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Accurate estimation of the state of charge plays an important role in real-time monitoring and safety 

control of lithium-ion batteries. In practical application, the use of lithium-ion battery will face different 

sudden noise. Extended Kalman filtering (EKF) is deficient in this kind of processing, so this paper 

combines EKF with Bayesian regularized backpropagation neural network, and uses dynamic strategy 

to implement two algorithms to improve the accuracy and speed. Experimental results show that the 

joint algorithm has a stable effect and a good tracking effect under sudden noise conditions. Compared 

with the extended Kalman filtering algorithm, the average error of the algorithm in the capacity test is 

reduced by 0.797%, and the maximum error is reduced by 2.651%. In the dynamic stress test and the 

pulse test, the average error was reduced by 0.2683% and 0.3919%, and the maximum error was reduced 

by 7.195% and 7.769%, respectively. It is verified that the algorithm combining the extended Kalman 

filtering and the back propagation neural network has high accuracy in the estimation of the state of 

charge of the lithium-ion battery under sudden events. 
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1. INTRODUCTION 

 

In the modern world, energy security and green energy have always been the focus of attention 

[1, 2]. It is a necessary way for economy and environmental protection to replace traditional fossil fuels 

with new energy [3-6]. Due to its high energy density, portability, and high-cost performance, the 
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lithium-ion battery has been widely used in the field of new energy [7, 8]. Such as electric vehicles, 

aerospace, special robots, and other industries [9-12]. More and more attention has been paid to its health 

status. Accurate estimation of the state of charge (SOC) of lithium-ion batteries can greatly improve the 

performance and service life of lithium-ion batteries [13, 14]. Therefore, the real-time estimation of 

lithium-ion batteries plays an important role in its safety and usability. 

Due to the wide use of lithium-ion batteries, the working environment is different. Its condition 

monitoring is easily affected by environmental noise [15]. Moreover, the internal chemical reaction of 

lithium-ion batteries is highly nonlinear, usually accompanied by polarization effect and ohmic 

effect. So the traditional algorithm is difficult to estimate the real-time SOC of lithium-ion batteries 

because of these factors [16-18]. Therefore, in the face of complex conditions, it is of great significance 

to use the reasonable and correct algorithm for real-time monitoring and safety control of the lithium-

ion battery. 

At present, the commonly used SOC estimation methods include the open-circuit voltage method 

(OCV) [19], ampere-hour integration method (Ah) [20, 21], neural network method (NN) [22], Kalman 

filtering method (KF) [23, 24], etc. The open-circuit voltage method takes a long time to stand the 

battery, which is not suitable for real-time estimation [25, 26]. Ampere-hour integration is a current 

integration method to estimate SOC [27]. Because the algorithm is simple, the anti-jamming ability is 

weak. If there is a deviation, with the passage of time, the error will be larger and larger, especially in 

the case of large external environmental interference. BP neural network has strong nonlinear 

approximation ability and can also be used for SOC estimation, but the disadvantage is that this method 

needs a large number of battery charge and discharge test data as the basis. If the detection error of 

voltage and current is too large, the estimation accuracy of SOC will be affected. If the algorithm only 

runs BP neural network, it will bring great burden to the running computer, and the calculation time is 

very long [28, 29]. As a typical prediction algorithm, the Kalman filtering is suitable for SOC estimation 

[30, 31], but it will inevitably produce errors in nonlinear processing, especially in the case of 

emergencies, which is easy to produce large errors and depends on the accurate battery model. 

EKF algorithm only calculates the Jacobian matrix of the last time, and the noise is set to a fixed 

value, so it does not have good robustness in the face of emergencies, so an improved dynamic strategy 

algorithm is proposed. BP neural network is combined with extended Kalman filtering (BP-EKF) 

algorithm in the case of strong interference, strong noise and strong deformation. Based on the real-time 

and fast performance of EKF, the nonlinear processing characteristic of BP neural network is introduced 

to calculate the mutation events dynamically, so as to reasonably estimate the SOC of lithium-ion 

battery. The experimental results show that the method is effective and robust. 

 

2.MATHEMATICAL ANALYSIS 

 

In order to ensure a reasonable evaluation of the lithium-ion battery system, the appropriate 

model should be used to build the simulation environment of the battery, and the excellent algorithm 

should be used to estimate it. 
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2.1 First-order equivalent model  

Considering the production application of lithium-ion battery, the first-order equivalent model is 

used to simulate lithium-ion battery. The first-order equivalent model has the characteristics of easy 

identification, few parameters and high accuracy. Its model structure is shown in Figure 1. 

 

 

 

 

Figure 1. First-order RC electrical circuit model 

 

 

In Figure 1, UOC represents the open-circuit voltage, UL is the terminal voltage, and R0 represents 

the ohmic internal resistance. RP and CP represent the polarization effect of the lithium-ion battery. 

According to Kirchhoff’s law and analyzing the model, the following equations can be obtained Eq. (1). 
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According to Eq. (1), using the knowledge of modern control theory, select state space variables, 

input variables and output variables for discretization, and obtain a discrete equation, as shown in Eq. 

(2). 
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   (2) 

In Eq. (2), UP represents the polarization voltage. QN is the rated capacity of the lithium-ion 

battery, and Ik is the current. △t is the sampling time interval, and τ is called the time constant, τ = RPCP. 

 

2.2 Parameter identification 

According to the experimental procedure, the Lithium-ion battery is tested by Hybrid Pulse 

Power Characterization test (HPPC). The HPPC test should be performed under SOC=1.0,0.9,0.8... etc.  
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Figure 2.  One-pulse experimental voltage curve 

 

 

U1-U2 is the ohmic effect caused by R0 in the model, which indicates the effect of rapid voltage 

drop at the instant of battery discharge. The same true for U3-U4. Eq. (3) can be obtained. 

 
(3) 

The polarization capacitance CP and the polarization capacitance RP form RC ring, and the 

polarization effect appears, which indicates that the voltage of U2-U3 increases slowly. From this, the 

relevant parameters can be calculated, as shown in the following Eq. (4). 

 
(4) 

In the equation, the time constant τ=RPCP. By abstracting the above equation, the fitting curve 

can be easily obtained in MATLAB. The curve fitted by each point of HPPC can represent the related 

parameters of the first-order electrical circuit on each SOC, and its accuracy is also high. 

 

2.3 Backpropagation network – extended Kalman filtering 

The basic unit of BP neural network is artificial neuron, which is a multi input and single output 

nonlinear component.  
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（b）Neural network structure diagram 

 

Figure 3. BP neural network 
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The total structure is composed of input layer, hidden layer and output layer. The first stage is 

the signal forward propagation; The input information is processed layer by layer through the input layer 

and the hidden layer, and the actual output value of each unit is calculated; The second stage is the back 

propagation of the error. If the expected value does not match it, the error between the output value and 

the expected value will be calculated, so as to adjust the weight parameters between the layers. The 

schematic diagram is shown in Figure 3. 

The error feedback is particularly important in BP neural network. The output error of the 

network can be expressed by the correlation function of the weight of the input layer Vij and the weight 

of the hidden layer WJK, as shown in Eq.(5). 
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(5) 

The negative sign of the above formula is the direction of weight update, that is, the direction of 

gradient descent. E is the square of the error between the expected output and the actual output. From 

Eq.(6), we can see the weight update representation of hidden layer. 
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(6) 

In the above form η For learning efficiency, the range is (0,1). δk， δJ is the error signal of output 

layer and hidden layer respectively. If the actual output of the neuron is larger than the expected output, 

the weights of all the connections with positive inputs are reduced and the weights of all the connections 

with negative inputs are increased; On the contrary, if the actual output of the neuron is smaller than the 

expected output, the weights of all the connections with positive inputs are increased and the weights of 

all the connections with negative inputs are decreased. The formula reflects the iterative process of 

network weight updating. 
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(7) 

Where JX is the Jacobian matrix of the performance of the deviation variable, E is all errors, I is 

the unit matrix. By using the Bayesian rule method, the correction function mu is introduced into the 

conventional mean square error. By setting the relevant weight parameters as random variables, the 

optimal weight function is determined according to the probability density of the weight. 

The traditional BP network algorithm is optimized to minimize the linear combination of square 

error and weight, and the network obtained at the end of training will have good generalization ability. 

         1 2 dmu L E L E 
 (8) 

Where mu is the performance correction function; L1 and L2 are regularization parameters. E is 

all errors, Ed is the mean square error of network output; The network adjusts L1 and L2 

adaptively. Bayesian regularization can effectively avoid over fitting of data, so that the data will not 

cause divergence and inaccuracy of output results due to the error of individual data. 
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because There may be a big gap in the order of magnitude of the input data, so the adjustment of 

the weight value will be seriously skewed during network training, so it can be solved by data 

normalization, as shown in Eq(9). 
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y is the normalized data, ymax and yman are parameters, set to 1 and - 1. x is the original data, 

xmax and xmin are the maximum and minimum values of the original data. The normalized data can avoid 

the error caused by the difference of input data magnitude, and improve the generalization ability of the 

network. 

The extended Kalman filtering core is the update of covariance and Kalman gain. The Equation 

is as Eq.(10). 

 

 

(10) 

In Eq.(10), there are noises Q and R in the update of covariance P and Kalman gain K. In practical 

applications, Q and R vary with the environment and the internal operating conditions of the battery. 

Because EKF uses local solution, it will bring the influence of the last prediction error to the next 

prediction. Therefore, under sudden events, using BP neural network to avoid the error caused by noise 

will be helpful to SOC estimation. The joint dynamic strategy of backpropagation neural network and 

extended Kalman filtering (BP-EKF) flowchart is Figure 4. 

 

 

 
Figure 4. The joint dynamic strategy of backpropagation neural network and extended Kalman filtering 

flowchart 

 
1 1

1

1 1 1 1 1 1 1

ˆ ˆ

ˆ ˆ

T

k k k k k

T T

k k k k k k k

P A P A Q

K P C C P C R



 


 

      

  



 

Initial SOC value

Estimate model parameters

Enter extended Kalman filtering progress

Strong noise interference 

mutation?

BP net

Initialize network

Load data

Calculate output error

Update weights and thresholds

Achievement of performance 

gradient or performance goal

Estimate The SOC value at time k

data normalization

Calculate the SOC value at time k+1

Calculate the estimated voltage value at time k+1

Estimation error for k+1

Corrected deviation

Correcting the estimated SOC value at time k+1

Obtain the estimated SOC value at time k+1
Data denormalization

SOC output

Input model parameters, current 

and voltage

N

Y

Y

N

data 

normalization



Int. J. Electrochem. Sci., 16 (2021) Article Number: 21118 

  

7 

In Figure 4, to take into account the efficiency and accuracy of the algorithm, dynamic strategy 

planning is needed. The BP neural network is combined with the first-order circuit model to realize the 

five input one output mode which is driven by data and provided by the model. 

First, the EKF program is used to calculate the first-order circuit parameters of SOC. When BP 

neural network is used for input and output under strong interference, the EKF program directly skips 

the update, avoids the influence of a lot of noise and deformation, and prevents the update of covariance 

P and Kalman gain K. Using the identification parameters of the first-order electrical circuit model, 

current and voltage, BP neural network can drive data more accurately and improve its ability to 

approach nonlinearity. 

When the interference is weak, because the interference is small, the estimation accuracy will 

not have too big fluctuation. In order to improve the efficiency of the algorithm, the BP data network is 

not used, but directly into the estimation mode. The SOC value of the next time is estimated by the space 

state equation, covariance, and gain of the previous time. 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

 

3.1 Parameter identification results and backpropagation net 

The parameters of each SOC point are identified by curve fitting, and the data of ohmic resistance 

R0, polarization resistance RP, polarization capacitance CP and open circuit voltage UOC from 0.1 to 1 

are obtained. The model parameters under different states of charge are shown in  

Table 1. 

 

Table 1.  Model parameters under different SOC 

 

SOC R0 RP CP UOC 

1.0 0.001851 0.0006286 13846.64333 4.17955 

0.9 0.001894 0.0006478 12212.1025 4.0387 

0.8 0.001872 0.0007028 11713.14741 3.9186 

0.7 0.001876 0.0007502 11603.57238 3.8078 

0.6 0.001879 0.0006082 13311.41072 3.69695 

0.5 0.001913 0.0004946 16617.46866 3.63365 

0.4 0.001916 0.0005284 17452.68736 3.5968 

0.3 0.001947 0.000595 16060.5042 3.54735 

0.2 0.002017 0.0007432 11469.32185 3.45585 

0.1 0.002152 0.0007654 11411.02691 3.4656 

 

Using Matlab/Simulink to verify, the real voltage and current data under the cycle discharge are 

imported in the first-order electrical circuit model. The model is verified by combining it with the 

parameter identification results. The estimation value is compared with the real value in  
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Figure 5. 
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(b) Estimation error 

 

Figure 5. First-order electrical circuit model simulation results 

 

 

In  

Figure 5, the first-order electrical circuit model has a good tracking effect. The maximum 

estimated deviation is 0.4V, which can characterize the terminal voltage of the battery in operation. 
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Figure 6.  Current and voltage diagram of BBDST under training condition 

 

For BP neural network, this experiment uses Beijing Bus Dynamic Stress Test (BBDST) for 

model training. BBDST condition is complex, which can reflect and better train data. There are 221488 

groups of current and voltage, as shown in  

Figure 6 below. Using the off-line EKF, the current and voltage at this time under BBDST 

condition are taken as input, and the first-order model parameters corresponding to SOC value at this 

time are added as input to form a five input model. The SOC obtained by the ampere-hour integration 

method is taken as the accurate output. The net model of BP neural network training can be obtained. 

 

3.2 Capacity test and HPPC analysis 

In order to verify the accuracy of the improved BP-EKF for SOC estimation of the lithium-ion 

battery, the capacity test experiment and the HPPC experiment are used to verify the estimation. Using 

the trained net model and the first-order electronic circuit model, and setting high interference points in 

the data, the interference points are separated by 100 groups of data. At the same time, the experiment 

uses the ampere-hour integration method and extended Kalman filtering algorithm as references, as 

shown in Figure 7. 
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(b) SOC estimation errors in Capacity test 

 

Figure 7. SOC estimation and error results in Capacity test 

 

 

In Figure 7 (a), the S1 curve is the estimation of the ampere-hour integration method, the S2 

curve is the estimation of extended Kalman filtering, and S3 is the estimation of BP-EKF. In Figure 7(b), 

the ampere-hour integration method is used as the reference value of accurate SOC. Err1 is the error of 

EKF and err2 is the error of BP-EKF. Because of the high interference point, the estimation results of 

the two algorithms are common, but the maximum error of the improved BP-EKF is 2.62%, and the 

maximum error of EKF is 5.24%. Compared with literature [32], this paper improves the numerical 

stability by improving the weight coefficient parameters, but there is always a nonlinear problem. BP 

algorithm is better than its algorithm in nonlinear problems, so its SOC estimation error is less than 

3.51%, while the improved BP-EKF algorithm is less than 2.62%. Therefore, the improved BP-EKF 

algorithm has good results in the face of nonlinear problems. 

In the HPPC experiment, there is a lot of standing time and burst current, and strong interference 

is set in the experiment, so it is necessary to estimate the SOC of the HPPC experiment. As shown in 

Figure 8.  
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(b) SOC estimation errors in HPPC 

 

Figure 8. SOC estimation and error results in HPPC 

 

 

Similarly, the ampere-hour integration method and EKF algorithm are introduced. The 

significance of the curve is the same as that of the capacity test. S1 is ampere-hour integration, S2 is 

EKF, S3 is BP-EKF. Err1 is the error of the ampere-hour integration method and EKF, and err2 is the 

error of the ampere-hour integration method and BP-EKF. It can be seen from Figure 8 that when EKF 

encounters strong interference, the estimated SOC value will change abruptly, which will affect the next 

estimation accuracy and cause the butterfly effect. However, BP-EKF embodies the stability, and the 

maximum error is 0.757%, which is much smaller than the maximum error of 8.49% of EKF. Literature 

[33] proposes to use the iterative parameters of KF for BP training, which will complicate the on-line 

parameter estimation, and the accuracy is only about 2%. BP-EKF is not only faster than this method, 

but also the error reaches 0.757%, so BP-EKF algorithm is better. 

 

3.3 Complex condition analysis 

In practical applications, the real-time current of the lithium-ion battery is complex and 

changeable. In different working conditions, the current is often switched and stopped suddenly, which 

puts forward strict requirements on the dynamic performance of the battery and also brings difficulties 

to the SOC estimation of the lithium-ion battery under complex working conditions. To further verify 

the estimation model for SOC of the lithium-ion battery under more complex application conditions, the 

model is simulated and verified with self-defined DST experimental data. The current and voltage of 

DST are shown in Figure 9 
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Figure 9.  The current and voltage of DST 

 

 

Considering the complex working condition of DST and the large variation of current and 

voltage, high-intensity interference is set every 50 points in the experiment to verify the anti-interference 

performance of the algorithm. And the ampere-hour integration method and extended Kalman filtering 

are introduced for comparison. SOC estimation under DST is shown in  

Figure 10. 
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Figure 10. SOC estimation and error results under DST test 
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S1 represents the ampere-hour integration method, S2 represents EKF and S3 represents BP-

EKF. Err1 represents the error between the ampere-hour integration method and EKF, and err2 

represents the error between the ampere-hour integration method and BP-EKF. From  

Figure 10, the complex working conditions and strong interference make the EKF estimation 

difficult, and the maximum error is 10.48% and unstable. However, the maximum error of the BP-EKF 

algorithm is 3.42%, which shows a good tracking effect, and it can also estimate SOC value well in the 

face of strong interference. Compared with the related literature [34], the EKF algorithm in this literature 

does not perform well in the face of current noise and different temperatures, and even has an error of 

10% at the beginning. Therefore, the improved BP-EKF can stabilize the error and perform well in the 

initial stage of estimation. 

The real-time monitoring of the battery is very important, so the estimation speed is also an 

excellent embodiment of the algorithm. According to the working conditions of the capacity test, 

HPPC and DST, the calculation time is compared (excluding the time of BBDST training net), as 

shown in  

Table 2 below. 

 

Table 2. Running time of each algorithm 

 

Conditions(data) 

Algorithms 

Capacity 

(160000) 

HPPC 

(233574) 

DST (75261) 

EKF 24.549971s 39.780623s 10.043536s 

BP 1349.731788s 2404.429559s 684.297572s 

BP-EKF 28.879908s 45.005655s 14.464077s 

 

 

In  

Table 2, the speed of EKF is the fastest, that of BP is the slowest, and that of BP-EKF is 

medium. But the accuracy of EKF is not high, so BP-EKF shows the characteristics of high speed and 

high accuracy. It is verified that BP-EKF improves SOC estimation of the lithium-ion battery under high 

interference. 

 

 

4.CONCLUSIONS 

It is very important and difficult to accurately estimate the SOC of lithium-ion batteries in 

different environments. In this paper, the first-order electrical circuit model is used to characterize the 

state and output characteristics of the lithium-ion battery, and the HPPC experiment is used to identify 

the parameters. The extended Kalman filtering algorithm is used for fast estimation, and BP neural 

network is used to reduce the influence of strong interference on SOC estimation. The results show that 

the improved dynamic strategy joint algorithm BP-EKF has a good estimation effect. Under the set 

indirect strong interference, the average error can be controlled within 1.609% and the maximum error 
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can be controlled within 3.291% under different working conditions. It is verified that the improved BP-

EKF algorithm is helpful to the SOC estimation accuracy of the lithium-ion battery. 
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