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In order to enhance the efficiency of electric vehicle lithium-ion batteries, accurate estimation of the 

battery state is essential. To solve the problems of system noise statistical uncertainty and battery model 

inaccuracy when using the extended Kalman filter (EKF) algorithm to estimate the battery state, a novel 

joint estimation algorithm of SOC and SOH based on the strong tracking-dual adaptive extended Kalman 

filter (ST-DAEKF) is proposed. Based on the extended Kalman filtering algorithm, the fading factor is 

introduced into it to enhance the tracking ability. Meanwhile, the adaptive filter which can statistics the 

characteristics of time-varying noise is used to adjust the noise parameters of the system. The BBDST 

condition and the DST condition at 25 °C are used for simulation and verification in MATLAB. The 

results of the algorithm simulation show that under the BBDST condition, the maximum SOC error and 

the average error of the proposed algorithm are 3.41% and 0.99%, respectively, with the corresponding 

convergence time of 15 seconds. And under the DST condition, the corresponding data is 1.56%, 1.29%, 

and 20 seconds, respectively. At the same time, compared with the extended Kalman algorithm, the SOH 

estimation results of this algorithm also have a better estimation effect and reference value. Under the 

BBDST condition, the maximum SOH error and average error under this algorithm are 0.12% and 

0.06%, with the corresponding data of 0.66% and 0.23% under the DST condition. The above data proves 

the superiority of the joint estimation algorithm. 

 

 

Keywords: electric vehicle; lithium-ion batteries; Thevenin; state of charge; state of health; strong 

tracking-dual adaptive extended Kalman filter 

 

1. INTRODUCTION 

 

With the large-scale promotion of electric vehicles (EVs), the demand for high-power batteries 

represented by lithium-ion batteries is rapidly increasing. EVs have many strengths compared with 
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gasoline vehicles, including low noise, environmental friendliness, and high efficiency [1]. As a result, 

nowadays, using EVs as an alternative to diesel- and petrol-powered cars is highly regarded [2]. In this 

context, a high-tech battery is a crucial element for EVs. There are various types of batteries used as the 

dominant power source in EVs. Among them, lithium-ion batteries are the most popular due to their 

specific characteristics [3]. The use status of a lithium-ion battery can almost determine its life [4]. 

However, if the safety of the lithium-ion battery is not guaranteed, its usable capacity and life will be 

greatly reduced, causing accidents in this case [5]. The performance of the battery and the battery 

management system (BMS) are closely related to the safety of the battery system [6]. It is very necessary 

to establish a BMS for a lithium-ion battery, which is important for monitoring battery states [7-9]. In 

the battery states of electric vehicles, SOC and SOH are the main factors related to the safety of BMS 

and the operating status of the vehicle [10, 11]. Hence, the accurate estimation of SOC and SOH is 

essential for the BMS. The main responsibility of SOC is to indicate the operation status of the battery 

and to protect the battery from over-charging and over-discharging by limiting the battery voltage 

range[12]. On the other hand, SOH is used to describe battery aging and health, which is defined by 

capacity loss or resistance increment[13]. 

So far, various methods have been introduced to estimate SOC and SOH. These methods are 

mainly divided into direct methods and indirect methods[14]. Direct measurement methods mainly 

include the Coulomb counting method, open-circuit voltage method, and electrochemical impedance 

spectroscopy method. When considering the direct method, a formula determined by the physical 

properties of the battery is used to estimate the SOC. A popular direct method is the Coulomb count 

estimation described in detail by Lashway et al.[15]. When the initial value of SOC can be obtained, the 

whole SOC value can be estimated by this method, but it has high requirements for the accuracy of the 

initial value of the SOC because it is an open-loop method. The functional relationship between OCV 

and SOC can be calculated by obtaining a fixed discharge rate, and then the known OCV is used to find 

the corresponding SOC value in the relationship curve. This method is named the OCV method [16]. 

However, this method must be placed for a long time to start the measurement, so it is not appropriate 

to estimate the SOC in actual operation. Electrochemical impedance spectroscopy (EIS) is another 

method to directly estimate SOC and SOH [17-19].  

On the other hand, the indirect method does not use a specific equation but instead uses a battery 

model or system specification mapping. One of the indirect methods is a data-driven estimation. An 

accurate model is not be required in the data-driven estimation method, so some modeling steps can be 

omitted. Typical data-driven estimation methods include fuzzy logic (FL)[20], neural network (NN) [21-

24], deep learning[25, 26] and support vector machine (SVM) [13, 27, 28]. However, data-driven 

estimation methods need to calculate much data and they are complex to train. Another indirect method 

is a model-based estimation. Common models are roughly classified into three categories: 

electrochemical model (EM), equivalent circuit model (ECM), and electrochemical impedance model 

(EIM)[29-32]. Among them, ECM is the most common model. Several adaptive filters, such as extended 

Kalman filter, unscented Kalman filter, particle filter, recursive least squares, H infinity, random forests 

(RF), and Gaussian process regression (GPR) can be combined with this type of model [33-39]. The 

battery SOH can be calculated by the measured internal resistance or the usable capacity. However, the 

online real-time measurement is very difficult, so the model-based estimation methods can be used here 
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to estimate internal resistance or rated capacity. Shyh-Chin Huang et al. proposed a SOC and SOH 

estimation method that considered the instantaneous discharging voltage and its voltage drop per unit 

time as the model parameters related to the SOC function [40]. Nikolao Wassiliadis et al. investigated a 

dual extended Kalman filter algorithm to estimate SOC and SOH jointly [41]. In [42], Miaomiao Zeng 

et al. proposed a SOC and SOH joint estimation method based on the fuzzy unscented Kalman algorithm. 

Reference document [43] analyzed a SOC and SOH estimation method based on the dual extended 

Kalman and multivariate autoregressive model. Mehdi Gholizadeh et al. utilized a systematic mixed 

adaptive observer and EKF approach to estimate SOC and SOH [44]. 

In this paper, a Thevenin ECM is used, which is combined with recursive least square to identify 

the corresponding parameters, respectively, and then the capacity definition method is selected to 

calculate SOH, and finally under the premise that full consideration is given to the reasons for the 

estimation error of SOC, a joint SOC and SOH estimation method is proposed, which is based on the 

ST-DAEKF algorithm. This algorithm uses two extended Kalman filters to estimate the SOC and 

capacity of a lithium-ion battery. Among them, the filter which is used to estimate SOC is combined 

with a strong tracking filter and an adaptive filter. First of all, the introduction of a strong tracking filter 

can effectively reduce the influence of observation noise under complex conditions. Secondly, the 

adaptive filter is used to predict and correct the observed noise in real-time. They can effectively improve 

the accuracy of battery SOC estimation. The results of the simulation show that the joint estimation 

algorithm is not related to the initial value of SOC, with the convergence time of 15 seconds under 

BBDST condition, and at the same time, the SOH estimation results are better and more practical than 

the extended Kalman filter algorithm. 

The rest of this paper is organized as follows: Section 2 introduces the mathematical analysis, 

including equivalent modeling, parameter identification, iterative calculation algorithm, and iterative 

calculation process. Among them, the iterative calculation algorithm reviews the implementation method 

of extended Kalman filtering, puts forward the strong-tracking-dual adaptive extended Kalman filtering 

algorithm on the basis of extended Kalman filtering algorithm in full consideration, and uses the ST-

DAEKF algorithm to estimate the SOC and the capacity. Section 3 analyzes the relevant experimental 

results and discusses the conclusion and finally, the summary of the full text is presented in Section 4. 

 

 

2. MATHEMATICAL ANALYSIS 

2.1. Equivalent modeling  

In order to estimate the charge state of lithium-ion batteries conveniently and accurately, it is an 

important process to select a suitable ECM of lithium-ion batteries. The characterization form and 

accuracy of the internal dynamic characteristics will affect the estimation results of the charged state to 

a great extent. The battery is a highly complex nonlinear electrochemical energy storage device, so it is 

difficult to accurately describe the interaction and reaction in the control process. At present, the common 

battery models include EMs, neural network models, ECMs, and so on. The modeling and calculation 

of the EMs are very difficult, and the computing power of the system may not meet the theoretical 

requirements and is not suitable for engineering applications. The neural network model needs a large 
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number of experimental data to estimate the charge state of the battery, and it is easy to make a big error 

if it is not operated properly. The equivalent circuit model uses the circuit reaction to simulate the internal 

reaction of the battery. The Thevenin model is an equivalent circuit model with a simple structure, which 

can accurately show the internal changes of lithium-ion batteries and meet the needs of general 

engineering applications. The Thevenin model uses series resistors and an RC circuit to simulate the 

internal characteristics of the battery. Compared with the Rint model, the Thevenin model adds an RC 

loop to characterize the internal polarization response of the battery. The internal resistance and RC 

circuit in this model can be used to characterize the dynamic characteristics of the battery. The Thevenin 

model is one of the most commonly used ECMs. Therefore, the Thevenin model is selected based on the 

above judgment, which is shown in Figure 1. 
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Figure 1. Thevenin equivalent circuit model 

 

 

In Figure 1, Ro is the ohmic internal resistance, Rp is the polarization internal resistance, Cp is the 

polarization capacitance Cp, and UL represents the battery terminal voltage. Ro can reflect the 

instantaneous change of battery voltage during charge and discharge. Rp and Cp can reflect the gradual 

change of battery voltage and the polarization effect inside the battery after charge and discharge. 

According to Kirchhoff's law, the equivalent circuit expression can be obtained from the Thevenin model: 
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In Figure 1, Uoc, Ro, Rp, Cp, and UL are consistent with the physical meaning of the corresponding 

variables. Up represents the voltage at both ends of Rp and Cp, and I represents the real-time current in 

the Thevenin equivalent circuit. Among them, the open-circuit voltage Uoc can be nonlinearly 

characterized by the SOC. The definitions of SOC and SOH can be written: 
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 Among them, C0 is the rated capacity of the battery, Ct is the capacity of the battery at time t, η 

is the Coulomb efficiency coefficient, I represents the charge and discharge current, and the direction of 

discharge is regarded as the positive direction. Besides, the capacity definition method is selected to 

calculate the SOH of battery. By using the knowledge of modern control theory, the equivalent model 

can be discretized. Combined with the SOC definition which is shown in Eq. (2), the state space variable 

,,
T

k k p kx SOC U    , the input variable 
 k kU I

, and the output variable ,k o ky U     are selected. A 

discrete state space equation and observation equation can be obtained, as shown in the following 

formulas: 

1,1

, 1 , 1 2,

, , ,

,

1 0

0 1

0

1

p
p

N
kk k

t
T k

p k o k k

p

T

k

o k oc k o k k k

p k

t

Q wSOC SOC
I

U U w
e R e

SOC
U U R I v

U










 






  



  


 
                                     


  
        

(3) 

Wherein, Δt is the sampling interval, τp = RpCp. w is the state error, and v represents the 

measurement error, and their covariance matrices are Q and R, respectively. 

 

2.2. RLS parameter identification 

The methods for identification include offline and online algorithms. The offline algorithms have 

certain accuracy of identification, but they are only applied to some specific conditions. On the contrary, 

online algorithms can estimate the parameters with the change of working conditions and time. They 

have high estimation accuracy and great versatility. Therefore, using an online parameter identification 

method can better identify the model parameters, and the method used is the recursive least square (RLS) 

method[45]. It can reduce the error of the discharge rate change in the off-line parameter identification. 

According to the Thevenin model in Figure 1, the equation for the terminal voltage of the circuit can be 

obtained as shown in the following formula: 
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In Eq. (4), the equation can be obtained by Laplace transformation. Therefore, the following 

discrete system can be obtained through bilinear transformation: 
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Wherein, a, b, and c are the parameters that require to be identified. To realize the least-squares 

principle for parameter identification, the discrete system equation can be expressed as the least-squares 

form in the following formulas: 
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Eq. (6)is the expression of least squares. The equations to calculate the unknown parameters of 

lithium-ion batteries are shown in the following formulas: 
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After obtaining the parameter identification results, Ro, Cp, and Rp need to be calculated according 

to a, b, and c. The mathematical expression can be obtained as shown in the following formulas: 
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According to the principle of recursive least squares, the process of parameter calculation can be 

calculated as shown in the following formulas: 
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The RLS method is a way to estimate the values of a, b, and c, and then according to Eq. (8)and 

Eq. (9), the ohmic resistance Ro, polarization capacitance Cp, and polarization resistance Rp can be 

calculated from the expression of the following formulas: 
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(10) 

Wherein, τ represents the time constant of the RC circuit. In other words, τ=RpCp. T is the 

sampling interval. According to the above equations and the obtained parameters by the RLS method, 

Ro, Cp, and Rp of the Thevenin model can be estimated in real-time accurately. 

 

2.3. Iterative calculation algorithm 

The charging state of lithium-ion batteries is changed due to factors such as temperature, charging 

and discharging states, self-discharge and aging. Lithium-ion batteries have complex internal structures 
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and often exhibit strong nonlinear characteristics. These features make SOC estimation difficult. At 

present, the most commonly used methods for estimating battery SOC in the world include the ampere-

hour integration method, open-circuit voltage method, neural network method, Kalman filter method, 

and corresponding methods of various extended forms. The charging and discharging process of lithium-

ion batteries is a complex nonlinear process, and its SOC estimation accuracy is easily affected by the 

external environment under complex working conditions, making it difficult to quantify and analyze its 

mathematical model with conventional algorithms. In recent years, some new SOC and SOH estimation 

methods have been proposed. Among them, the extended Kalman filter algorithm, the unscented Kalman 

filter algorithm, and the adaptive Kalman filter algorithm are common algorithms used for state 

estimation. The core idea of the extended Kalman filter algorithm is to linearize the state equation of the 

nonlinear system. Then the Taylor formula is used to expand the nonlinear discrete function for 

linearization and the Kalman filter algorithm is adopted for processing. An algorithm which uses two 

extended Kalman filters to estimate the SOC and capacity of a lithium-ion battery is proposed in this 

paper. Among them, the filter which is used to estimate the SOC is combined with a strong tracking 

filter and an adaptive filter. First, the introduction of a strong tracking filter can enhance the tracking 

ability of the estimation results under complex conditions. Second, the adaptive filter is used to predict 

and correct the observed noise in real-time. 

 

2.3.1. Kalman filtering calculation  

Kalman Filter (KF) method is a filtering theory created by the state space theory in the time 

domain. It treats white noise as the observation noise of the system. The input/output equation is given 

in the time domain. The Kalman filter algorithm is mainly used to estimate linear time-invariant systems, 

using recursive linear minimum variance estimation method, using the observable output estimation 

error of the system to repair the unobservable state estimation error, thereby greatly reducing the noise 

in the data stream interference to reduce the error of estimation results. Kalman filter method first 

constructs a set of recursive equations that describe the characteristics of the battery system and can be 

recursively calculated to obtain a system state space expression containing signal and noise. SOC is one 

of the internal states, and then adopts a method based on the previous step. The estimated result and the 

current measurement data are processed by the mathematical method of optimized regression data, and 

the current optimal estimation result is obtained. The strength of this method is that the tracking ability 

is quite great and the dynamic SOC can be measured; however, the Kalman filter method requires high 

accuracy of the battery model, and the calculation is complicated. 

The essence of the Kalman filter method is actually the ampere-hour integration method. While 

monitoring the external current, the collected voltage value is used to make certain corrections. When 

using the Kalman filter method to estimate SOC, an equivalent model needs to be established, and the 

accuracy of the Kalman algorithm is closely related to the accuracy of the model. The standard Kalman 

filter is only widely used in linear systems. The nonlinear system is first subjected to linearization 

preprocessing so that KF can be used. Its advantages and disadvantages are very obvious, and its 

advantage is a high accuracy, even in the case of severe current fluctuations and noise, it also has a good 
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correction effect. The disadvantage is that an accurate battery model needs to be established, and at the 

same time the algorithm requirements are higher. 

The KF method is an effective method in the SOC estimation algorithm of lithium-ion batteries. 

It can continuously correct the current estimated value through the Kalman gain, quickly track the true 

value of the SOC in the continuous loop iterative operation process, and obtain the optimal estimated 

value in terms of the minimum mean square error. The algorithm has a fast speed of convergence and 

high accuracy of estimation. It can correct the initial error of the battery estimation and has a certain 

inhibitory effect on the interference noise. 

When the KF method is adopted to estimate the battery SOC, the battery charging and 

discharging current is used as the input signal, the terminal voltage is used as the output signal, and the 

state of the system is continuously updated through the error between the observed value of the terminal 

voltage and the estimated value of the SOC, so as to obtain the minimum variance estimates the SOC 

value. Kalman filter is to obtain the dynamic estimation of the target by using the minimum mean square 

error criterion in the case of linear Gaussian. The basic flow chart of the KF algorithm is shown in Figure 

2. 
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Figure 2.  The KF algorithm flow chart 

 

The basic idea of the Kalman Filter is to make the optimal estimation of the state of the power 

system with the smallest variance. It is an autoregressive data processing algorithm. The battery cell is 
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regarded as a power system, and the SOC is a state of the system. The algorithm estimates the estimated 

value of the current state variable based on the optimal value of the state variable at the previous moment 

and the difference between the actual value of the observed value and the estimated value, so the 

algorithm is recursive and its reliability is guaranteed. However, it is worth noting that the KF algorithm 

is only widely used in linear systems. In this algorithm, the state equation and observation equation after 

the linear system discretization are as follow: 

1 1 1 1 1
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k k k k k k

k k k k k k

x A x B u w

y C x D u w
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
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Wherein, xk and xk-1 represent the system state variable at time k and k-1, respectively. uk is the 

system input variable and yk is the system observed value at time k. Ak is the transfer matrix of state x 

from k-1 to k, which predicts system variables. Bk is the system control input matrix and Ck is the system 

measurement matrix, which drives the observation and measurement of the forecast system. Dk is the 

feedforward matrix. 

Kalman filtering is a filtering method in the time domain. A state-space model is adopted to 

describe the linear system. The process noise and observation noise of the system are not the objects to 

be filtered. Their statistical characteristics are the information that needs to be used in the estimation 

process. The calculation process is a process of continuous prediction and correction. There is no need 

to store large amounts of data during calculations. Once new data is observed, a new filter value can be 

calculated, which is very suitable for real-time processing and computer implementation. KF can only 

be used in linear systems, so certain linearization preprocessing is required when used in non-linear 

systems. The advantage of KF is that it has high accuracy and is suitable for environments with severe 

current fluctuations. Even in the presence of noise, it has a great effect of correction on the initial value. 

But its disadvantage is the need to establish an accurate model because when using the KF to estimate, 

it is necessary to constantly predict and update the space state equation of the model. At the present 

stage, the commonly used improved KF include extended Kalman filter (EKF), unscented Kalman Filter 

(UKF)[46], cubature Kalman filter (CKF)[1, 47], and so on. The EKF algorithm is improved to be 

suitable for non-linear systems. It linearizes the nonlinear state-space model and then implements it using 

the basic Kalman filter algorithm. The UKF makes up for the shortcomings of EKF in the processing of 

nonlinear systems. The UKF algorithm uses the idea of probability distribution to deal with nonlinear 

problems. UKF is an algorithm that changes the nonlinear function by calculating the statistical value of 

the nonlinear random variable. However, the above improvement methods based on Kalman filtering 

also introduce some defects. 

 

2.3.2. Strong tracking-dual adaptive Extended Kalman filtering  

The classic Kalman filter algorithm estimates in the time domain and does not perform mutual 

conversion between the time domain and the frequency domain. Therefore, its calculations are not 

complicated and it can be well estimated in real-time. It is often used in linear systems. In reality, most 

systems are non-linear stochastic systems, such as lithium-ion battery SOC systems. Therefore, the 

extended Kalman filter algorithm is adopted to solve such problems. The extended Kalman filter 
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algorithm estimates the nonlinear system by linearizing the nonlinear state-space model to achieve 

accurate state estimation. The extended Kalman algorithm is a mathematical method that combines 

probability theory. Its basic idea is to calculate the optimal value of estimation based on the minimum 

variance. Its principle is to combine the state-space model of signal and noise. The extended Kalman 

algorithm is a transformation based on the classic Kalman algorithm in non-linear systems. In this 

algorithm, the state transition function and the measurement function are subjected to the first-order 

Taylor expansion, and the influence of higher-order terms on the system is ignored, and the approximate 

linear space equation is obtained. Then, it is calculated according to the classical Kalman algorithm, 

which is widely adopted in discrete non-linear systems. 

When using EKF to estimate the battery SOC, SOC is treated as a component in the state vector, 

and the current is used as the control variable in the input parameter, and the output is the terminal 

voltage calculated by the equivalent model. Both the system noise and the observation noise are Gaussian 

white noise, and its variance is expressed for Q and R. This method is usually based on the state of the 

system and the measurement equation. The predicted state equation includes the ampere-hour integration 

method for calculating the SOC, and the observation equation reflects the ECM of the lithium-ion 

battery. The accuracy of using the EKF algorithm to estimate the SOC largely depends on the accuracy 

of the equivalent model, so it is essential to establish an apposite equivalent model for lithium batteries. 

The expression equations and observation equations of the discrete non-linear system space as shown in 

the following formulas: 

 

 

1
,

,

k k k

k k k

X f X k w

Z h X k v


 

 



  

(12) 

In Eq. (12), the first equation represents the state equation, and the second equation represents 

the observation equation. k is the discrete-time, Xk is the state value, Zk is the observed value, wk and vk 

are the state error and the observation error respectively, that is, independent Gaussian white noise. When 

dealing with the non-linear problem of lithium-ion batteries, the first-order Taylor series expansion 

method can be used to expand its application in non-linear systems, that is, the first-order Taylor 

expansion of the non-linear functions f(*)and h(*), and the result is considered Is the best estimate at k 

time point. The expansion result is shown in the following formulas: 

   
 

 

   
 

 

ˆ=

ˆ=

,
ˆ ˆ, ,

,
ˆ ˆ, ,

k k

k k

k

k k k k

k X X

k

k k k k

k X X

f X k
f X k f X k X X

X

h X k
h X k h X k X X

X


  




  









  

(13) 

After assigning values to Ak, Bk, Ck, and Dk, the values of Ak, Bk, Ck, and Dk can be obtained, as 

shown in the following formulas: 

 
 

 
 

ˆ=

ˆ=

,
ˆ ˆ, ,

,
ˆ ˆ, ,

k k

k k

k

k k k k k

k X X

k

k k k k k

k X X

f X k
A B f X k A X

X

h X k
C D h X k C X

X


  




  









  

(14) 
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After making a series of linear variations to Ak, Bk, Ck, and Dk, the nonlinear system is transformed 

into a linear system, and the transformed linear system is only related to state variables. Eq. (14) can be 

expressed linearly by the following formulas: 

1k k k k k

k k k k k

X A X B w

Z C X D v


  

  



  

(15) 

Eq. (15) contains a state space equation and an observation equation. Wherein, the meanings of 

Ak, Bk, Ck, and Dk are consistent with the correspondence in Eq. (11) The equation of the initial filtering 

state variable and its variance are as follow: 

    

    

0 0

0 0

X E X

P Var X







  

(16) 

Using Eq. (15) to the discretization model and applying the Kalman algorithm to predict and 

estimate the state space equation, the recursive process of the extended Kalman algorithm can be 

obtained as shown in the following formulas: 

 

 

 

 

1

1 1

1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

k k

T

k k k k k

T T

k k k k k k k

k k k k k

k k k k

X f X

P A P A Q

K P C C P C R

X X K Z h X

P I K C P







 


 

      

 

    



   



 

 

  

 








  

  

(17) 

In Eq. (17), 1
ˆ

kX 

 is the prior state value directly calculated according to the state-space model and 

the previous time 
ˆ

kX
 at k+1, 1

ˆ
kP

  is the corresponding prior covariance error matrix, and Kk+1 is the 

corresponding Kalman gain. After the Kk+1 at the current moment is used for correction, the optimal 

prediction estimates 1
ˆ

kX   and 1
ˆ
kP   of the current state value and the mean square error can be obtained, 

that is, the posterior state vector and the posterior covariance error. I is a unit matrix. Q and R are the 

variance matrices of w and v, respectively, and generally do not change over time. 

The dual extended Kalman Filter (DEKF) algorithm is a method that adopts two Kalman filters 

to estimate the battery capacity and SOC respectively. One of the Kalman filters selects the EKF 

algorithm to estimate the SOC, which takes the SOC as the only state value and the battery capacity as 

a constant value. Another Kalman filter adopts the EKF algorithm to estimate the battery capacity. It 

takes the SOC as an input value and the battery capacity as a state value. The change in battery SOH can 

be obtained by predicting the attenuation change of the capacity. The schematic diagram of the DEKF 

algorithm is shown in Figure 3. 
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System input: 

I、C

System output:

x (SOC & Up)

time k to time k+1

Terminal voltage

System input: 

SOC、Up & I

System output:

C

EKF1 EKF2

Initial x & noise 

covariance

Time update for 

x(k+1|k) & Px(k+1|k)

Calculate Kalman gain 

Kx(k+1|k)

Measurement update for 

x(k+1|k+1) & 

Px(k+1|k+1)

Initial C & noise 

covariance

Time update for 

C(k+1|k) & PC(k+1|k)

Calculate Kalman gain 

KC(k+1|k)

Measurement update for 

C(k+1|k+1) & 

PC(k+1|k+1)

 
 

Figure 3.  The schematic diagram of the DEKF algorithm 

 

 

In Figure 3, capacity is represented by C. The DEKF algorithm can jointly estimate the SOC and 

SOH. In the joint process, the observed value can update and calculate the parameters to improve the 

accuracy of estimation. However, Eq. (17) is only one of the recursive processes of the dual extended 

Kalman filter in the ST-DAEKF algorithm. For another extended Kalman filter, it combines a strong 

tracking filter and an adaptive filter. For achieving the strong tracking characteristics of the filter, a 

couple of conditions need to be met during recursion, as shown in the following formulas: 

  

 

 1 1

ˆ ˆ min

0     1, 2, 3, ; 1, 2, 3,

T

k k k k

T

k k j

k k

E X X X X

E k j

Z h X

 







 

  

        

 





  

(18) 

To make the system have the ability to track sudden changes, a fading factor λk is introduced into 

the error covariance matrix of the EKF to strengthen the proportion of the current observation data. 

Besides, if the noise characteristics are always assumed to be Gaussian white noise, the actual estimated 

error value of the system state will be very different from the theoretically calculated error value. 

Therefore, the introduction of an adaptive filter can continuously estimate and modify the statistical 

characteristics of noise through the measurement data to reduce the error of estimation. The error 

covariance matrix after optimization is shown in the following formula: 

1 1 1

ˆ ˆ T T

k k k k k k
P A P A Q



  
   

 (19) 

In Eq. (19), λk+1 represents the fading factor and Γ is the noise drive matrix. When using the 

orthogonal principle given by Eq. (18) to solve the fading factor, the gradient method is needed. This 

method uses nonlinear programming to solve the optimal decay factor, and the amount of calculation is 

too large to realize online calculation. Therefore, this paper adopts the calculation method of sub-optimal 

fading factor, as shown in the following formulas[48]: 

 

 

 
 

1                    1

=   1

k

k k

k k

k

e

tr N
e e

tr M












  

(20) 

Wherein, Nk and Mk can be expressed in the following formulas: 
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 

 

1

1 1

1

1 1 1

                 1

   1
1

=

k

k

T T

k k k k k

T

T

k
k k k

T T

k k k k k

N V R C Q C

k

V V
k

M C A P A C



 

  







  

    



 








 
 
 



  

(21) 

Vk is the residual covariance matrix; ρ is the forgetting factor with 0<ρ≤1 and β is the weakening 

factor with β≥1. In this paper, the adaptive filter is a statistically large posterior sub-optimal unbiased 

estimator of noise based on measured values. The recursive process of input process noise Q and 

observation noise R is as follows: 

 

 

 

+1 1 1 1 1 1 | 1

0

+1 1 1 | 1

0

1

1

1

1

k

T T T T

k k k k k k k k

i

T T

k

T T T

k k k k k

i

Q G K K P AP A G
k

G

R CP A C
k

 

 

     



  



  


   

 













 

(22) 

The adaptive filter can estimate Q and R online in real-time, and achieve the goal of continuous 

correction of the SOC estimation value, thereby realizing the adaptive correction function to achieve the 

effect of improving the accuracy of the SOC estimation. Therefore, the recursive process of the second 

improved Kalman filter combined with a strong tracking filter and an adaptive filter is shown in the 

following formulas[49]: 

 

 

 

 

1

1 1 1

1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ

ˆ

k k

T T

k k k k k k

T T

k k k k k k k

k k k k k

k k k k

X f X

P A P A Q

K P C C P C R

X X K Z h X

P I K C P









  


 

      

 

    



   



   

 

  

 








  

  

(23) 

In Eq. (23), the fading factor λk+1 is introduced into the EKF algorithm to enhance the tracking 

ability. Meanwhile, the adaptive filter which can statistics the characteristics of time-varying noise is 

used to adjust the noise parameters of the system. It is worth noting that X, P, K, A, and C here are 

different from those in Eq. (17). 

 

2.4. Iterate calculation process 

In the Thevenin model, according to the relationship between voltage, current, and the ampere-

hour integral principle, the state space equation can be obtained as shown in the following formulas: 
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       

 
 

     
0

0

0

0

1

L

p

p

t

t

E t U t R I t u t

u t du
I t C

R dt

SOC t SOC t i t dt
C



  

 

 












 

(24) 

In Eq. (24), E is the ideal voltage source, I is the current through the internal resistance Ro, C0 is 

the rated capacity, η is the Coulomb efficiency coefficient and i represents the charge and discharge 

current. The direction of discharging is specified as the positive direction. The ST-DAEKF algorithm is 

adopted to estimate the SOC and battery capacity. The state equation and the observation equation of 

battery SOC are shown in the following formulas: 

   

 

1 1
1

1 1

| 1 1

,

k k

x x

k k

k k k k oc p k k k

x k k A x k B i w

y h x i v U R i u v

 


 

    

     



  

(25) 

After linearizing the Eq. (25) by first-order Taylor expansion, the corresponding values of Ak
x, 

Bk
x, and Ck

x, of the Thevenin ECM in the Eq. (14) can be obtained as shown in the following formulas: 

Ak
x is the state transition matrix, Bk

x is the control matrix, and Ck
x is the observation matrix. The EKF 

algorithm is selected to estimate the target state, and there is no need to calculate the nominal trajectory 

in advance. The goal of solving the nonlinear equation is to make the noise zero. The extended Kalman 

algorithm is a linear approximate nonlinear process, so it can only be used with filtering errors. 

 
0

ˆ

1 0

0

1

1

k

k

k

k k

x

t

x

t

p

x oc

x x

A
e

t

CB

R e

u
C

soc



















 



  
 
 

  
  
  

 
 

  
 
   

(1) 

In order to estimate the current actual capacity of the battery, it is necessary to establish the 

system state equation about the capacity. Considering that there is no direct relationship between the 

capacity and the terminal voltage, it is necessary to construct a new observation equation. The discrete 

form of the SOC equation of state can be expressed by using the ampere-hour integration method of Eq. 

(24) as the moving term, which can be used as the observation equation for battery SOH estimation. The 

corresponding state equation and observation equation of battery capacity are shown in the following 

formulas: 

     

     
 

 
 

1

1
1

C k C k r k

i k t
z k SOC k SOC k e k

C k

  


    







  

(27) 

Since the capacity of the battery will decay as the number of battery cycles increases, an external 

noise r(k) is introduced into the state equation for estimating the capacity to simulate the decay process 

of the battery capacity. The noise r(k) is selected according to the change curve of capacity decay in the 

battery cycle charge and discharge test. z(k) is the observation parameter, e(k) represents a Gaussian 
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white noise with a mean value of 0. When z(k) is zero, Ak
C and Ck

C can be obtained by applying extended 

Kalman according to Eq. (27), as shown in the following formulas: 

2

1
k

k

C

C

A

i t
C

C






 





  

(28) 

Wherein, Ak
C and Ck

C are the state equation coefficient matrix and the observation equation 

coefficient matrix for estimating the battery capacity. According to Eq. (22) and EKF algorithm, the 

recursive process of input process noise Q and observation noise R is shown in the following 

formulas[50]: 

   

 

+1 1 1 1 | 1

+1 1 1 | 1

1

1

T T T T

k k k k k k k k k k k

T T T

k k k k k k k k

Q d Q d G K y y K P AP A G

R d R d y y CP A C

   

  

    

   



  

(29) 

The recursive process of the ST-DAEKF algorithm concludes with 4 steps. The first step is the 

initialization of the ST-DAEKF algorithm, as shown in the following formulas: 

 

  

 

  

0 0

0 0 0 0 0

0 0
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
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


   


      

(30) 

In the second step, the covariance is predicted. When the EKF algorithm is adopted to estimate 

the battery capacity and SOC, the state prediction equations and the covariance prediction equations are 

shown in the following formulas: 

   

     

         
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

  

(31) 

The third step is to calculate the Kalman gain of SOC and then the state equation and the 

covariance equation of battery SOC are updated. The corresponding equations are as follows: 

           
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
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(32) 

The fourth step is calculating the Kalman gain of battery capacity and updating the state equation 

and covariance equation of capacity. The corresponding equations are shown in the following formulas: 
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(33) 
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To obtain the estimated SOC value and capacity value, it is necessary to loop Eq. (31)to Eq. (33) 

until the end of the ST-DAEKF algorithm. The two EKFs in the ST-DAEKF algorithm estimate the SOC 

and capacity at the same time to exchange information, as shown in Figure 4. 

Input current I and 

terminal voltage UL

Error covariance 

initialization

Terminal voltage 

initialization

Parameter identification

Initial x & noise 

covariance

Time update for 

x(k+1|k) & Px(k+1|k)

Calculate Kalman gain 

Kx(k+1|k)

Measurement update for 

x(k+1|k+1) & 

Px(k+1|k+1)

Initial C & noise 

covariance

Time update for 

C(k+1|k) & PC(k+1|k)

Calculate Kalman gain 

KC(k+1|k)

Measurement update for 

C(k+1|k+1) & 

PC(k+1|k+1)

Capacity fading change

 
 

Figure 4.  The flowchart of the ST-DAEKF algorithm 

 

 

In Figure 4, the first extended Kalman filter estimates x which represents a fast-varying state, and 

the second extend Kalman filter simultaneously estimates C which represents a slow-varying parameter. 

Two extended Kalman filters transmit information to each other at each sampling point. The first EKF 

runs first to estimate the SOC value, and the voltage error is used to update the capacity value in the 

second EKF. 

 

 

 

3. EXPERIMENTAL ANALYSIS 

3.1. Test platform construction 

During this experiment, all experimental process is performed in the power battery large-rate 

charge and discharge tester (BTS750-200-100-4) and the thermostat with a three-layer temperature 

control chamber (DGBELL-BTKS). Besides, the experimental equipment is connected to a high-

configuration host computer that stores and calculates experimental data. The thermostat can effectively 

prevent measurement errors caused by temperature changes. The experimental test platform is shown in 

Figure 5. 
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Figure 5.  Experimental test platform 

 

 

In this paper, a lithium-ion battery with a rated capacity of 70 Ah is selected for the experiment 

and the experimental temperature of the thermostat is set to be constant at 25 °C. Based on the above 

experimental test platform and its corresponding settings, the input values of the RLS method and the 

ST-DAEKF algorithm can be obtained to verify the reliability of the algorithm. 

 

3.2. Identification experiments 

Due to the difference in the dynamic characteristics of lithium-ion batteries during operation, the 

Beijing bus dynamic stress test (BBDST) condition and the dynamic stress test (DST) condition of a 

lithium-ion battery are carried out for online parameter identification. This section takes the BBDST 

working condition as an example to show the process of RLS online identification. The BBDST 

condition is obtained by collecting the real data of the Beijing bus, which collects the data of each link 

such as starting, acceleration, sliding, and so on. The specific steps for setting BBDST conditions are 

shown in Table 1. 
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Table 1.  The steps of BBDST working condition 

 
Ph（kW） Pc（W） Single step

（s） 

Grand 

total（s） 

Working 

condition 
Ph（kW） Pc（W） Single step

（s） 

Grand 

total（s） 

Working 

condition 

37.5 69 21 21 Start 4.5 9 16 150 Sliding 

72.5 135 12 33 Accelerate -15 -27 6 156 Brake 

4.5 9 16 49 Sliding 72.5 135 9 165 Accelerate 

-15 -27 6 55 Brake 92.5 174 6 171 Rapid 

acceleration 

37.5 69 21 76 Accelerate 37.5 69 21 192 Accelerate 

4.5 9 16 92 Sliding 4.5 9 16 208 Sliding 

-15 -27 6 98 Brake -35 -66 9 217 Brake 

72.5 135 9 107 Accelerate -15 -27 6 229 Brake 

92.5 174 6 113 Rapid 

acceleration 

4.5 9 71 300 Parking 

37.5 69 21 134 Accelerate      

 

In Table 1, Ph is the real battery output power of the Beijing bus under starting, acceleration, 

sliding, braking, rapid acceleration, and parking conditions. Since the experimental object studied in this 

article is a lithium-ion battery cell, according to the various parameters of the battery, the power of each 

step is reduced in proportion to perform the BBDST condition and Pc is the output power after 

proportional reduction.  

After importing the recorded data into the RLS method, the ohmic internal resistance Ro, the 

polarization internal resistance Rp, the polarization capacitance Cp and the open-circuit voltage Uoc can 

be identified online. The identification results are shown in Figure 6. 

 

 

 
(a) Identification result of Ro 

 
(b) Identification result of Rp 
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(c) Identification result of Cp 

 
(d) Identification result of Uoc 

 

Figure 6.  Identification results of Ro, Rp, Cp, and Uoc 

 

 

It can be seen from Figure 6(a) that as the decrease of SOC, the ohmic internal resistance Ro first 

fluctuates greatly in the early period, and then increases with a small change range and a slow change 

rate. Additionally, Figure 6(b) shows that the internal polarization resistance Rp tends to stabilize at first 

and increases suddenly in the end. And for Cp which is shown in Figure 6(c), it increases greatly in the 

early period, then gradually stabilizes, and finally increases rapidly. The fluctuation of the parameters is 

mainly caused by the charge and discharge rate. In Figure 6(d), the simulated Uoc can be found that trend 

is consistent with the actual BBDST working condition. 

 

3.3. Complex condition analysis 

To verify the convergence and traceability of the SOC estimation method based on the ST-

DAEKF algorithm, the battery testing equipment (BTS750-200-100-04) provided by Shenzhen 

Yakeyuan Technology Co., Ltd. is used to conduct the BBDST working condition and the DST working 

condition on an AVIC ternary lithium-ion battery cell. The charts of experimental data under these two 

working conditions are shown in Figure 7. 

 
(a) Voltage curve of the BBDST condition 

 
(b) Current curve of the BBDST condition 
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(c) Voltage curve of the DST condition 

 
(d) Current curve of the DST condition 

 

Figure 7.  The charts of experimental data under BBDST and DST conditions 

 

 

In Figure 7, (a) and (b) are the experimental current and voltage curves of the BBDST working 

condition, respectively. Since the BBDST condition is to discharge the battery, it can be found that as 

the number of cycles increases, the current shows an increasing trend and the terminal voltage shows a 

decreasing trend. 

After the parameters are identified online by the RLS method, a Thevenin equivalent circuit 

model is established. In order to verify the validity of the model, the simulated terminal voltage and the 

experimental terminal voltage under BBDST and DST conditions are compared, respectively. And the 

current value measured at this time is used as the input value. The simulated and experimental terminal 

voltages are shown in Figure 8. 

 

 
(a) The voltage curves under the BBDST condition 

 
(b)The voltage curves under the DST condition 

 

Figure 8.  The charts of simulated and experimental terminal voltages 

 

It can be seen from Figure 8that the simulated curves and the experimental curves have the same 

trend, which verifies that the algorithm can effectively simulate the battery discharge under BBDST and 

DST conditions. Based on the ST-DAEKF algorithm, the SOC of the lithium-ion battery under BBDST 
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and DST conditions is estimated. The initial value of the given SOC is 0.95 to compare the convergence 

between the various algorithms. The experimental results of SOC are shown in Figure 9. 

 

 

 
(a) SOC results of various algorithms under the 

BBDST condition 

 
(b) SOC errors of various algorithms under the 

BBDST condition 

 
(c) SOC results of various algorithms under the DST 

condition 

 
(d) SOC errors of various algorithms under the DST 

condition 

 

Figure 9.  The charts of SOC results and errors under different conditions 

 

 

 Figure 9(a) and (b) are charts of SOC estimation results of different algorithms under BBDST 

and DST conditions, respectively. The algorithms include the ampere-hour integration method, the EKF 

algorithm, the dual adaptive extended Kalman algorithm (DAEKF)[50], the strong tracking-dual 

extended Kalman filter (ST-DEKF)[48], the strong tracking-dual adaptive extended Kalman filter (ST-

DAEKF) algorithm, the cubature Kalman filter (CKF) algorithm[24, 51] and the dual adaptive unscented 

Kalman filter (DAUKF) algorithm[35, 52]. Ref represents the reference value of the SOC. Figure 9(b) 

and (d) are the error curves obtained by subtracting the SOC value of different algorithms from the SOC 

reference value under these two conditions, respectively. It can be seen from Figure 9 that the average 

estimation error of SOC based on the Thevenin model and ST-DAEKF algorithm is 0.99%, the 

maximum estimation error after convergence is 3.41%, and the convergence time is 15 seconds under 

the BBDST condition. And under the DST condition, the corresponding data is 1.29%, 1.56%, and 20 

seconds, respectively. Compared with other algorithms, the ST-DAEKF algorithm can correct the error 

of the initial value of SOC better and faster, and the estimation accuracy of SOC is also higher. Besides, 
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under these two conditions, the converge speed of ST-DAEKF algorithm is significantly faster than that 

of DAUKF algorithm which described in document [52]. Although the mean estimation error of CKF 

algorithm which used in literature [51] is small with the value of 1.62% and 1.87% under the BBDST 

condition and the DST condition, the error of the proposed ST-DAEKF algorithm is smaller than that of 

CKF algorithm. Based on the ST-DAEKF algorithm and its corresponding estimation results of SOC 

value, the SOH of the lithium-ion battery under BBDST and DST conditions is estimated. The reference 

value of capacity is 69.0083Ah and the experimental results of SOH are shown in Figure 10. 

 

 

 
(a) SOH results of various algorithms under the 

BBDST condition 

 
(b) SOH errors of various algorithms under the 

BBDST condition 

 
(c) SOH results of various algorithms under the DST 

condition 

 
(d) SOH errors of various algorithms under the DST 

condition 

 

Figure 10.  The charts of SOH results and errors under different conditions 

 

 

Figure 10(a) and (b) are charts of SOH estimation results of different algorithms under BBDST 

and DST conditions, respectively. Figure 10(b) and (d) are the error curves obtained by subtracting the 

SOH value of different algorithms from the SOC reference value under these two conditions, 

respectively. It can be seen from Figure 10 that under the BBDST condition, the average estimation error 

of SOH based on the Thevenin model and ST-DAEKF algorithm is 0.06%, the maximum estimation 

error is 0.12%. And under the DST condition, the corresponding data is 0.23% and 0.66%, respectively, 

which is much smaller than the errors of other algorithms, especially the EKF algorithm. In addition, it 
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can be found from Figure 10(a) and (c) that the estimated SOH value shows a slowly decreasing trend, 

which is in line with the actual situation that the rated capacity of the battery decreases with use. The 

above results verify the improvement effect of the ST-DAEKF algorithm. 

 

4. CONCLUSIONS 

In order to realize the real-time estimation of the SOC and SOH of the lithium-ion battery of 

electric vehicles, considering the tracking ability of the system and the ability to estimate and modify 

the statistical characteristics of noise, this paper proposes a novel joint estimation method of SOC and 

SOH based on the strong tracking-dual adaptive extended Kalman filter (ST-DAEKF) algorithm to 

establish a joint estimation model. The BBDST condition and DST conditions at 25 ℃ are used for 

online parameter identification, model verification, and battery state estimation. The results of the 

algorithm simulation show that under the BBDST condition, the maximum SOC error and the average 

error are 3.41% and 0.99%, respectively, with the corresponding convergence time of 15 seconds. And 

under the DST condition, the corresponding data is 1.56%, 1.29%, and 20 seconds, respectively. 

Meanwhile, under the BBDST condition, the maximum SOH error and average error are 0.12% and 

0.06%, with the corresponding data of 0.66% and 0.23% under the DST condition. The estimated SOC 

and SOH errors under the above two working conditions are relatively small, which verifies the 

reliability of the algorithm and achieves the expected design effects. The accurate SOC and SOH 

estimation for electric vehicles promotes the development of related battery management systems, 

improves the working efficiency of electric vehicles and the use efficiency of their lithium-ion batteries, 

and avoids a series of problems caused by excessive errors in battery SOC and SOH estimation. 
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