
  

Int. J. Electrochem. Sci., 16 (2021) Article Number: 211213, doi: 10.20964/2021.12.50 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

 

A Novel State of Charge Estimation for Energy Storage Systems 

Based on the Joint NARX Network and Filter Algorithm 

 
Huan Li, Chuanyun Zou1,*, Carlos Fernandez2, Shunli Wang1, Yongcun Fan1, Donglei Liu1 

1 School of Information Engineering, Southwest University of Science and Technology, Mianyang 

621010, China; 
2 School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10-7GJ, UK.  
*E-mail: zouchuanyun@swust.edu.cn  
 

Received: 8 August 2021  /  Accepted: 17 September 2021  /  Published: 10 November 2021 

 

 

Lithium-ion batteries have the advantage of high energy density, low self-discharge rate, and long cycle 

life, and are currently the most widely used energy storage carriers. Accurate state of charge (SOC) 

estimation is essential to ensure the lithium-ion battery's safe and reliable operation. In order to improve 

the accuracy of estimation, this paper creatively applies the extended Kalman filter (EKF) to the 

improved nonlinear autoregressive algorithm with an exogenous neural network (NARXNN), forming 

a NARX-EKF neural network model for SOC prediction of the lithium-ion battery for the first time. This 

method avoids complicated equivalent modeling and parameter identification, rather directly maps the 

measured voltage, current, and temperature to the SOC. The data set is obtained by simulating the driving 

cycle load of the lithium-ion battery under different working conditions, and the network is tested under 

cyclic working conditions, dynamic working conditions, different temperature conditions, and different 

aging cycles. The SOC estimation results of the NARX-EKF model are evaluated from three aspects: 

mean absolute error (MAE), root mean square error (RMSE), and SOC error. Under cyclic conditions, 

the RMSE and MAE of NARXNN are only 1.4% and 1.3%, which is only 50% of other neural networks. 

In the dynamic working condition test, the maximum error of NARXNN optimized by EKF is reduced 

by about 50%, and the RMSE and MAE of the model are only 20% of other neural networks. When the 

ambient temperature changes, the RMSE and MAE of the model under low-temperature conditions were 

1.2% and 0.9% respectively. The RMSE and MAE of the model under high-temperature conditions were 

0.6% and 0.5% respectively. In addition, the NARX-EKF network can well solve the impact of different 

aging degrees of lithium-ion batteries on SOC estimation. When the battery health status is only 70%, 

the RMSE and MAE of the model were only 2.7% and 2.5% respectively. The results show that the 

NARX-EKF model has high accuracy, robustness, and good application prospects. 
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1. INTRODUCTION 

 

With the continuous development of new energy vehicles, large-scale energy storage, unique 

robots, and aerospace equipment, various batteries have been developed in recent years [1, 2, 3]. 

Compared with other batteries, lithium-ion batteries have the advantages of high energy density, low 

self-discharge rate, and long cycle life and are widely used in electric vehicles and other fields [4, 5, 6]. 

However, its online monitoring and security management still faces many challenges. An advanced, 

efficient, and real-time battery management system (BMS) is urgently needed to ensure its safe 

operation. Estimating the state of charge (SOC) of the battery is one of the main tasks of the BMS, which 

mainly affects the charging control, balance adjustment, and safety management of the BMS [7, 8, 9]. 

The SOC of the battery is an essential indicator for evaluating the available energy of the electric 

vehicle battery. Due to the complex structure and complicated working conditions of the lithium-ion 

battery [10, 11], the lithium-ion battery has uncertain characteristics such as nonlinearity and time-

varying. Therefore, it is tough to directly calculate the SOC of the battery [12, 13, 14]. To solve this 

problem, many researchers in the world have conducted a lot of research and for nonlinear problems, the 

main idea is to linearize the system through equivalent circuit modeling or treat the system as a black 

box model through machine learning algorithms. In order to solve the time-varying problem, the main 

technique is to use time series to iterate the system and update the time continuously. The first approach 

is the current integration method [15, 16, 17, 18, 19]. The second approach is through EKF [20, 21, 22], 

PSO [23, 24, 25, 26] and UKF [11, 27] represent the recursive algorithm. The third approach is to use 

machine learning algorithms represented by support vector machines, decision trees, and neural 

networks [28, 29]. 

For the SOC estimation of lithium batteries, the current integration method is currently most 

commonly used and in SOC estimation, its application history is much longer than other methods. This 

is because of its admirable simplicity and the fact that you can ignore the battery's internal structure and 

external circuit characteristics. However, this method estimates SOC in an open loop, and the error 

accumulates over time. Therefore, constant recalibration is required and with the times change, simple 

current integration methods can no longer meet our requirements for accuracy. Since a load of an electric 

vehicle is dynamic, it will inevitably cause noise interference to the current and terminal voltage of the 

battery. Due to the above problems, the Kalman filter recursive algorithm based on the equivalent circuit 

model can greatly improve the noise problem and is widely used in the SOC estimation of single cells 

and battery packs. For the SOC estimation method of battery packs, most scholars treat the battery pack 

as a single large battery through equivalent modeling. Due to the nonlinear characteristics of SOC, EKF 

[30, 31] have been widely adopted. [32] established the BCM of 120 LFP series batteries, adopted the 

second-order RC model to represent the whole pack, and used the improved EKF algorithm to implement 

the battery SOC estimation.  [33] employed EKF to identify MCM parameters online and used the 

Unscented Kalman filter to estimate the SOC of each cell of the battery pack. Although recursive 

algorithms such as Kalman filtering are widely used, the uncertainty in the calculation process of the 

recursive algorithm may accumulate, leading to system instability or divergence. In addition, the 

calculation time of these two algorithms may be much longer than other methods [34, 35, 36, 37]. 
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With the continuous improvement of computer computing power and big data science and 

technology, modern machine learning technology is progressing faster than ever. Scholars from all walks 

of life have studied artificial intelligence algorithms in recent years and applied them in their research. 

Artificial Neural Network (ANN) is a computational model based on the structure and function of 

biological neural networks and is a widely used artificial intelligence algorithm. The artificial neural 

network is self-adaptive and can adjust well to the battery performance of the nonlinear system. Most of 

the ANN-based SOC estimation algorithms use traditional multi-layer perceptrons, which are trained 

through backpropagation. This article will introduce NARXNN for SOC estimation, a dynamic neural 

network with a feedback unit and a recursive neural network. The structure is composed of two parts: a 

feedforward neural network and an output feedback neural network. The network structure adds a delay 

feedback unit to reuse the output feedback. Concerning memory function, NARXNN has a relatively 

strong learning ability, and time series prediction performance is better than ordinary neural networks. 

The voltage, current, and SOC data of the battery during use are time-varying time series, so NARXNN 

is very suitable for battery systems. This article mainly includes the following innovations: (1) To 

improve the performance of NARXNN further, the network output results are optimized through EKF, 

which significantly reduces the random error caused by dynamic changes in working conditions and 

enhances the stability of the network structure. (2) The NARX-EKF model directly maps the voltage, 

current and temperature of the lithium-ion battery to the SOC without complicated processing. (3) The 

NARX-EKF model was trained and tested under different temperatures and complex working conditions 

to ensure that the model is suitable for different driving conditions. (4) The model is tested under 

different aging cycles to ensure that it can solve the impact of different degrees of aging of lithium-ion 

batteries on SOC estimation. 

 

2. MATHEMATICAL ANALYSIS 

Artificial Neural Network (ANN) is a mathematical tool with a multi-layer network structure 

[38, 39]. Each layer contains many processing units called "neurons" as fundamental units [40]. Due to 

its large number of parallel structures, it has high stability and robustness [41]. The ANN-based 

NARXNN method has improved learning performance and fast calculation speed and is suitable for 

solving the nonlinear characteristics of lithium-ion batteries [42].  

 

2.1. NARX neural network 

The NARXNN mainly includes four parts: input delay layer, output delay layer, hidden layer, 

and output layer. As shown in Fig. 1. It can be seen from the structure diagram of NARXNN that after 

the input vector and the output vector are weighted and added, they are input into the hidden layer. The 

hidden layer has data from the input and output delay layers and thresholds to calculate. Then, the data 

of the hidden layer is processed by the function 𝑓ℎ(∙) as the output layer's input data, the output layer 

and the hidden layer also have an output layer threshold. The output data of the hidden layer is multiplied 

by the adjustable weight and then added to the threshold, and then calculated by the function 𝑓0(∙). The 

function expression of the neural network is shown in formula (1): 
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( 1) [ ( ), , ( 1); ( ), , ( 1), ( )]y uy n f y n d y n x n d x n x n     
 (1) 

As mentioned in the above formula, where 𝑓(∙) is the nonlinear function of the neural network, 

𝑥(𝑛) is the network input vector, 𝑦(𝑛) is the network output vector, 𝑑𝑦 is the output delay coefficient, 

and  𝑑𝑢 is the input delay coefficient.  
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Figure 1. NARX network structure 

 

 

The core structure of NARXNN is the delay feedback unit. From the function expression of the 

neural network, it can be seen that the output of the model at the current time is not only related to the 

input value at the previous time but also related to the previous output values. The output data passes 

through the delay feedback unit and the step size of the output feedback is determined by the size of 𝑑𝑦. 

The feedback of the output data can improve the convergence speed of the model and the accuracy of 

the prediction. 

The NARXNN contains two different structures, as shown in Figure 2, (a) is the structure 

diagram of the open-loop network, (b) is the structure diagram of the closed-loop network. In the open-

loop structure, the input and output sequences are known. The real target value is directly input into the 

delay feedback unit to calculate and predict the output value at the next moment. Since the input of the 

output feedback delay unit is a real value, the recursive accumulation of errors is avoided. This mode 

does not have a feedback unit, which will make the network model forward, and the network will 

converge faster and have a higher accuracy during training. In the closed-loop structure, the input signal 

of the delayed feedback unit is the output of the NARXNN at the last time. This mode is used when the 

target variable is unknown, and the input of the feedback layer is the predicted value of the neural 

network at the last time. The NARX network structure is as shown in Fig. 2. 
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Figure 2. NARX network structure in two modes 

 

In the process of predicting the battery SOC, the three variables, voltage, current, and temperature 

can be directly measured by different sensors so that they can be used as the input of the neural network, 

and the target is the value of the SOC at each moment. To evaluate the performance of the NARXNN in 

estimating SOC, this study conducted SOC estimation in two modes, compared and analyzed, and 

summarize the working conditions of the two modes. 

 

2.2. NARX-EKF network 

The essence of the Kalman filter is a series of mathematical calculation equations to realize 

functions such as prediction and correction. An optimal estimation algorithm and the extended Kalman 

filter (EKF) are a kind of Kalman filter. Since the NARXNN lacks stability in the SOC estimation of the 

charging and discharging process under complex conditions, this study will use the extended Kalman 

filter to improve the NARXNN model to optimize the estimation performance of the network model. 

The NARX-EKF model is shown in Fig. 3. 

Generally, the Kalman filter estimation method usually uses the equivalent circuit model to 

establish the observation equation. The ampere-hour integration process gives the discrete state-space 

equation of the system. In this study, the NARXNN model is equivalent to the observation equation. The 

SOC value estimated by the NARXNN is input into the EKF module for filtering, thereby eliminating 

noise and random errors and further optimizing the SOC estimation. Equations (2) and (3) are the state 

equation and measurement equation of EKF, respectively. 

1 ( )k k k k

N

t
SOC SOC i w

Q





  

 
(2) 

k k kE SOC v     

(3) 

In the above equations, 𝑖𝑘 is the current value at time k, 𝑆𝑂𝐶𝑘 is the estimated value of the SOC 

state at time k, η is the charge and discharge efficiency, 𝑄𝑁 is the rated battery capacity, 𝑤𝑘 and 𝑣𝑘 are 

process noise and measurement noise, 𝐸𝑘 is the estimated value of the NARXNN at time k. The Jacobian 

matrix is obtained by using Taylor series expansion to linearize the state space equation. A more accurate 
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result can be obtained in a nonlinear dynamic system than the primary Kalman filter, thereby reducing 

the cumulative error of the open-circuit voltage. 
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Figure 3. NARX-EKF network structure 

 

 

The Kalman filter method after the extended application is called the extended Kalman filter 

algorithm. The recursive steps of EKF are shown in Table 1. 
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Table 1. EKF algorithm steps 

 

Algorithm Operation

1

   1 1 1| 1 1k k kx k k A x k B i     

Step

Initialization 0|0 0|0,x p

2 State prediction

3 Covariance prediction   1 1 1
ˆ| 1 T

k k k kP k k A P A Q    

4 Calculate Kalman gain  
1

T T

k k k k k k kK P C C P C R


 

5 State update      ˆ | 1 | 1k k L kx x k k K U k C x k k      

6 Noise covariance update  ˆ
k k k kP E K C P 

 
 

As shown in the above table, 𝑥0|0 represents the initial value of the state quantity, 𝑝0|0 represents 

the initial value of the state error covariance, 𝑥(𝑘|𝑘 − 1) represents the one-step prediction value of the 

state, 𝑖𝑘−1 is the input of the system at 𝑘-1, which is the current at k in the SOC estimation, and 𝐴𝑘−1 

and 𝐵𝑘−1  are the state transition matrix at 𝑘 -1, 𝑃(𝑘|𝑘 − 1)  and  �̂�𝑘−1  are the predicted value and 

estimated value of the state error covariance matrix, respectively. 𝐾𝑘 and 𝐶𝑘 are the Kalman gain value 

and state conversion matrix at time 𝑘, Q, And R represent the variance value of process noise and 

observation noise respectively. The noise value is difficult to determine and therefore, usually, it is 

enough to keep debugging to achieve the best algorithm. R and Q in this article are 0.1 and 0.001, 

respectively. 𝑈𝐿(𝑘) represents the system observation value at time 𝑘, that is, the SOC value output by 

NARX. 

 

 

 

3. EXPERIMENTAL ANALYSIS 

In order to verify the feasibility of the NARXNN in lithium-ion battery SOC estimation, an 

accurate lithium-ion battery SOC estimation model was constructed. The estimation accuracy and 

convergence of the model are verified under various experimental conditions. In this study, the ternary 

lithium-ion battery placed in the high and low temperature test box was tested using a power cell high-

rate charge-discharge tester. The experimental platform is shown in Fig. 4. To simulate the complex EV 

battery load behaviour, the test object needs to perform a DST test, BBDST test, cyclic charge and 

discharge test, and different cycles of aging tests. 
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Figure 4. Experimental test platform  

 

3.1. Analysis of cyclic charging and discharging conditions 

The cyclic charging and discharging condition of the lithium-ion battery is the aging life test of 

the battery. To explore the accuracy of the SOC estimation of the NARXNN under the cyclic condition, 

the ambient temperature is set to 25 degrees. The data set is obtained by charging and discharging the 

battery for 100 cycles of constant voltage and constant current. The working condition data curve is 

shown in Fig. 5. 

 

 

 
（a）Voltage curve 

 
（b）Current curve 

 

Figure 5. Data curve of cyclic charging and discharging conditions  

 

As shown in the figure above, (a) is the voltage curve, and (b) is the current curve. To avoid 

overcharging or over-discharging the battery, the entire cycle of charge and discharge is performed 

within a safe threshold. In this experiment, 70% of the dataset was used for open-loop NARXNN 

0 200000 400000

2.8

3.2

3.6

4.0

U
(V

)

t(s)

4.2001

2.7492

0 200000 400000

-40

-20

0

20

40

I(
A

)

t(s)

22.5136

-22.5012

45.0148

-45.0086



Int. J. Electrochem. Sci., 16 (2021) Article Number: 211213 

  

9 

training, and closed-loop NARXNN verified the remaining 30% of the data. The detailed program flow 

chart is shown in Fig. 6. 
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（b）Parallel NARX network test 

 

Figure 6. Cycle charge and discharge condition training test flow chart  

 

As shown in the figure above, (a) is the sequence open-loop NARXNN training process. In the 

training process, current, voltage, and SOC are used as input variables, the SOC fitted by current integral 

is used as the target of network training, and the training output is SOC.  
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Figure 7.  Estimation and simulation of cyclic charging and discharging conditions. 
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target is removed. Current and voltage are obtained as output to acquire SOC under the action of network 

mapping. The simulation result of the cyclic charging and discharging conditions are shown in Fig. 7. 

As shown in the figure above, (a) is the SOC simulation diagram, (b) is the error curve diagram, 

(c) and (d) are the comparison diagrams of RMSE and MAE respectively. It can be observed that 

NARXNN has a good response and robustness in the test of cyclic working conditions and can accurately 

estimate the constantly changing SOC. From (b), (c), and (d), it can be seen that the maximum error of 

NARXNN is about 2.5%, which is smaller than other neural networks, and RMSE and MAE are only 

1.4% and 1.3% respectively, which are much lower than other neural networks. In terms of calculation 

cost, the time spent by BPNN, FNN, and NARXNN is the same, about 30s. However, the ElmanNN 

needs more time. 

 

3.2. Dynamic operating condition analysis 

Through open-loop network training and closed-loop network testing, the improved algorithm 

has the characteristics of high accuracy and low delay, but this method is suitable for uncomplicated 

cycle conditions. In order to further verify the applicability of NARXNN, the closed-loop NARXNN is 

used for training and testing. On this basis, the complexity of the working conditions is increased. The 

dynamic working condition dataset is shown in Fig. 8. 

 

 

 
（a）DST voltage curve 

 
（b）DST current curve 

 
（c）BBDST voltage curve 

 
（d）BBDST current curve 

 

Figure 8. Dynamic working condition data set 
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complex working conditions, the DST working condition data is used as the training set, and the BBDST 

working condition data is used as the test set. As shown in the above figure, (a) is the voltage under DST 

working condition, and (b) is the current under DST working condition, both of which are the input 

variables of the training set. (c) and (d) are BBDST operational condition data used as input variables of 

the test set. The algorithm simulation is shown in Fig. 9.  
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Figure 9. Dynamic operating conditions test. 
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unstable. To suppress the noise caused by the data mutation, the EKF is added to reduce the tip error. (c) 

and (d) show that the various algorithms optimized by EKF have significantly reduced the tip error, and 

the maximum error has been reduced by about 50%. It can be seen more intuitively from (e) and (f) that 

the RMSE and MAE of NARXNN are only 20% of other neural networks, proving the superiority of the 

NARXNN. Compared with deep neural networks[43], the model proposed in this research has greater 

advantages. After EKF optimization, the error of each neural network is significantly reduced, which 

dramatically improves the estimation accuracy of the algorithm. This shows that EKF can effectively 

maintain the stability of the network and improve the estimation accuracy of the network. In terms of 

calculation cost, as the amount of data and the complexity of working conditions increase, to obtain the 

best estimation effect, the training time of each neural network has to be increased relative to simple 

working conditions. NARXNN, FNN, BPNN take about 90s to optimize, but ElmanNN takes more time. 

 

3.3. Narrow temperature change test 

Temperature is a critical parameter that affects SOC estimation. Seasonal changes, day and night 

changes, and heat generated during charging and discharging will all affect the surface temperature of 

the battery. To explore the impact of ambient temperature changes on the neural network's estimation 

performance, the network will be trained using the BBDST working condition data when the ambient 

temperature is 25°C, and the tests will be performed at the ambient temperature of 15°C and 35°C. Fig. 

10 shows the simulation of the algorithm narrow temperature change test. 
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（b1）SOC estimation without EKF 

optimization 

 
（b2）Estimated error without EKF 

optimization 

 
（b3）SOC estimation optimized by 

EKF 

 
（b4）Estimated error optimized by EKF 

(b) Test simulation when the ambient temperature is 35°C 

 
（c）RMSE 

 
（d）MAE 

 

Figure 10. Narrow temperature change test simulation. 
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be seen that the NARX-EKF network can well solve the impact of narrow temperature changes on SOC 

estimation. 

 

3.4. SOC estimation under different aging cycles 

For unaged lithium-ion batteries, an excellent SOC estimation effect can be achieved through the 

NARX-EKF network and after hundreds of cycles, the internal characterization parameters of lithium-

ion batteries change. Therefore, under different aging cycles, the accuracy and robustness of the 

proposed method are evaluated. As shown in Fig. 11, the capacity degradation performance of the 

(LiNCA) battery was evaluated under the four milestone aging cycles (42, 84, 126, and 168 cycles). 
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after 42 aging 

cycles 

 
(b) SOH change 

after 84 aging 

cycles 

 
（c）SOH change 

after 126 aging 

cycles 

 
(d) SOH change 

after 168 aging 

cycles 

 

Figure 11. SOH change under different aging cycles 
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and 168 cycles of aging LiNCA batteries to test the performance of the trained model. The test result is 

shown in Fig. 12. 
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(a3) SOC estimation optimized by EKF 
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（d1）SOC estimation without EKF 

optimization 

 
 (d2) Estimated error without EKF 

optimization 

 
(d3) SOC estimation optimized by EKF 

 
(d4) Estimated error optimized by EKF 

（d）168 aging cycles 
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Figure 12. Simulation test under different aging cycles 
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respectively. When the battery is deeply cycled, the SOC accuracy will further decrease. After 168 aging 

cycles, the RMSE and MAE reached 2.7% and 2.5% respectively. However, under all aging cycle 

conditions, the SOC error remains below ±5%. After EKF optimization, the MAE and RMSE of all 

algorithms are significantly reduced.  The RMSE and MAE of NARX-EKF are reduced by about 30% 

relative to NARXNN. In addition, compared with the GPR model, the model proposed in this study has 

greater advantages. The GPR was validated through experiments and obtained SOC error under 6% 

under different dynamic profiles and aging cycles[39]. It can be seen that the NARX-EKF network can 

well solve the impact of different degrees of aging of lithium-ion batteries on SOC estimation. 

 

 

4. CONCLUSIONS 

This paper presents a method for estimating the SOC of lithium-ion batteries based on the 

NARX-EKF neural network. In selecting the dataset, the data under different working conditions are 

used as the network's training set and test set, including DST working condition, BBDST working 

condition, cyclic charge and discharge working condition, and data under different aging cycles. 

Experimental results show that the open-loop NARXNN structure is suitable for cyclic operating 

conditions. The maximum error of NARXNN is about 2.5%, which is smaller than other neural networks. 

RMSE and MAE are only 1.4% and 1.3% respectively, much lower than other neural networks. The 

NARXNN can follow the reference value stably for dynamic working conditions, and the error is 

maintained within 4%, which is much lower than other neural networks. The NARXNN optimized by 

EKF reduces the maximum error from 4% to 2.2%. The accuracy is increased by 80%, which shows that 

the NARX-EKF network has high accuracy in battery SOC estimation. Considering the influence of 

ambient temperature, a NARXNN is constructed for narrow temperature changes. The experimental 

results show the estimation advantage of NARXNN. Under low-temperature conditions, its RMSE and 

MAE are 1.2% and 0.9%, respectively. Under high-temperature conditions, the RMSE and MAE are 

0.6% and 0.5%, respectively. After EKF optimization, both the RMSE and MAE are significantly 

reduced regardless of high temperature or low-temperature conditions. In addition, under different aging 

cycle tests, the SOC error is kept within ±5%, which is far better than other neural networks. After EKF 

optimization, the RMSE and MAE of the NARX-EKF are reduced by about 30% relative to NARXNN. 

Compared with traditional model-based estimation methods, this method is completely driven by data 

and is not limited by battery materials or models. Therefore, it can be easily applied to battery 

management systems of different types and scenarios for the accurate estimation of SOC. 
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