is used as
an accurate output. The network model trained by BP neural network can be obtained.
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Figure 9. SOC verification under BBDST conditions

In Figure 9(a), S1 is the SOC value calculated by the ampere integral method, S2 is the SOC
value calculated by the EKF algorithm, S3 is the value calculated by AEKF, and S4 is the SOC value
calculated by the FEBP algorithm. In Figure 9(b), Errl is th&E error, Err2 is the size of the AEKF
error, and Err3 is the FEBP error. Among them, the maximum error of SOC of FBEis 0.5%, the
maximum error of SOC of EKF is 5.1%, and the maximum error of SOC of AEKF is 4.5%.

3.4 HPPC working condition verifit@n and result analysis

To verify the accuracy of the improved FEEP algorithm for lithiumion battery SOC
estimation, capacity test experiments and HPPC experiments are used to verify the estimation. Use th
trained network model and the fistder eletronic circuit model. At the same time, the experiment

takes the amperieour integration method and the extended Kalman filter algorithm as a reference, as
shown in Figure 10.
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Figure 10. SOC verification under HPPC conditions

In Figure.9(a), SOCL1 is the SOC value calculated by the ampere integral method, SOC2 is the
SOC value calculated by the &P algorithm, and SOC3 is the SOC value calculated by the BEEG
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algorithm. In Figure.91), Errl is the GABP error, and Err2 is the FEBP error. Before disregarding
the divergence of the final result, the SOC maximum error of-BB@& 1.28%, and the maximum error
of GA-BP SOC is 3.20%.

4. CONCLUSIONS

In this paper, the Fireworks Factor is added to the original basis of the genetic algorithm, and the
Fireworks Factor can be well adapted to the neural network algorithm. The Fireworks Factor can
generate a local population in the original solution seichvimcreases the use range of the algorithm.

At the same time, it further optimizes the calculation space of the algorithm, forming a genetic algorithm
of “-mapulation”, which can better avoid the p
population in In the process of evolution, it has stronger competitiveness and global optimal solution
ability, effectively avoiding falling into the local optimal solution situation. At the same time, the
introduction of the elite retention strategy, whichane of the most representative strategies in the
genetic algorithm, uses extreme methods to ensure that the effective factors can enter the next iteratio
to prevent methods such as the roulette strategy from causing the optimal solution to be abandoned
thereby affecting the overall experimental effect. By comparison, the improvedBPE®Bd the KKF,

AEKF, the amperdour integration method is used for SOC processing under multiple working
conditions, and the final SOC difference is compared, it canabyeconcluded that the algorithm
proposed in this article has better. The global search capability, search performance, and calculatior
accuracy. However, the author found in the course of the experiment that the algorithm requires a large
amount of dataraining in the early stage and takes a long time. It needs further research and
improvement to improve its computing power.
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