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In this work, the reduction of Cr(VI) to Cr (III) in a filter-press-type electrochemical-reactor is studied. 

The working electrode within the reactor is a polypyrrole-coated 304-stainless-steel plate. The 

polypyrrole was electropolimerized via 40 cyclic-voltammetry cycles. The deposit was characterized 

by Fourier Transform Infrared Spectroscopy, Optical Microscopy and Scanning Electron Microscopy. 

The Cr(VI)-ions solution was recirculated within the filter-press-type reactor and its concentration was 

monitored via the 1,5-diphenylcarbazide colorimetric technique. It was proposed that the Cr(VI)-

removal process consists of a mechanism combining ion transport between the solution stream and the 

electrode, and reduction of Cr(VI) at the electrode.  A mathematical model was then derived to 

describe the Cr(VI) evolution within the solution stream, and at the PPY electrode-layer. The model 

was validated with experimental data. 
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1. INTRODUCTION 

 

Environmental pollution is one of the most important problems affecting our nowadays world. 

It has a direct impact on air quality, as well as the availability of water resources and agricultural soils. 

Both anthropogenic and natural contamination of waters by heavy metals is affecting food security and 

public health. For example, several studies have found heavy metals and metalloids in vegetables such 
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as lettuce, cabbage, squash, broccoli and potato due to irrigation with polluted water. In the same 

direction, toxic metals have also been found in fish, meat and milk as a result of bioaccumulation and 

mobility from the contamination point to adjacent water sources. Depending on the type of metal or 

metalloid, the toxicological effects in humans range from vital-organ damage to carcinogenic 

developments. Indeed, cases of health problems caused by the consumption of heavy-metal-

contaminated food have been reported on a global level [1-3].   

Chromium (Cr), like any transition metal, has several oxidation states. The most stable and 

frequent are trivalent chromium, Cr(III); and hexavalent chromium, Cr(VI), each one having 

significantly different chemical properties. Cr(VI) is considered the most toxic and carcinogenic form 

of chromium; it is found combined with oxygen as chromate or dichromate ions. In contrast, Cr(III), as 

an oxide, hydroxide or sulfate, is less mobile and can be found bound to organic matter in aquatic 

environments and soils. Cr(VI), being a strong oxidizing agent, is reduced to Cr(III) in the presence of 

organic matter [1,4-6]. However, high levels of Cr(VI) can overcome the reducing capacity of the 

environment and thus persist as pollutant. Cr(VI) poses a strong health risk to humans. Most affected 

are people working in the steel and textile industries. The chemical causes different health effects; 

when in contact with the skin, for example, it causes allergic reactions such as skin rashes, and when 

breathed, it can cause nose irritation and nosebleed. Other reported health problems are upset stomach 

and ulcers, respiratory problems, weakening of the immune system, kidney and liver damage, 

alteration of genetic material, lung cancer and death [5-8]. 

The recovery and removal of Cr(VI) species from water is needed in order to reduce its impact 

on human health and the environment. During the last decades, different remediation techniques such 

as those based in adsorption, chemical precipitation, membrane filtration and ion exchange were 

developed. Each of them, however, suffers from one or more drawbacks [2, 7, 8]. 

Electrochemical methods have application potential for water treatment, between them, the 

electrochemical-ion-exchange (EIE) process is of particular interest as, instead of chemical reagents, it 

uses an eco-friendly electric potential to promote ion exchange (IE). It has specific advantages over 

other methods such as longer EIE-resin life compared to the conventional ion exchange process, longer 

membrane life compared to the reverse osmosis/membrane filtration process, easier EIE-resin 

regeneration, output of target-contaminant-free water, and recovery of the target contaminant in pure 

form. Typical IE membranes used in the EIE process are made of conductive polymers with suitable 

catalytic properties towards the reduction of Cr(VI), as the Polyaniline, Polythiophene and Polypyrrole 

(PPY). Furthermore, they have application in organic batteries, electrochromic displays, chemical 

sensors, light emitting diodes, anticorrosive additives, among others [6-10].  

Polypyrrole and its derived-compounds have recently gained much attention for the 

remediation of Cr(VI) ions in aqueous solutions. The material shows high electrical conductivity, non-

toxicity, good environmental stability, low cost and ease of preparation. It is reported that the presence 

of a positively charged nitrogen atom within the PPY structure makes the material a suitable adsorbent 

of Cr(VI) ions in water.  Furthermore, PPY facilitates the spontaneous reduction of toxic Cr(VI) into 

less toxic Cr(III) through a surface chemical reaction [8-14].  With all such considerations, the present 

work develops a mathematical model describing the combined EIE/reduction process of Cr(VI) to 

Cr(III) using a filter-press-type reactor and a 304-stainless-steel (AI-304) working-electrode coated 
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with an electrochemically-synthesized PPY-layer. The applied methodology and derived data can be 

useful to design new routes for the remediation of Cr(VI) present in water bodies. 

 

 

 

2. EXPERIMENTAL 

2.1. Polypyrrole-coating electrochemical synthesis and characterization 

The PPY deposit, coating the perforated 304-stainless-steel plate (AI-304, geometric area 28 

cm2), was synthesized by electropolymerization via Cyclic Voltammetry with an Epsilon BASi 

Potentiostat. To that end, a conventional three-electrode-configuration cell was used with the 

perforated AI-304 as working electrode, an Ag/AgCl as reference electrode and the AI-304 plate as 

counter electrode. The electrolyte consisted of pyrrole (Aldrich, 99%) 0.1M and sulfuric acid (Aldrich, 

99%) 0.1M [15-19]. The potential was scanned 40 times from -0.9 to 0.9 V vs. Ag/AgCl at 0.1 V/s. 

Prior to each experiment, the perforated plate was manually polished with 600-, 1200- and 1500-grit 

sandpaper until a smooth finish was achieved.  

The chemical characterization of the PPY deposit was carried out by Fourier Transform 

Infrared Spectroscopy (FTIR) with a Perkin Elmer Spectrum 100, using the Attenuated Total 

Reflectance (ATR) module. Optical Microscopy (ODAR) and Scanning Electron Microscopy (JEOL 

JSM-6390LV) were used to analyze the deposit surface morphology [17-21]. 

 

2.2. Cr(VI) to Cr(III) reduction system 

Figure 1 shows the sample-solution recirculation system used to perform the Cr(VI) to Cr(III) 

reduction. A plastic container (Figure 1a) holding 400 mL of the K2Cr2O7 aqueous-solution (sample 

solution) is connected to a peristaltic pump (Figure 1b) which forces the sample solution to flow into 

the filter-press-type reactor (ElectroCell, Sweden). A power source (Figure 1c) is used then to apply -

0.9 V of direct current (DC) to the AI-304 PPY-coated working-electrode within the reactor. The latter 

is done to promote the adsorption of Cr(VI) ions to the PPY layer and to reduce the oxidized PPY-

active-sites after the Cr(VI) to Cr(III) reduction. The sample solution returns afterwards to the plastic 

container. Different initial K2Cr2O7-concentrations were tested (50, 100 and 200 mg/L). The sample-

solution pH was adjusted to 1 by adding sulfuric acid. The flow rate was set to 10 mL/min. All tests 

were conducted at room temperature. 1 mL aliquots of the sample-solution within the container were 

taken every 30 minutes during 4 h and sent to Cr(VI) analysis [20-28]. The Cr(VI) concentration was 

determined by the technique described in NOM-044. It is a colorimetric method employing 1,5 

diphenylcarbazide to generate reddish-colored complexes with Cr(VI), which in turn can be then 

determined by Ultraviolet-Visible Spectroscopy at 540 nm. To this end, an Agilent Cary UV-Vis 

Spectrophotometer was used [26-32].    
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Figure 1. Recirculation system for the Cr(VI) to Cr(III) reduction, a) K2Cr2O7 aqueous solution, b) 

peristaltic pump, c) power supply and d) filter-press type reactor. 

 

2.3. Cr(VI) to Cr(III) reduction mathematical- model 

2.3.1. Proposed reduction mechanism 

The global reduction reaction of Cr(VI) to Cr(III) at the PPY layer is [33], 

 

Cr2O7
2- + 6PPY0  + 14H+    2Cr3+ + 6PPY+ + 7H2O    Eq. 1 

 

The Cr(VI) ions must first reach the PPY-layer on the reactor-working-electrode, where 

reduction to Cr(III) proceeds. The non-reduced Cr(VI)-ions-fraction together with the freshly-formed 

Cr(III) ions departs from the electrode surface. By considering the stream-regions formed within a 

liquid flowing along a plate [34], the Cr(VI) transport and reaction processes are proposed to be carried 

out as follows (depicted in Figure 2): 1) transport of exchangeable Cr(VI) ions within the sample 

solution flowing inside the reactor towards a boundary region close to the electrode, where the flow 

pattern becomes quasi-static, 2) transport of the Cr(VI) ions within the boundary layer towards the 

PPY-layer at the reactor-working-electrode, 3) ion exchange process through the reduction reaction 

(Eq. 1), 4) departure of non-reduced Cr(VI) ions away from the electrode surface through the boundary 

layer and 5) transport away of the boundary layer towards the sample-solution flowing inside the 

reactor [29-36]. 

 

2.3.2. Model construction 

Considering the aforementioned mechanism, a quantitative description of the Cr(VI)-ions 

concentration within the different stream regions and at the working-electrode PPY-layer is 

constructed considering the following mass balances (Eq. 2), 

 
𝑑𝑐𝑅

𝑑𝑡
= −𝑞𝑅𝐵 + 𝑞𝐵𝑅, 

𝑑𝑐𝐵

𝑑𝑡
= 𝑞𝑅𝐵 − 𝑞𝐵𝑅 − 𝑞𝐵𝐸 + 𝑞𝐸𝐵, 

𝑑𝑐𝐸

𝑑𝑡
= −𝑟 + 𝑞𝐵𝐸−𝑞𝐸𝐵,     Eq. 2 
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where cR, cB and cE are the Cr(VI) concentrations in the sample-solution flowing inside the reactor, in 

the boundary-layer and at the electrode-PPY, respectively. The volume-normalized flow of Cr(VI) ions 

between the different stream regions (qRB, qBR), and between the boundary-layer and the electrode-

PPY-layer (qBE, qEB) are considered in a convective-like form (Eq. 3), 

 

qRB = kRB*(cR – cB), qBR = kBR*(cB – cR), qBE = kBE*(cB – cE), qEB = kEB*(cE – cB), Eq. 3  

 

where kRB, kBR, kBE and kEB are convective mass transfer constants. The Cr(VI) reduction is considered 

a first order reaction (Eq. 4), 

 

r = kr *cE          Eq. 4 

 

where kr is the kinetic constant. 

 

By combining the above expressions, the following mathematical model is obtained (Eq. 5 - 7): 

 

 
𝑑𝑐𝑅

𝑑𝑡
= −𝑘1 ∗ (𝑐𝑅 − 𝑐𝐵),   k1 = kRB – kBR,    Eq. 5 

 
𝑑𝑐𝐵

𝑑𝑡
= 𝑘1 ∗ (𝑐𝑅 − 𝑐𝐵) − 𝑘2 ∗ (𝑐𝐵 − 𝑐𝐸), k2 = kBE – kEB,    Eq. 6 

 
𝑑𝑐𝐸

𝑑𝑡
= −𝑘𝑟 ∗ 𝑐𝐸 + 𝑘2 ∗ (𝑐𝐵 − 𝑐𝑒)       Eq. 7 

 

 The model is a system of three first-order differential equations with a kinetic constant (kr), and 

two convective mass-transfer constants (k1 and k2). These latter constants group those of the particular 

flows between stream regions. The structure of the model is linear, so an analytical solution can be 

obtained. However, a numerical method is resorted to for the sake of simulation practicality; in this 

case, the numerical solver called ODE23s of the Matlab® software was used. 

 

2.3.3. Model identification 

The parameters of the model were determined through a rough but effective technique that we 

called exhaustive search: the model was solved with every point (k1, k2, kr) of a three-dimensional 

grilled space delimited by assumed minimum and maximum values of the model parameters; and for 

very run, a sum of the quadratic differences between the model prediction of cR and the corresponding 

experimental value was calculated; the point (k1
*, k2

*, kr
*) corresponding to the sum with the minimum 

value was then selected. It is worthy to mention that the numerical solution enabled this numerous runs 

evaluation and the required computation time was short, in order of minutes.  
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Figure 2. Stages of the Cr(VI) reduction mechanism: 1) transport of exchangeable Cr(VI) ions within 

the sample solution flowing inside the reactor towards the boundary region close to the 

electrode, 2) transport of the Cr(VI) ions within the boundary layer towards the PPY-layer at 

the reactor-working-electrode, 3) ion exchange process through the reduction reaction (Eq. 1), 

4) departure of non-reduced Cr(VI) ions away from the electrode surface through the boundary 

layer and 5) transport away of the boundary layer towards the sample-solution flowing inside 

the reactor. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Electrodeposit synthesis and characterization 

Figure 3 shows the initial 10 voltammetric cycles acquired during the PPY-coating 

electrosynthesis procedure. PPY growth at the AI-304 surface takes place within potential range -0.8 to 

0.8 V (Ag/AgCl). The first cycle indicates a sharp increase in the anodic current at about 0.65 V 

(Ag/AgCl) forming a large anodic oxidation peak of the monomer and thus polymer formation. The 

oxidation potential of the pyrrole shifted to more positive with the successive cycles due to the 

deposition of the polymer layers. The oxidation-reduction peaks of the polypyrrole are observed at 

0.5/-0.7 V (Ag/AgCl). The area under the the charge/discharge region can be associated with the 

amount of deposited polymer [17-19, 26, 27, 34]. 

Figure 4 shows the FTIR spectrum of the synthesized PPY coating. The peaks at 813 cm–1, 936 

cm–1 are attributed to C–H wagging. The characteristic peaks at 1558.4 cm–1 and 1487 cm–1 correspond 

to the C=C stretching, whereas peaks at 1576 cm–1 and 1221 cm–1 represent to respectively, C=N and 

C–N bonds. The broad band observed at 3193 cm–1 is assigned to presence of N–H stretching 

vibrations. The peaks observed in the present work match well with the ones available in the literature 
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[19, 20, 35-38]. The observations confirm the deposit formed on the plate is PPY with some oxidation 

degree. 

 

 

 
 

Figure 3. Initial 10 voltammetric cycles of the PPY electrosynthesis on top of a perforated 304-

stainless-steel plate (working electrode) with an Ag/AgCl reference electrode and AI-304 plate 

as counter electrode. Electrolyte: Py 0.1M + H2SO4 0.1M. Scan rate 0.1 V/s.  

 

 
 

Figure 4. FTIR spectrum of the synthesized PPY coating over a AI-304 perforated steel plate. 
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Figure 5a shows an optical-microscopy-image of the AI-304 plate prior to the PPY deposit. 

Figure 5b shows the PPY-coating morphology, as observed under the microscope, at the end of the 40-

voltammetric-cycles applied. An amorphous, apparently uniform and dark deposit is observed covering 

the steel substrate. Its structure is related to the selected electrosynthesis conditions [20, 37]. 

 

 
 

Figure 5. Optical microscopy images of a) AI-304 steel plate (substrate), b) PPY coating 

electrodeposit after the 40 voltammetric cycles applied 

 

 

 
 

Figure 6. Scanning-electron-microscopy images of the PPY coating electrodeposit after the 40 

voltammetric cycles applied. 

 

3.2.1. Model Performance 

The values of the model parameters were determined from a sequential use of outcomes of each 

experiment case corresponding to a particular Cr(VI) initial concentration; e.g., the cR measurements as 

a function of time for the experiment with an initial Cr(VI) concentration of 50 mg/L were firstly used. 
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Each case consisted of three runs, so the model parameters were calculated for each run in order to 

verify reproducibility. After that, the three derived values of each parameter were averaged. The 

average values of each experiment case were compared to each other in order to verify they fell within 

the same order of magnitude. Table 1 shows the outcomes in k1, k2 and kr. The values are consistent for 

the three different experiment cases studied.  

 

 

Table 1. Values of model parameters determined from each experimental run. 

 

 

Initial cR 
(mg Cr(VI)/L) 

k1 

(1/min) 
k2 

(1/min) 
kr 

(1/min) 
Average 

k1 k2 kr 

50 0.0091 0.77 0.86 0.00913 0.77333 0.87666 

50 0.0091 0.77 0.86 

50 0.0092 0.78 0.88 

100 0.009 0.76 0.88 0.00903 0.76333 0.87666 

100 0.0091 0.76 0.87 

100 0.009 0.77 0.88 

200 0.0092 0.76 0.88 0.00916 0.76333 0.87666 

200 0.0092 0.76 0.87 

200 0.0091 0.77 0.88 

 

 

It is worthy to highlight that all the calculated values are positive. Thus, regarding the 

convective mass transfer constants k1 and k2, it means kRB is larger than kBR, and kBE is larger than kEB. 

In this way, the flow of Cr(VI) ions from within the sample solution to the boundary layer is greater 

than that in the reverse direction. The same applies for the flow between the boundary layer and the 

PPY layer. With respect to kr, it confirms the reaction proceeds in the direction of Cr(VI) ion 

consumption.  

 Figure 7a compares the experimental data of each experiment case to the data predicted by the 

mathematical model. The simulated cR continuous trajectory matches well the experimental cR points. 

This describes a process in which the Cr(VI) initial concentration is gradually decreased to a low value 

within a time span of 240 min. 

 Figure 7b shows the model-estimated evolution of Cr(VI) concentration in the boundary layer 

(cB), which is much lower than cR. It can be confirmed that the values of the terms k1*(cR – cB) and 

k2*(cB – cE) in Eq. 2b, which are related to the ion-net-flow between the stream regions, are of the 

same magnitude order. At the start of the experiment, the first one is greater than the second one, 

leading to an accumulation of Cr(VI) ions in the boundary layer. However, the second one grows up 

fastly and matches the first one, halting the aforementioned Cr(VI) ion accumulation. Furthermore, the 

second term increases still so that the amount of ions leaving the boundary layer becomes greater than 

the one entering it, in such a way the Cr(VI) ion accumulation is diminished. This is reflected at the 

beginning of the cB trajectory, where it fastly grows up to reach a maximum but then it starts to 

decrease. This behavior is observed in the cE trajectory as well (Figure 7c); in this case, the term kr*cE 
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(Eq. 2c) compared to the term k2*(cB – cE) (Eq. 2c) is at first smaller, but it fastly grows up to become 

the largest one, resulting in a low amount of accumulated Cr(VI) ions [32-37, 41-54].  

 

 
 

 

Figure 7. Model performance to describe the Cr(VI) concentration change (a) within the sample 

solution flowing inside the reactor, (b) in the boundary layer, and (c) at the electrode PPY-

layer. 

 

 

The good match between the simulated data generated by the model (Eqs. 5, 6, 7) and the 

experimental outcomes (Figure 7a) confirms the validity of the Cr(VI) reduction scheme depicted in 

Figure 2. It can be safely stated that the ion-transport step is the limiting step of the reduction process, 

since the term related to the net flow of ions from within the reactor stream to the boundary layer (Eq. 

5 or Eq. 6) is of a lower order of magnitude, and the ions at the PPY layer are reduced at the rate at 

which they arrive to such layer. This results point to an advantage related to the PPY layer capacity: 

although the Cr(VI) concentration is relatively high within the sample solution flowing into the reactor, 

the PPY layer is only exposed to a low Cr(VI) concentration, thus its performance is not degraded by 

the high Cr(VI) concentration.  

 

 

 

a 

b 

c 
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4. CONCLUSIONS 

In this work, the Cr(VI) reduction process is carried out with a filter-press-type reactor whose 

working electrode is a PPY-coated stainless-steel plate. The reduction scheme was proposed to consist 

of a series of transport steps of Cr(VI) ions from the sample solution flowing into the reactor to the 

electrode, in addition to the Cr(VI) reduction reaction at the electrode. The mathematical model 

constructed on this basis, and validated with experimental outcomes, confirms the transport steps are 

the limiting step of the overall reduction process, and thus when the Cr(VI) ions reach the electrode 

layer, the Cr(VI) reduction reaction is fastly performed. In this way, the model can be taken as a basis 

for the interpretation and scaling-up of the Cr(VI) reduction process using electrodeposits with 

conductive polymers. From the application point of view, it would be interesting to find other possible 

uses of this type of electrochemical deposits as it is a broad and novel field of study. 
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