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Electrochemical emission spectroscopy (EES), an improved electrochemical noise measurement, was 

applied for monitoring corrosion rate of 2014 aluminium alloy in NaCl and Ce(NO3)3, and corrosion 

type was analysed by wavelet transform and artificial neural network. Reliability of EES was verified 

by monitoring corrosion of 2014 aluminium alloy  in the passivation, pitting and inhibition systems, 

because the results from EES, linear polarization resistance technique and morphology observation were 

in good agreement. In order to process data obtained by EES, artificial neural network was introduced 

to build the relationship between wavelet results and corrosion types, and results of confusion matrix 

and receiver operating characteristic curve demonstrated that artificial neural network is an excellent 

method for intelligent recognition for corrosion type. 
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1. INTRODUCTION 

 

Metal corrosion assessment is of great importance from laboratory research to industrial 

monitoring [1]. Metal corrosion monitoring techniques mainly contain mechanical techniques (gravity 

method etc. al), physical techniques (sound waves detection etc. al) and electrochemical techniques. 

Electrochemical techniques, including Tafel extrapolation technique, linear polarization resistance 
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(LPR) test technique, electrochemical impedance spectroscopy (EIS) technique, and electrochemical 

noise (EN) technique, have advantages of easy monitoring corrosion rate and corrosion type [2, 3], so 

they are applied widely. In Tafel extrapolation technique the polarization curves are extrapolated from 

Tafel regions of either anodic or cathodic or both, and a cross-over  point is determined at corrosion 

potential, where corrosion current density (icorr) is easily available from current density axis [4]. So, it 

can obtain synchronously icorr and Tafel parameters from this method. However, electrode polarization 

far from corrosion potential [5, 6] can alter specimen surface conditions and distort the results. Therefore, 

it is a destructive method and difficult to apply in the field of corrosion monitoring. From linear 

polarization resistance test technique, polarization resistance, Rp, can be calculated as the relationship 

Rp= (∂E/∂I) when potential equals to corrosion potential, and based on Stern-Geary relationship (icorr= 

B/Rp) corrosion current density can be obtained, where B can be calculated by the anodic and cathodic 

Tafel slopes [7]. It almost overcomes the destructive shortcomings because only a small region near free 

corrosion potential is investigated, and it is time-saving [8]. It can be used for online corrosion rate 

monitoring. But for conversion of polarization resistance to corrosion current density, Tafel parameter 

must be known beforehand, which provides little or no information to corrosion type. EIS is a method 

that usually applies a small AC signal (generally a sine wave with small potential amplitude) to a wide 

frequency range at a lot of discrete frequencies, and measures the AC response at each frequency. By 

analyzing EIS data, polarization resistance Rp can be obtained [9, 10], but it is hard to interpret EIS data. 

In addition, the full impedance is also time-consuming, which is a critical weak point in real-time 

corrosion monitoring application. The electrochemical techniques have damage to metal surface in 

different degrees, which is different from the freely corroding state in a known system.  

In recent years, electrochemical noise technique is applied to corrosion monitoring [11-16]. It 

has three advantages: firstly, it overcomes the destructive nature of other techniques, where no external 

current or potential signal is necessary; secondly, it is time saving, by which corrosion rate can be 

determined even in 256 s; thirdly, it can recognize corrosion type of a corrosion system without 

additional disturbance by using the natural potential and current signal fluctuations [11-14]. Two 

equivalent electrodes are employed to determine corrosion rate in conventional EN technique, because 

noise resistance has a random and statistical nature, and there is an empirical relationship between 

polarization resistance and noise resistance [17-19]. However, it is extremely unrealistic to prepare two 

completely equivalent electrodes under field test conditions. In order to overcome this drawback, 

electrochemical emission spectroscopy (EES), an improved EN technique, is developed, where one work 

electrode is the monitored specimen, and the other one is replaced by a platinum wire electrode, 

providing a simple way to indicate localized corrosion. It has a great potential in industrial corrosion 

monitoring [11].  

Because a large amount of data is obtained from EN monitoring, it is impractical to process these 

data manually. Artificial neural network (ANN) is a technique to deal with the problem. ANN can 

simulate human nervous system to learn and has been applied to solve problems of corrosion field [20-

22]. Its greatest strong point is that the clear mathematical relationship between research factors and 

objectives is not required to be known; ANN learns and identifies patterns in factors and objective 

variables from experimental sample data without presuming their properties and relationships in advance 

[23-25]. In order to reduce the error between the predicted value and the observation value, the 
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connection weight between neurons is gradually adjusted and finally determined. Recently, ANN is 

introduced into corrosion field gradually. Birbilis [22] develops an ANN model for predicting corrosion 

rate of magnesium-rare earth alloys. Cavanaugh [26] applies ANN as a powerful tool to model maximum 

pit dimensions effectively, revealing that in most environment, pit growth rule followed t1/3 kinetics. 

Kamrunnahar [20] used it to learn the basic law of the relationship between alloy element content, 

environmental factors and corrosion rate, so as to classify and prioritize some parameters, and understand 

the influence of the interaction between factors on corrosion. Sosa [27] firstly uses grey correlation 

analysis to study effect of many factors on external corrosion rate of oil and gas pipelines in soil, 

including soil physical and chemical properties, service length and coating performance; secondly, the 

influence weight of each factor is determined; lastly, by ANN the damage prediction model between 

pitting depth and external corrosion influencing factors is built. Hu [28] establishes the model between 

temperature, oxygen content, hydrostatic pressure and corrosion current density of a high strength steel 

in deep sea environment by using artificial neural network, and predicts the polarization curve of the 

material under different conditions. Lee [29] proposes an artificial neural network model to correlate the 

corrosion rate of 3C steel with seawater environmental factors. The prediction with the unobserved 

experimental data is in good agreement with the experimental values. In addition, the developed model 

is applied to simulate the comprehensive effects of environmental factors on corrosion rate. The effect 

of single factor on the corrosion rate is evaluated quantitatively. 

In the present work, an instantaneous corrosion monitoring technique combining EES and ANN 

was developed to identify corrosion type and corrosion rate of 2014 aluminium alloy in NaCl and 

Ce(NO3)3 solutions. Firstly, the accuracy of corrosion rate monitoring by EES was verified by 

comparison with LPR technique results of 2014 aluminium alloy in different systems, such as 

passivation, pitting and inhibition system. Then, corrosion type was determined by wavelet analysis of 

EN data, which was associated with the micro corrosion morphology observation of the samples. Finally, 

artificial neural network was used to automatically recognize corrosion type from relative energy result 

of wavelet analysis.   

 

 

 

2. BACKGROUND OF EN ANALYSIS 

2.1 Wavelet analysis 

Wavelet analysis is a typical analysis method for EN used in corrosion research. Supposing a 

time series xp (p is a positive integer) in real space, wavelet method can be regarded as windowed Fourier 

analysis, which uses the basis composed of oscillatory functions with finite time span to represent time 

records xp. The basis functions Ψq,m and φq,m originate from function Ψ and scaling function φ according 

to the follow transformation Eq.(1, 2): 

  (1) 

  (2) 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220213 

  

4 

where m is natural number from 1 to P/2, P is the time series number; q is natural number from 

1 to Q, Q is a small positive integer which is determined primarily by P and the basis functions, both m 

and q belong to integers set. The scale parameter is 2q, and the translation parameter is 2qm. The original 

time record x(t) is reconstructed by linear superposition of basis functions Ψj,m and φj,m as Eq.(3): 

  (3) 

where sJ,m, dj,m, …, d1,m before basis functions are the corresponding coefficients. According to 

the algorithm of Eq. (3), decomposition of the time series signal, x = (x1, x2, …, xP), can be completed 

by a low and high frequency set, corresponding to the information of overall signal trend, and the local 

fluctuations detail information [30], and all coefficients (sQ, d1, d2, …, dQ) containing general trend and 

details are obtained. A coefficient set (sQ, d1, d2, …, dQ ) is defined as a crystal, encoding different 

information characteristic of the original signal. The whole signal decomposition were carried out by 

using wavedec function in Matlab. The so-called sym of the eighth order orthogonal function φ(t) was 

applied.  

After obtaining the coefficients, the relative energy (Eq) of each crystal was calculated. It 

corresponds to the name of the crystal, which is called the energy distribution plot (EDP). The overall 

signal energy is calculated as follow: 

  (4) 

In order to evaluate the contribution of each crystal to the whole crystal, the crystal relative 

energy is defined as following two equations: 

  (5) 

  (6) 

For details readers can refer to the papers of our work group [30, 31]. In our study EDP (  and 

 versus crystal) are used to character localized corrosion type [30, 31].  

 

2.2 Artificial neural network  

Artificial neural network is a computing system which is inspired by the biological neural 

networks. It is based on a collection of connected units or nodes called artificial neural, which models 

the neural in a biological brain [20, 22]. Actually, it can be regarded as a highly complex modeling tool 

building complex relationships between any number of inputs properties and output targets, or looking 

for patterns in a large amount of data. ANN has inherent advantage in analyzing and predicting the 

system behavior, which cannot be directly expressed by analytical equations. The backpropagation 

artificial neural network is one of the most commonly used artificial neural network. A gradient descent 
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algorithm is used to minimize the average squared error between the network’s outputs and the target 

values. Considering a given training set {(x1, t1), …, (xk, tk)}, it has k groups of experimental samples, 

which has p input characteristics and q output characteristic, and neuron connection weights are 

randomly selected. When the input xi (i = 1, 2, 3, …, k) in the training data set is transferred to the 

network, an output xoi is obtained after calculation, which is generally different from the target ti in the 

training data set. By gradually reducing the error function as Eq.(7) to the minimum value, the neuron 

weight and neural network are finally determined [20]. 

  (7) 

 

 

 

3. EXPERIMENT 

3.1 Material and electrolyte  

The research material is 2014 aluminum alloy (abbreviated as 2014AA) hot rolled plate, and its 

composition is displayed in Table 1. The samples processed by wire cutting were roughly ground to 240 

grit-finish, degreased and dried, and then encapsulated in epoxy resin with 25 mm × 20 mm surface 

exposed for testing. All specimens were wet ground to 2000 grit-finish, washed with distilled water, 

degreased with alcohol and dried in hot air. The electrolyte solutions used were 0.6 mol/L NaCl, 0.03 

mol/L Ce(NO3)3, and 0.6 mol/L NaCl + 0.03 mol/L Ce(NO3)3, which corresponded to pitting, passivation 

process and corrosion inhibition system. 

 

 

Table 1. Composition of 2014 aluminium alloy (wt.%) 

 

Si Fe Cu Mn Mg Cr Ni Zn Ti Zr Al 

0.92 0.5 4.67 0.78 0.64 0.017 0.029 0.082 0.022 0.003 balance 

 

3.2 Preparation of EES corrosion probe 

Firstly, both the Ag/AgCl solid reference electrode and the 50 μm diameter platinum wire were 

embedded together in the epoxy resin as an EES probe. The structure is shown in Fig. 1. Secondly, the 

EES probe was wet ground to 2000 grit, washed with distilled water, degreased with alcohol and dried 

in hot air. Thirdly, the EES probe was activated in 0.15 mol/L dilute hydrochloric acid for a week. 
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Figure 1. Diagram of the experimental device: (1) EES probe, (2) work electrode, (3) solution, (4) a 

constant temperature water bath, (5) electrochemical workstation, (6) Ag/AgCl solid reference 
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3.3 Electrochemical measurement 

The classical three electrode system was used for linear polarization test. Platinum wire is used 

as the counter electrode and silver chloride electrode is applied as the reference electrode. In order to 

reach a relatively stable open circuit potential (OCP), the specimen was immersed for 15 min prior to 

the polarization test. The scanning rate of linear polarization test is 0.333 mV/s from -20 mVOCP to 20 

mVOCP once every 30 minutes during 3 hours immersion period.  

Electrochemical noise tests were carried out by EES probe. Each group of electrochemical noise 

test has 2048 data points, and the sampling frequency is 5 Hz. The EN data soaked for 3 hours were 

collected, then it was analyzed in time domain and frequency domain, respectively. In the time domain, 

the noise resistance (Rn), which is conceptualized as the ratio of the standard deviation of potential noise 

to the standard deviation of current noise, is one of the most important parameters in statistical analysis, 

and it is be bound up with the polarization resistance (Rp). The reciprocal of noise resistance 1/Rn or  

polarization resistance 1/Rp is positively correlated to corrosion rate according to Stern-Geary 

relationship [32]. In addition, in the frequency domain, fast wavelet transform is applied to EN data 

analysis,  and sym8 wavelet was used. In addition, the direct current trend is eliminated by 5th order 

polynomial fitting before EN analysis [30, 33]. 

Linear polarization test and EES experiments temperature was  25 ± 2oC, and they were repeated 

at least three times for accuracy and reproducibility. In order to study accuracy of corrosion monitoring 

probe of EES, the results of Rn in different solutions were obtained from EES data, which associated 

with the polarization resistance Rp. The test solution compositions were displayed in Table 2. Corrosion 

types described were determined by micro corrosion morphology observation on the sample surface, and 

combining with the behavior of these corrosion systems and the interpretation of EES data by early 

researchers [34, 35]. 
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Table 2.  Concentration of solutions used to simulate different corrosion types [35] 

 

Corrosion types Solutions 

Passivation Ce(NO3)3  (0.06 mol/L) 

Pitting NaCl (0.6 mol/L) 

Inhibition NaCl (0.6 mol/L) + Ce(NO3)3 (0.03 mol/L) 

 

 

3.4 ANN topology  

The ANN topology shown in Fig. 2 is as follows: eight inputs, one hidden layer with 10 neurons, 

and three outputs, whose transfer functions are both tangential modulating functions (tansig). The inputs 

are relative energies Ed
j (i = 1, 2, …, 8) of current electrochemical noise signal by wavelet analysis, and 

outputs are corrosion types in different solutions. Intelligent recognition was applied by Matlab toolbox-

nprtool, which has an ANN nature. In this pattern recognition, three different output classes representing 

corrosion types were coded as matrixes: passivation - type 1 - [0 0 1], pitting - type 2 - [0 1 0] and 

inhibition - type 3 - [1 0 0]. The optimization algorithm was the widely used Levenberg-Marquardt 

algorithm and error minimization tolerance value equaled 1%. A randomly selected 122 (75%) datasets 

and 16 (10%) datasets were employed for training and validation of the neural network, and the rest 24 

datasets (15%) were applied to test. All the 162 datasets without normalized processing are shown in 

Appendix 1. 

 

 
 

Figure 2. ANN topological structure used for intelligent recognition, which was composed of 8 inputs, 

a hidden layer with 10 nodes, and 3 outputs 
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4. RESULTS AND DISCUSSION 

4.1 Reliability of corrosion rate monitoring by EES 

During the immersion period, some typical transients electrochemical noise after DC trend 

removal of 2014AA in Ce(NO3)3, NaCl, and Ce(NO3)3 +NaCl solutions are recorded in Fig. 3-5, 

respectively. From Fig. 3a, during the immersion period shorter than 500 s, the same trend was depicted 

in both potential and current signals. Based on Butler-Volmer relationship in electrochemical theory, the 

experiment result demonstrated that 2014AA surface underwent anodic dissolution 2014AA [30]. 

During this period from 3600 s to 4100 s in Fig. 3b, it exists a relationship between potential and current 

noise that a positive potential noise matched a negative current noise shift, or a negative potential noise 

responded a positive current noise shift, which indicated that pitting corrosion occurred on 2014AA alloy 

surface. The trend from 7200 s to 7700 s in Fig. 3c was the same with that in Fig. 3b. In Fig. 3d the 

transient was in accordance with that in Fig. 3a. 

 

 

 
Figure 3. Typical electrochemical noise transients of 2014AA in Ce(NO3)3 solution during the different 

soaking time (a) from 0 to 500 s, (b) from 3600 to 4100 s, (c) from 7200 to 7700 s, (d) from 

10300 to 10800 s 

 

In Fig. 4a, during the first 500s, the potential and current noise signals are large, and then 

gradually decrease. During the immersion period from 3600 s to 4100 s in Fig. 4b, the opposite trend 

was depicted in the potential and current signal, demonstrating that 2014AA alloy surface undertook 

pitting corrosion. From 7200 s to 7700 s in Fig. 4c and from 10300 to 10800 s in Fig. 4d, the same trend 

with that in Fig. 4b was observed.  
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Figure 4. Typical electrochemical noise transients of 2014AA in NaCl solution during different soaking 

period (a) from 0 to 500 s, (b) from 3600 to 4100 s, (c) from 7200 to 7700 s, (d) from 10300 to 

10800 s 

 

 

In Fig. 5a, within less than 500 s, the increasing trend of current signal corresponded to the 

increasing trend of potential signal, and the decreasing trend of current signal corresponded to the 

decreasing trend of potential signal. In Fig. 5b, the same trend was seen in the potential and current 

signal before 3800s, however, in the second half of the time, potential and current signal was opposite. 

It can be referred that pitting corrosion occurred, and then it became activated anodic dissolution on 

2014AA surface with pitting inhibited [30]. The trend of potential and current signals was consistent in 

Fig. 5c. In Fig. 5d, the potential signal trend was contrary to current signal trend in the early stage, but 

in the later stage potential and current signal trends were consistent. It can be seen that corrosion 

mechanism changed. From Fig. 5a-d it can be judged that the corrosion mechanism changed alternately. 
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Figure 5. Typical electrochemical noise transients of 2014AA in Ce(NO3)3 + NaCl solution during the 

soaking time (a) from 0 to 500 s, (b) from 3600 to 4100 s, (c) from 7200 to 7700 s, (d) from 

10300 to 10800 s 

 

 

Fig. 6 records linear polarization results of 2014AA in different solutions, and slopes of these 
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consistent, which indicated that corrosion rate monitoring by EES in passivation, pitting and inhibition 

systems was practicable. 
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Figure 6. Linear polarization curves of 2014AA in (a) Ce(NO3)3, (b) NaCl, (c) Ce(NO3)3 +NaCl solution 

during the different immersion period 

 

 
 

Figure 7. Corrosion rates of 2014AA by EES and LPR technique varying with immersion time in (a) 

Ce(NO3)3, (b) NaCl, (c) Ce(NO3)3 +NaCl solution 
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corrosion morphology result in Fig. 8b, 2014AA specimens indeed suffered from metastable pitting 

corrosion, and the pitting cavities with approximately 1-2 μm size scattered over the 2014AA specimen 

surface, which was in good agreement with the result of wavelet analysis.  

 

 

 

 

 
 

Figure 8. The EDPs and micro corrosion morphology of 2014AA after 10,800 s immersion in (a, b) 

Ce(NO3)3, (c, d) NaCl and (e, f) Ce(NO3)3 +NaCl solution 
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Fig. 8c shows EDPs during immersion period in accordance with the current noise in NaCl 

solution shown in Fig. 4. The relative energy distribution shows different characteristics. In the corrosion 

process, relative energy mainly concentrated in d6 - d8 crystals, and from d6 to d8 it increased gradually. 

Due to the details of the wavelet analysis of high frequency and low frequency corresponding to fast and 

slow corrosion process, respectively, it was inferred that from crystal d6 2014AA underwent pitting 

corrosion, and from crystal d8 diffusion process prevailed corrosion process. The results of corrosion 

morphology observation (in Fig. 8d) indicated that many pits with different sizes were observed on the 

sample surface, some of which were 4-5 μm. Results of wavelet analysis and corrosion morphology were 

in consistent with each other.  

Fig. 8e presents the EDPs in correspondence with the current noise in Ce(NO3)3 + NaCl solution 

shown in Fig. 5. Relative energy accumulated in d1-d3 crystals. Moreover, energy decreased gradually 

from d1 to d8. Compared to EDPs of wavelet analysis in Ce(NO3)3 solution the relative energy in d1 and 

d2 crystals still remained high; however, the relative energy of large scale decreased, suggesting that 

diffusion and pitting growth may be inhibited. Generally, relative energy distribution accumulated at 

shorter time crystals for the solution with Ce3+ than that without the inhibitor. Compared with the results 

of 2014AA in NaCl solution, the relative energy maximum changed from large scales (d7-d8) to small 

scales (d1-d4). This suggested that once pitting initiation occurs at the beginning of corrosion, the pitting 

development will be inhibited by Ce3+ anions. This suggested that once a first event initiated during the 

corrosion process, the development of the pit was inhibited by the Ce3+ anion, which was similar with 

Aballe’s result [37]. So, 2014AA in Ce(NO3)3 + NaCl solution mainly suffered from pitting nucleation 

and metastable pitting. The corrosion morphology of 2014AA in Ce(NO3)3 + NaCl solution revealed 

that the pit cavities with various sizes on the surface were observed in Fig. 8f. It should be noted that 

both the pitting size and pitting density were higher than that in Ce(NO3)3 solution, meanwhile, were 

lower than that in NaCl solution. This was attributed to the inhibition effect of Ce3+ anion [37]. In brief, 

according to the results in passivation, pitting and inhibition systems, it can be concluded that the 

determination of corrosion type based on wavelet analysis were reliable and accurate. 

 

4.3 Intelligent recognition of corrosion type by ANN 

A large amount of EDPs can be collected as training data of ANN, and an ANN model can be 

used to recognize corrosion type in different solutions. There are two indexes for evaluating the network, 

confusion matrix and receiver operating characteristic (ROC) [38]. In Fig. 9 it displays the confusion 

matrices for training, testing, and validation dataset, as well as the combination of the three datasets.  
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Figure 9. Confusion matrixes of ANN intelligent recognition of corrosion type for training, validation 

and test datasets: (a) training, (b) validation, (c) test c 

 

From the result of the large number of correct responses in the green box and a small number of 

error responses in the red box, it can be seen that the network outputs were accurate. The blue box in the 

lower right corner shows high overall accuracy. In the training confusion matrix, horizontal coordinate 

and vertical coordinate represent actual corrosion type and predicted corrosion type by ANN, 

respectively. For example, in this confusion matrix at the upper left corner, all samples for actual 44 

corrosion type 1 (36.1% in proportion) were correctly classified as corrosion type 1, and in the first line 

of the second column corrosion type 2 were incorrectly marked as corrosion type 1. All correct guesses 

are at the diagonal of the table, so it is ready to check the errors in the table because they are outside the 

diagonal. At the lower right corner, it represents the recognition rate of all the corrosion type. In the 

training datasets corrosion type has a 100% recognition rate. Similarly, in validation matrix and test 

matrix recognition ratio of all corrosion types reaches 100%, which manifests that intelligent recognition 

of corrosion type by ANN is reliable. 
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For statistics, receiver operating characteristic curve (ROC curve) is a graphical tool, which 

indicates the diagnostic ability of binary classifier system with recognition threshold varying, and it is 

generally used to estimate the classification performance. Considering a dichotomy problem, instances 

are divided into positive or negative classes. For a binary problem, there are four situations: if the 

instance is positive, and the model correctly or wrongly classifies it, the case is true positive (TP) or false 

negative (FP), respectively. Conversely, if the instance is negative, and the model is correctly or wrongly 

classified, it is defined as true negative (TN) or false negative (FN) [39]. According to previous 

definitions, two indicators can be determined: the true positive rate (TPR) defined by Eq. (8) and the 

false positive rate (FPR) calculated by Eq. (9) [39]. 

 

 
 

(8) 

 

 
 

(9) 

 

Fig. 10 presents the ROC graphic representing sensitivity against (1-specificity). Through the 

method, the best model is chosen according to the relative trade-off between TP and FP modes. Every 

point in the ROC graphical represents a classifier. In simple terms, ROC located near the upper left 

corner shows that the intelligent recognition by ANN provides a better classification performance. And 

the point (0, 1) in the upper left corner indicates a good classification.. Fig. 10a, Fig. 10b and Fig. 10c 

depict ROC curves of training, validation, and test datasets, respectively. Blue, green, and red lines 

curves overlap together, so it seems as only one red line. In Fig. 10, the ROC is closest to the upper left 

corner, so the ANN model with 10 hidden neurons exhibited very good classification characteristic. Both 

confusion matrix and ROC curves demonstrated that the ANN is an excellent method for intelligent 

recognition for corrosion type.  

 

  



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220213 

  

16 

 
Figure 10. ROC curves of ANN intelligent recognition of corrosion type for (a) training, (b) validation 

and (c) test datasets 

 

From the research EES with analysis via ANN exhibits some interesting and good perspectives 

for the field corrosion monitoring technique. Considering the large amount of field data, the application 

of relatively mature big data technology for ANN in corrosion monitoring in recent years is very 

promising, but there are some challenging issues to develop this kind of corrosion technique. Firstly, 

when many features (temperature, oxygen content, ions concentration etc.) are involved, ANN training 

may be hard to meet the requirements, maybe we can select several main variables through principal 

component analysis to reduce the scale of model training data; secondly, there is no specific basis for 

the selection of artificial neural network structure, but mainly depends on the judgment of experience; 

thirdly, ANN prediction is a prediction method based on data processing, which lacks physical basis, it 

is better to establish a hybrid model combining with a deterministic model, improving prediction 

accuracy.  

 

 

 

5. CONCLUSIONS 

An instantaneous corrosion monitoring technique combining EES and ANN is developed in order 

to determine corrosion type and corrosion rate. The corrosion rates and corrosion type of 2014AA in 

three corrosion solutions were measured and automatically recognized by the method, which agrees with 

the results of the standard LPR technique and morphology observation. It was also illustrated that this 

technique provides a feasible method to monitor localized corrosion. 

The EES developed from the EN technique. Of course, it inherits all strong points of the EN 

technique. And the data analysis method of EN technology is also available for EES technique. 

Moreover, ANN is useful for intelligent recognition of corrosion type by processing thousands of EES 

data. From the results of confusion matrix and ROC curves, the ANN trained is successful in prediction 

and recognition of corrosion type. 
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APPENDIX 1  

 

Datasets of relative energy in different crystals and corresponding corrosion type for ANN training, 

validation, and test. 

 
Crystal 

1 

Crystal 

2 

Crystal 

3 

Crystal 

4 

Crystal 

5 

Crystal 

6 

Crystal 

7 

Crystal 

8 

Corrosion 

type 

0.10807 0.50133 0.23358 0.02543 0.02812 0.027 0.02899 0.04749 1 

0.10455 0.44746 0.24192 0.02584 0.03096 0.0308 0.05415 0.06432 1 

0.21947 0.33966 0.2096 0.0476 0.0184 0.01826 0.04361 0.1034 1 

0.22799 0.37864 0.20308 0.04245 0.02054 0.02375 0.01477 0.08878 1 

0.12755 0.44845 0.19172 0.02097 0.02475 0.03042 0.03776 0.11838 1 

0.07424 0.31203 0.12025 0.01662 0.02457 0.02277 0.03631 0.39321 1 

0.14148 0.37383 0.21035 0.03012 0.02236 0.03762 0.0797 0.10453 1 

0.13103 0.42429 0.18511 0.03504 0.02436 0.02502 0.09111 0.08403 1 

0.11946 0.49046 0.19815 0.01555 0.03096 0.03004 0.04538 0.07001 1 

0.11467 0.4411 0.18999 0.01795 0.02719 0.02344 0.04591 0.13975 1 

0.11314 0.43522 0.21533 0.01523 0.02865 0.0346 0.03763 0.12019 1 

0.12803 0.47728 0.24837 0.0189 0.02574 0.03063 0.0431 0.02795 1 

0.10563 0.42262 0.20717 0.01593 0.01627 0.04505 0.06648 0.12084 1 

0.09157 0.3506 0.16756 0.0106 0.02315 0.05084 0.09388 0.2118 1 

0.11489 0.47698 0.22455 0.0133 0.02309 0.04193 0.04567 0.0596 1 

0.12066 0.46617 0.23612 0.02164 0.03369 0.04005 0.05258 0.02909 1 

0.09337 0.36621 0.18269 0.01999 0.01883 0.04283 0.04918 0.2269 1 

0.10419 0.39047 0.18078 0.01606 0.02624 0.02829 0.05688 0.19709 1 

0.10632 0.44778 0.18625 0.0142 0.02076 0.02444 0.06523 0.13502 1 

0.11564 0.46598 0.21702 0.0087 0.02669 0.03181 0.06723 0.06693 1 

0.08235 0.35526 0.1457 0.0117 0.0209 0.02386 0.03678 0.32346 1 

0.09707 0.39244 0.15676 0.01205 0.02714 0.0385 0.07794 0.1981 1 

0.11657 0.47218 0.19396 0.01524 0.02679 0.03573 0.07959 0.05993 1 

0.09603 0.39128 0.16883 0.01644 0.02403 0.02434 0.09744 0.1816 1 

0.12168 0.49668 0.20131 0.0118 0.01815 0.0399 0.04403 0.06646 1 

0.11373 0.44258 0.18956 0.01587 0.02168 0.05134 0.07903 0.08623 1 

0.09596 0.40943 0.16519 0.00968 0.01359 0.03219 0.05438 0.21958 1 

0.08986 0.36122 0.15178 0.01542 0.01782 0.01842 0.08132 0.26417 1 

0.10543 0.41994 0.16876 0.01428 0.02309 0.03755 0.03697 0.19397 1 

0.11691 0.50606 0.18883 0.01434 0.02105 0.02282 0.05956 0.07043 1 
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Crystal 

1 

Crystal 

2 

Crystal 

3 

Crystal 

4 

Crystal 

5 

Crystal 

6 

Crystal 

7 

Crystal 

8 

Corrosion 

type 

0.09385 0.36401 0.15585 0.01101 0.01694 0.04385 0.12473 0.18975 1 

0.10416 0.40349 0.17281 0.00996 0.01433 0.04852 0.09048 0.15625 1 

0.09407 0.3951 0.16153 0.01343 0.01752 0.03417 0.0995 0.18469 1 

0.11998 0.48862 0.22041 0.01793 0.01799 0.03707 0.0775 0.0205 1 

0.12109 0.46896 0.20607 0.01044 0.01493 0.03034 0.03599 0.11217 1 

0.10188 0.39651 0.19215 0.0108 0.01832 0.05868 0.06149 0.16017 1 

0.11742 0.46328 0.19689 0.00821 0.01796 0.03126 0.04195 0.12302 1 

0.10443 0.42192 0.17124 0.00982 0.01268 0.03498 0.05687 0.18805 1 

0.09144 0.38115 0.1623 0.01304 0.01345 0.0336 0.05706 0.24794 1 

0.11169 0.45385 0.19194 0.01579 0.01923 0.04348 0.10502 0.05901 1 

0.10964 0.4827 0.20889 0.01228 0.02063 0.02609 0.03002 0.10974 1 

0.08634 0.36129 0.16277 0.01193 0.01378 0.03832 0.12438 0.2012 1 

0.10916 0.43123 0.21496 0.01119 0.02314 0.0431 0.06461 0.10261 1 

0.11243 0.46625 0.21286 0.01859 0.01618 0.03944 0.06997 0.0643 1 

0.11268 0.43444 0.17818 0.01494 0.02418 0.03749 0.06345 0.13464 1 

0.10416 0.41816 0.17069 0.00753 0.02282 0.03305 0.07745 0.16615 1 

0.10078 0.43447 0.19731 0.0185 0.01654 0.03206 0.07128 0.12906 1 

0.11008 0.3834 0.20293 0.03884 0.01388 0.04562 0.0388 0.16646 1 

0.12589 0.52045 0.24022 0.01468 0.01092 0.01189 0.04216 0.03379 1 

0.10349 0.50079 0.2022 0.01344 0.01625 0.03456 0.05293 0.07635 1 

0.10464 0.46832 0.19495 0.00683 0.00851 0.01739 0.04891 0.15045 1 

0.09251 0.42181 0.19444 0.00715 0.00795 0.02231 0.0691 0.18472 1 

0.10209 0.43977 0.20735 0.01858 0.01562 0.02503 0.07118 0.12037 1 

0.10585 0.47823 0.22354 0.01385 0.01194 0.02197 0.06179 0.08284 1 

0.22468 0.28232 0.2552 0.11659 0.04815 0.02631 0.01664 0.03012 2 

0.27928 0.31348 0.19356 0.06924 0.02977 0.02449 0.03123 0.05895 2 

0.26908 0.32568 0.17512 0.08167 0.04687 0.02931 0.03093 0.04135 2 

0.25098 0.30759 0.19873 0.10588 0.04336 0.03802 0.043 0.01243 2 

0.21326 0.27711 0.218 0.10793 0.09284 0.05396 0.02568 0.01122 2 

0.22646 0.28391 0.20918 0.11391 0.05098 0.05826 0.03262 0.02468 2 

0.24764 0.33151 0.18201 0.10407 0.05101 0.02865 0.03285 0.02227 2 

0.25446 0.28894 0.19315 0.10807 0.06419 0.05276 0.03099 0.00745 2 

0.23688 0.27662 0.17891 0.11224 0.07485 0.04693 0.02629 0.04728 2 

0.22278 0.30307 0.1935 0.13351 0.06029 0.04736 0.0153 0.02419 2 

0.22351 0.28699 0.20532 0.08612 0.06787 0.06372 0.03956 0.02692 2 

0.22146 0.30004 0.18748 0.13301 0.06759 0.03833 0.03534 0.01676 2 

0.24021 0.30591 0.20322 0.09706 0.0438 0.03105 0.03833 0.04042 2 

0.20574 0.28885 0.22256 0.11347 0.07168 0.04949 0.04004 0.00819 2 
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Crystal 

1 

Crystal 

2 

Crystal 

3 

Crystal 

4 

Crystal 

5 

Crystal 

6 

Crystal 

7 

Crystal 

8 

Corrosion 

type 

0.18471 0.26114 0.20775 0.13059 0.07952 0.06124 0.0402 0.03485 2 

0.21963 0.29897 0.17716 0.12037 0.05625 0.0407 0.06877 0.01815 2 

0.17786 0.24029 0.17311 0.1437 0.13283 0.05152 0.04288 0.03781 2 

0.17784 0.26377 0.23064 0.11084 0.08701 0.05709 0.05167 0.02114 2 

0.1798 0.30241 0.20386 0.09476 0.11654 0.06295 0.02999 0.0097 2 

0.20984 0.27947 0.23267 0.12164 0.05249 0.03989 0.03734 0.02665 2 

0.19431 0.28754 0.21544 0.12408 0.07823 0.04215 0.03322 0.02504 2 

0.2014 0.27298 0.24309 0.13555 0.04488 0.05749 0.02961 0.01499 2 

0.22933 0.32929 0.20953 0.132 0.05021 0.02682 0.01231 0.01052 2 

0.20667 0.28856 0.17505 0.13432 0.08501 0.05372 0.0321 0.02458 2 

0.19159 0.28232 0.2105 0.10331 0.05897 0.07314 0.04617 0.03401 2 

0.16712 0.25158 0.21184 0.10296 0.11852 0.06137 0.06076 0.02585 2 

0.15911 0.24492 0.19871 0.16849 0.12026 0.0277 0.05013 0.03068 2 

0.17388 0.29074 0.19147 0.14019 0.07324 0.05982 0.02832 0.04234 2 

0.1624 0.2497 0.23261 0.15701 0.06036 0.05463 0.06067 0.02262 2 

0.18113 0.26715 0.24301 0.1316 0.05565 0.06221 0.03209 0.02714 2 

0.17065 0.29144 0.23667 0.10705 0.06074 0.04461 0.0156 0.07325 2 

0.17424 0.30172 0.19967 0.12054 0.06914 0.05152 0.04018 0.04299 2 

0.19939 0.26337 0.22056 0.14434 0.06036 0.05868 0.03879 0.01451 2 

0.17437 0.26254 0.19227 0.12385 0.08058 0.08007 0.02584 0.06047 2 

0.1706 0.26694 0.22298 0.10129 0.09103 0.0697 0.03821 0.03926 2 

0.19203 0.29894 0.22681 0.10587 0.09934 0.04568 0.01323 0.01811 2 

0.19243 0.3077 0.19474 0.1141 0.06196 0.06104 0.03386 0.03415 2 

0.18477 0.26196 0.20868 0.14707 0.0811 0.04506 0.02948 0.04188 2 

0.20193 0.3002 0.21003 0.12055 0.06552 0.04328 0.03057 0.02791 2 

0.17973 0.30364 0.1934 0.11044 0.06449 0.0716 0.04858 0.02811 2 

0.19792 0.28814 0.2185 0.14063 0.06061 0.03934 0.03381 0.02105 2 

0.01826 0.02504 0.02746 0.03554 0.04685 0.06171 0.05994 0.72536 3 

0.01095 0.01705 0.01371 0.0219 0.03067 0.04276 0.12095 0.73905 3 

0.01969 0.02894 0.02713 0.02842 0.04703 0.06072 0.15943 0.62791 3 

0.01747 0.02271 0.01777 0.01596 0.0286 0.04279 0.05873 0.79476 3 

0.01704 0.02277 0.01883 0.02066 0.0483 0.05957 0.20617 0.60638 3 

0.02447 0.03047 0.02719 0.0263 0.03432 0.0574 0.0787 0.72189 3 

0.027 0.03781 0.02742 0.02731 0.03251 0.0636 0.08339 0.69965 3 

0.01916 0.02392 0.02059 0.03608 0.04608 0.04392 0.12294 0.68824 3 

0.03724 0.04711 0.03942 0.03142 0.06044 0.06089 0.15244 0.56889 3 

0.00879 0.01314 0.01558 0.01069 0.01334 0.03116 0.0442 0.86253 3 

0.01312 0.01854 0.01724 0.01462 0.02537 0.04065 0.06943 0.80163 3 
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20 

Crystal 

1 

Crystal 

2 

Crystal 

3 

Crystal 

4 

Crystal 

5 

Crystal 

6 

Crystal 

7 

Crystal 

8 

Corrosion 

type 

0.042 0.051 0.04685 0.057 0.0655 0.0535 0.262 0.4225 3 

0.0391 0.05427 0.04359 0.04915 0.0812 0.11068 0.10812 0.51282 3 

0.02718 0.0343 0.03063 0.02602 0.02845 0.04296 0.1993 0.60915 3 

0.04383 0.05765 0.04286 0.04505 0.05408 0.09796 0.24439 0.4148 3 

0.02699 0.04286 0.02722 0.03545 0.10827 0.10489 0.38722 0.26654 3 

0.02619 0.0346 0.03016 0.03206 0.05143 0.09175 0.1781 0.55873 3 

0.02495 0.03083 0.03135 0.0342 0.05829 0.14197 0.1886 0.48964 3 

0.02208 0.02778 0.0264 0.02949 0.05365 0.07472 0.17303 0.5927 3 

0.02212 0.02615 0.02514 0.03715 0.04525 0.18464 0.42458 0.23575 3 

0.03112 0.0412 0.0412 0.05468 0.08652 0.11124 0.22921 0.40449 3 

0.02495 0.03495 0.02929 0.04045 0.05437 0.10744 0.07864 0.63107 3 

0.01713 0.02211 0.01826 0.02231 0.03202 0.0657 0.11219 0.71074 3 

0.02152 0.03188 0.02931 0.03753 0.07249 0.06452 0.57069 0.17275 3 

0.02194 0.02926 0.02336 0.0247 0.04341 0.08705 0.09544 0.67626 3 

0.00755 0.01113 0.00907 0.00911 0.01349 0.02821 0.14245 0.77925 3 

0.00902 0.01268 0.01179 0.00792 0.01703 0.04227 0.13043 0.76932 3 

0.01152 0.01741 0.01118 0.01168 0.02348 0.02923 0.0647 0.83067 3 
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