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Accurate estimation of state of charge (SOC) of lithium-ion batteries is the core technology of battery 

management system and the key to prolong battery life. However, it is difficult to estimate SOC 

accurately online and the estimation accuracy is not high. Taking ternary lithium battery as the research 

object, a Back-Propagation (BP) neural network optimized by multi-population genetic algorithm 

(MPGA) is proposed to compensate the nonlinear errors caused by EKF in the process of linearization 

and to avoid genetic algorithm (GA) immature phenomenon. The BP neural network optimized by 

MPGA is used to predict the EKF error at k time, so as to compensate the nonlinear error at extended 

Kalman K time. Adaptive FFRLS is used to identify model parameters, so that the algorithm can be 

identified online. The accuracy range of the proposed algorithm is less than 0.0121 verified by dynamic 

stress testing (DST) results, and the maximum error and average error are small. The proposed algorithm 

can track the theoretical value of SOC more effectively, and the SOC estimated by the proposed 

algorithm is stable. 

 

 

Keywords: State of charge; Multi-population genetic algorithm; Adaptive FFRLS; Lithium-ion 

batteries 

 

 

1. INTRODUCTION 

 

In order to protect the environment and save non-renewable energy, every country is vigorously 

developing new energy. Lithium-ion has been widely used in new energy, especially in electric vehicles, 

large-scale energy storage, special robots play an extremely important role. In order to protect the battery 

and prolong the service life of the battery, the concept of battery management system (BMS)[1] is put 

forward, which includes SOC, state of health (SOH), state of power (SOP), state of energy (SOE), etc. 

The factors that affect SOC include temperature, aging degree of battery, noise of battery operating 
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environment, etc. 

The SOC displays the current remaining charge of the battery. Let the user know roughly how 

long the battery will last and when it will be recharged[2]. In recent years, the common estimation 

methods of SOC  are equivalent circuit model[3] (ECM) and data-driven methods[4]. 

The equivalent circuit method is widely used because of its good accuracy and robustness. The 

basic principle of equivalent modeling is to use resistors, capacitors and other components to simulate 

the chemical reactions in batteries. The equivalent circuit includes Thevenin[5], Rint[6], resistance 

capacitance(RC)[7], PNGV[8], fractional[9] and other models. In the equivalent circuit model, the 

increase in the number of RC will improve the accuracy of the model, but also make the calculation 

more and more complicated[10].For the established equivalent model, there are usually offline parameter 

identification and online parameter identification to calculate RC. However, offline parameter 

identification is generally not adopted because it cannot identify the model parameters of the battery in 

operation. Online parameter identification generally includes basic recursive least squares (RLS)[11], 

RLS with forgetting factors (FFRLS)[12], and RLS with adaptive forgetting factors (AFFRLS)[13]. 

Specific SOC estimation methods include extended Kalman (EKF)[14], untraced Kalman (UKF)[15, 16], 

Cubature Kalman filter (CKF)[17], H Infinity Filter(HIF)[18, 19]. 

Based on the data-driven approach, there is no need to model the equivalent circuit of the battery. 

It also does not need to know the exact parameters inside the battery, and has good applicability to 

different batteries. Data-driven methods can find hidden nonlinear relationships between input and 

output vectors, such as SOC and temperature, current, voltage, etc. Commonly used data driven models 

include BP neural network, extreme learning machine(ELM)[20], support vector machine(SVM)[21], 

recurrent neural network (RNN) related to the state of the previous moment, long and short-term memory 

model (LSTM)[22], gated cyclic unit (GRU)[23], bidirectional cyclic network and so on.  

Reference [24] proposed FFRLS for parameter identification of the equivalent model, but as the 

forgetting factor is a fixed value, it cannot well track the real-time characteristics of the battery system. 

Reference [25] uses the improve EKF algorithm to estimate SOC, but does not consider the case that 

external noise is changing in real time. Reference [26] used BP to estimate SOC, but the results of each 

run were very different due to the uncertain initial weight of BP, and the estimation accuracy was not 

high. In reference [27], GA-BP was used to estimate SOC, but GA immaturity was not taken into account, 

resulting in low accuracy of BP prediction results.  

The algorithm proposed in this paper overcomes the above shortcomings. Compared with other 

models, it has the following advantages :① AFFRLS is used to identify the parameters of the equivalent 

model. By changing the forgetting factor in real time, the internal characteristics of the battery can be 

better tracked. ② AEKF algorithm is adopted to overcome the real-time change of noise. ③ MPGA was 

used to optimize the initial weight of BP. The result of BP prediction is confirmed, and the immature 

phenomenon of GA is avoided. ④ Combine BP and AEKF algorithm. It avoids the over-dependence of 

the equivalent model method on the model accuracy, overcomes the need of BP neural data training and 

increases the estimation accuracy of the algorithm. 
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2. DESCRIPTION OF SOC ESTIMATION METHODS 

The estimation method of SOC involved in this paper is shown in Figure 1. 

Method A is based on AFFRLS equivalent modeling and EKF estimation method[28]. Method 

B adopts the method of adaptive noise on the basis of A, namely AEKF[29]. Method C uses BP neural 

network to predict the AEKF error at time k, so as to compensate the error[30]. Method D uses GA to 

optimize BP on the basis of Method C, and not only determines the weight of BP, but also immobilized 

the results of BP estimation, which can greatly increase the prediction ability of BP[27]. On the basis of 

Method D, method E introduces multi-population probability to increase species diversity and avoid 

immature convergence. 
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Figure 1. The flow of all the algorithms 

 

2.1 EKF and AEKF estimate SOC (Method A and Method B) 

2.1.1 Establishment of equivalent model 

When selecting the equivalent model, the model containing RC circuit can be selected, but it 

should not be too many RC circuits, because too many will lead to more and more complicated 

calculation. In this paper, a set of RC circuits are added the basis of the common Thevenin equivalent 

model. The order of RC is not high, and the calculation degree is not complicated while the estimation 

accuracy is improved. The improved Thevenin equivalent model is shown in Figure 3. 
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Figure 2. Thevenin's equivalent model                      Figure 3. Improved Thevenin equivalent model 

 

In Figure 2, UOC indicates the open circuit voltage. UL indicates the terminal voltage. R0 is ohmic 

internal resistance. C1 and C2 represent the polarization capacitance, while R1 and R2 represent the 

polarization resistance. According to Kirchofsky's law, the current and voltage are shown in Equation 1. 
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In Figure 3, the open-circuit voltage can be represented by SOC. Combining with equation (2), 

the discrete state space equation can be obtained. 
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 (4) 

  is coulomb efficiency, Δt is sampling time interval, w is state error, v is measurement error. 

 

2.1.2 Online parameter identification based on adaptive FFRLS 

Forgetting factor is introduced on the basis of RLS, which can avoid data saturation, reduce the 

influence of some data, and strengthen the influence of recent data. If the forgetting factor is too large, 
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the ability to weaken the old data is very small. If the forgetting factor is too small, the tracking ability 

will be enhanced but the ability to suppress noise will be greatly reduced. Therefore, the FFRLS of the 

adaptive forgetting factor is proposed, and the recursive formula is shown in Equation 5. 
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2.1.3 EKF model of SOC 

The basic principle of EKF algorithm for SOC estimation is shown below. 

Step 1: Calculate the predicted value and the corresponding covariance matrix at time K. 
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Where, A refers to the state transition matrix. B refers to the control matrix. P refers to the error 

covariance, and Qk refers to the external noise. 

Step 2: Calculate kalman gain. 
1( C )T T

k k k k k k kK P C C P R    (8) 

K refers to Kalman gain. C refers to system measurement matrix and Rk refers to measurement 

noise. 

Step 3: Covariance with the new state predicted value. 
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UL refers to the open-circuit voltage value measured in real time, Uk refers to the predicted open-

circuit voltage value obtained according to the predicted value and KVL theorem. 
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2.1.4 AEKF estimating SOC 

In the actual environment of lithium battery, the noise changes from time to time, while the 

extended Kalman ignores the high-order term to linearize the whole system, but does not take into 

account the influence of the noise change on SOC estimation. Therefore, an adaptive estimation method 

of noise statistical characteristics is proposed, as shown in the equation (10). 
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b ie shp foegpssitg facsoe, which gptpeally eatgpe feom 0.96 so 0.99.  

 

2.2 BP, GA-BP and MPGA-BP (Methods C, D and E) 

2.2.1 Improved BP neural network 

BP is a network that generalizes W-H training rules to train weights of nonlinear functions. BP 

consists of input, hidden and output layers, among which the hidden layer may be one layer or several 

layers. BP network is mainly used for: function approximation, pattern recognition, classification, data 

compression. A simple BP is shown in Figure 4. 
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Figure 4. Rplasivply eimrlp BP tpswoek 

 

It Figuep 4, X eprepeptse shp itrus laype, Y eprepeptse shp hiddpt laype, O eprepeptse shp ousrus 
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laype, W and V represent the weights between the different layers. 
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Similaely, pquasiot (19) cat bp obsaitpd. 
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          
        

1

1

min

= +

k k k k

k k k k

f X f X S X

X X S X










  





 (20) 

 k
X ie shp vpcsoe comroepd of tpswoek owtpeehir valup atd biae valup;   k

S X  ie shp epaech 

diepcsiot it shp vpcsoe eracp of shp comrotptse of X；  k
  ie it shp diepcsiot of   k

S X  , makitg 

  1k
f X


 a mitimal espr。Thp orsimizasiot of tpswoek wpighs cat bp dividpd itso swo espre：Fiees, 

shp orsimal epaech diepcsiot   k
S X of shp cueepts ispeasiot ie dpspemitpd, atd shpt shp orsimal ispeasiot 

espr ie eoughs it shie diepcsiot. Thp epaech diepcsiot ie ehowt it Equasiot (21)。 

          
1

=
k k k k

S X H I f X


    (21) 

 k
H  ie shp Hpeept maseix, which ie a epcotd-oedpe epcireocal maseix. As shp bpgittitg,   sakpe 

a laegp valup, which ie pquivalpts so geadipts dpecpts wish a emall espr eizp; Ae shp orsimal arreoachpe, 

  dpcepaepe so zpeo. It gptpeal, whpt   1k
f X


 ie lpee shat   k

f X  is dpcepaepe by  ; Oshpewiep is 

gope ur by  . 

 

2.2.2 GA-BP and MPGA-BP algorithms 

Whpt BP ie repdicsitg shp totlitpae peeoe of EKF, dup so shp utcpesaitsy of wpighs, shp repdicsiot 

epeuls ie esochaesic. Thpepfoep, GA ie reoroepd so orsimizp shp wpighs of BP so fitd shp orsimal itisial 

wpighs of BP tpueal tpswoek. 

Gptpsic algoeishm ie at pvolusiotaey algoeishm, atd ise baeic reitcirlp ie so imisasp shp 

pvolusiotaey law it tasuep shas otly oegatieme cotesatsly pvolvp so adars so shpie owt livitg 

ptvieotmpts cat shpy tos bp plimitaspd. GA ptcodpe shp utktowt so bp orsimizpd itso cheomoeompe. 

Ispeasitg it a gptpsic way. It shp reocpee of ispeasiot, itfoemasiot it cheomoeompe ie pxchatgpd by 

eplpcsiot, ceoeeovpe atd vaeiasiot. Evptsually, a cheomoeomp shas maschpe shp saegps ie madp. Thp baeic 

gptpsic modpe of GA aep eplpcsiot, ceoeeovpe atd musasiot. 

Splpcsiot orpeasiot: eplpcs shp cheomoeompe wish high fistpee feom shp old rorulasiot atd rus 

shpm itso shp maschitg eps so repraep foe shp pxchatgp, musasiot atd gptpeasiot of tpw cheomoeompe 

it shp fusuep. Thp reobabilisy of a cheomoeomp bpitg eplpcspd ie ehowt it Equasiot (22). 

 

 
i

c

i

f x
P

f x



 (22) 
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cP  ie shp reobabilisy of bpitg eplpcspd. 
ix ie shp ish cheomoeomp of rorulasiot.  if x ie shp fistpee 

valup of cheomoeomp i.  if x  ie shp eum of shp fistpee of all cheomoeompe it shp rorulasiot. 

Exchatgp orpeasiot: swo cheomoeompe aep eatdomly eplpcspd, otp oe moep roitse aep eatdomly 

dpeigtaspd foe pxchatgp, atd tpw cheomoeompe aep gptpeaspd. 

Musasiot: shp eimulasiot of biological chatgpe it shp tasueal ptvieotmpts, epeulsitg it gptp 

musasiote. Musasiote reoducp cheomoeomp divpeeisy, avoiditg paely masueasiot it pvolusiot atd 

searritg it local pxsepmpe. 

Thp gptpeal eseucsuep of gptpsic algoeishm ie ehowt it Figuep 5. 
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Gen, M. & R. Cheng: Genetic Algorithms and Engineering Design, John Wiley, 

New York, 1997.
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t       0 P(t)

CC(t)

CM(t)
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Figure 5. Thp gptpeal eseucsuep of gptpsic algoeishme 

 

 

Thp baeic espre of GA itcludp coditg, gptpeasiot of oeigital rorulasiot, fistpee calculasiot, 

eplpcsiot, ceoeeovpe atd vaeiasiot. Thp GA flow ie ehowt it figuep 6. 

GA ie a kitd of algoeishm which itcludpe bosh local epaech atd global epaech. GA hae eseotg 

atsi-itspefpeptcp atd global epaech abilisy bpcauep is ie itdprptdpts of geadipts whpt orsimizitg 

raeampspee. Howpvpe, immasuep rhptomptot ie a commot rhptomptot of GA, which ie maitly 

matifpespd it shp cpeeasiot of pvolusiot whpt all itdividuale it shp rorulasiot sptd so shp eamp esasp, 

atd shp fital epeuls of pvolusiot cattos epach shp pxrpcspd goal. To eolvp shie reoblpm, mulsi-rorulasiot 

gptpsic algoeishm wae reoroepd so orsimizp shp immasuep rhptomptot of esatdaed gptpsic algoeishm 

(SGA). 
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chromosome was 
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Use genetic algorithm 
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population

Decoded 
chromosome

Replication 
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 Population meets 
the predetermined 

target?

No

Yes

 
 

Figure 6. Gptpsic algoeishm flow chaes 

 

 

MPGA ruse foewaed shp followitg advatsagpe baepd ot SGA: 

(1) Thp rhptomptot shas SGA hae otly otp rorulasiot ie chatgpd atd shp cotcprs of 

eimulsatpoue pvolusiot of mulsirlp rorulasiote ie itseoducpd. Thp itisial valup bpswppt diffpepts 

rorulasiote ie diffpepts, eo mulsirlp rorulasiote cat epaech shp eamp reoblpm as shp eamp simp. 

(2) It oedpe so pxchatgp itfoemasiot bpswppt diffpepts rorulasiote, a migeasiot orpeasoe ie 

itseoducpd. Thp migeasiot orpeasoe makpe pach rorulasiot copvolvp atd eolvpe shp reoblpm of 

itdividual pvolusiot of pach rorulasiot wish diffpepts itisial valupe. 

(3) As shp ptd of pach ispeasiot, shp orsimal itdividuale of pach rorulasiot aep comraepd. Thp 

orsimal itdividuale aep comraeitg wish pach oshpe so gps shp orsimal itdividuale of all rorulasiote. 

It Figuep 7, shp pvolusiot mpchatiem of rorulasiot 1-N ie cotvptsiotal SGA, which adorse 

eoulpssp whppl eplpcsiot, eitglp roits ceoeeovpe atd vaeiasiot. 
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Figure 7. Mulsi-rorulasiot gptpsic algoeishm 

 

 

MPGA epse diffpepts raeampspee euch ae ceoeeovpe atd musasiot reobabilisy it diffpepts 

rorulasiote, atd all rorulasiote copvolvp. Bosh global atd local epaech aep coteidpepd. Each rorulasiot 

ie itdprptdpts of pach oshpe atd ie cottpcspd by migeasiot orpeasoe. Migeasiot orpeasoee rpeiodically 

itseoducp shp orsimal itdividuale it shp pvolusiot of vaeioue geoure itso oshpe rorulasiote so achipvp shp 

pxchatgp of shp bpes itdividuale it shp rorulasiot. Migeasiot orpeasoe ie itdierpteablp it MPGA 

algoeishm. Wishous shp migeasiot orpeasoe ae shp itspempdiaey of itfoemasiot pxchatgp, shp SGA of 

diffpepts raeampspee cat bp calculaspd foe epvpeal simpe, shue loeitg shp peeptcp of MPGA. 

GA atd MPGA orsimizpd BP tpueal tpswoeke itcludp: shp dpspemitasiot of BP eseucsuep, GA oe 

MPGA orsimizasiot wpighse atd shepeholde, BP seaititg atd repdicsiot. Amotg shpm, BP tpueal 

tpswoek gptpeally adorse a hiddpt laype, atd shp reocpee of BP orsimizasiot by GA oe MPGA ie ehowt 

it FIG. 8. 

The BP network part consists of four inputs and one output. The number of neurons in input layer, 

hidden layer and output layer is 4, 10 and 1, so the network structure is 4-10-1. There are 61 parameters 

to be optimized in the whole BP, and the binary number encoded can be adjusted according to the 

variation range and expected accuracy of its own parameters. In this paper, the weight and threshold 

encoding choose 6-bit binary number. In order to make the predicted value closer to the expected value, 

the error matrix norm of the predicted and expected value is selected as the output of the function. and 

the fitness is calculated by the objective function. The selection operator adopts random ergodic 

sampling and the crossover operator selects single point crossover operator. 
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Figure 8. BP flow chart of GA optimization 

 

2.2.3 Methods C, D and E 

A three-layer BP with four inputs and one output was established on MATLAB. 10 neurons were 

selected for the hidden layer, and the expected value was set to 10-5. The maximum iteration was 2000 

times. The input vectors of BP network optimized by genetic algorithm are estimated SOC value and 

polarization voltage at extended Kalman k time, Kalman gain of SOC, and polarization voltage gain. 

The output vector is the error of the SOC estimated by extended Kalman. The overall process of SOC 

estimation of methods C, D and E is the same, but the difference is that different BP neural networks are 

used to predict EKF nonlinear errors. The essence of the algorithm is to use different BP neural networks 

to compensate the nonlinear errors of SOC estimated by EKF, so that the SOC estimated is closer to the 

theoretical value. The overall flow chart is shown in Figure 9. 
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Figure 9. Ovpeall flow chaes 

 

 

In the flow chart of SOC estimation, the SOC nonlinear error compensation formula is shown in 

Equation (23). Nonlinear error compensation for EKF can further improve the accuracy of SOC and 

reduce the requirement for model accuracy. 

r EKF BPSOC SOC SOC   (23) 

 

 

 

3. EXPERIMENTAL VERIFICATION AND RESULT ANALYSIS 

The acquisition of experimental working condition data is shown in Figure 10. 

 
 

Figure 10. Platform building 

 

 

The factory capacity of the selected lithium battery is 70Ah, but the actual measured capacity is 

69.27ah.The data read interval is 0.1s. The upper limit of voltage is 4.5V, and the lower limit is 2.5V. 
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The current upper limit is 100A, and the current lower limit is -100A. The battery data were obtained 

through bTS200-100-104 experimental platform provided by Shenzhen Sub-Keyuan Technology Co., 

LTD. 

 

3.1 Verify adaptive FFRLS  

Online parameter identification was carried out for the improved Thevenin equivalent model. 

The relationship of SOC-OCV was obtained by using Hybrid Pulse Power Characterization experiments 

(HPPC). The HPPC test process: First, the lithium battery is charged with a constant current of 1C 

（69.27A）and a constant voltage of 4.2V. After charging, the battery is put on hold for 40mins. A 

constant discharge current of 69.27A was carried out for 10s, and the battery was static for 40s after 

stopping the discharge. The battery was charged at A constant current rate of 69.27A for 10s, and the 

battery stopped charging and stood for 5min. Constant discharge was carried out at 69.27A rate for 6min 

and set for 40 mins. Repeat the previous three steps until the battery discharge is complete. HPPC 

working conditions is shown in FIG. 11. 

 

 

 
 

Figure 11. HPPC experimental voltage change diagram 

 

 

 

 
 

Figure 12. SOC-OCV fitting curve 
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The OCV corresponding to different SOC time can be obtained by HPPC condition. The SOC-

OCV curve was obtained by curve fitting on MATLAB. The curve is shown in figure 12. 

AFFRLS is verified by DST condition. The DST experiment procedure: First, the lithium battery 

is charged with a constant current of 1C （69.27A）and a constant voltage of 4.2V. After charging, the 

battery is put on hold for 40mins. Then the battery was continuously discharged at 34.35A current for 

4min, and the battery was stopped for 40 seconds after discharging. The battery was charged at 34.35A 

constant current for 2min, and stood for 40s after stopping charging. The battery is continuously 

discharged at 1C for 4min, and the battery is stationary for 40 seconds. Repeat three steps until the 

battery discharge is complete. The predicted and real voltages identified online by DST are shown in 

Figure 13. 

 

 

  
（a）Predicted and true voltage curves                       （b）Error curve between predicted voltage and 

true voltage 

 
（c）DST operating current change curve                           （d）DST internal resistance R0 curve 

 

Figure 13. results of DST conditions 

 

 

According to the error curve in FIG. 13, the maximum error is less than 0.015. The error curve 

is also stable. The error is stable within 0.005. According to the R0 change curve in FIG. 13, the internal 

resistance R0 tends to zero in the range of 0-240s because the current changes in the range of 0-240s are 

very small. According to the basic principle of RLS, the size of R0 is derived from the change of historical 

current I, so the internal resistance is basically zero in the range of 0-240s. Therefore, it can explain the 

large error of analog voltage error in the initial interval. At about 435s, the internal resistance R0 basically 

reaches a stable value, which proves that the adaptive FFRLS correction performance is good. After that, 
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the internal resistance R0 changes periodically, and the change law is basically the same as the current 

change law, indicating that FFRLS can well track the change of current and voltage, and the 

identification effect is good. 

 

3.2 Error evolution curve 

In the process of BP optimization by GA and MPGA, the optimal individual (the optimal 

individual in this paper is the individual with the smallest norm of error matrix between predicted value 

and expected value) is selected from the population of each generation, and the minimum error matrix 

norm of each generation is recorded. The error curve is shown in FIG. 14 and FIG. 15. 

 

 

  
 

Figure 14. Evolution curve of MPGA          

 

                   

  
 

Figure 15. Evolution curve of GA 

 

 

As can be seen from FIG. 14 and 15 the error gradually decreases with the increase of iteration 

times. MPGA has less iteration times and less final error. GA has more genetic algebra, and the final 

result is not as good as MPGA. GA not only has more genes, but the final result is not as good as MPGA. 

According to the error evolution curve in FIG. 15, MPGA can quickly find the optimal value from the 

5th generation to the 7th generation, which reflects the strong global and local search ability of MPGA. 

GA needs more genetic algebra to slowly find the optimal value. Putting the optimal initial value of the 
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optimization into BP not only increase the prediction ability of the neural network, but also make the 

results of each operation of the BP, thus increasing the stability of the system. 

 

3.3 DST condition verification 

In the practical application of battery, the current of lithium battery is complex and changeable, 

which requires high dynamic performance of battery, so it is difficult to accurately estimate battery SOC. 

DST working condition data is obtained through the experimental platform shown in FIG. 10 to verify 

the reliability of the algorithm. Through the theoretical analysis of each algorithm, the experimental 

environment of each algorithm is built on MATLAB. 

The proposed algorithm is compared with other algorithms by using DST conditional data. 

Including the EKF algorithm based on AFFRLS proposed in references [30, 31]. Reference [32] 

proposed an algorithm based on AEKF to overcome noise changes. On the basis of reference [32], the 

algorithm combining BP and AEKF is adopted in reference [33] to increase the accuracy of the algorithm. 

Reference [34] proposed that GA was used to optimize the initial value of BP. GA-BP-AEKF algorithm 

formed on the basis of reference [34]. In order to overcome the immature phenomenon of GA, the 

algorithm in this paper is proposed on the basis of reference [34]. Under the condition that all initial 

values are equal, the SOC estimation results of the proposed algorithm and the appellate algorithm are 

compared. The experimental results are shown in Figure 16. 

 

 

  
(a) Estimation of SOC of each algorithm                                (b) The error of each algorithm 

 

Figure 16. DST SOC estimation results 

 

Table 1 is obtained by collating the data from the graph. 

 

Table 1. Table 1 Collated data of each algorithm 

 
 Maximum Error Average Error RSME 

EKF 0.06337 0.025995 0.030048 

AEKF 0.0432 0.019141 0.02199 

BP-AEKF 0.01885 0.01241 0.013179 

GA-BP-AEKF 0.0137 0.006836 0.007659 

MPGA-BP-AEKF 0.0121 0.004119 0.005564 
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As shown in Table 1, the three errors of MPGA are much smaller than those of the other four 

algorithms. The small maximum error indicates that MPGA has strong anti-interference ability and will 

not have a large mutation at a certain moment. The small mean error indicates that the error generated 

by MPGA in the whole process of SOC estimation is small. The proposed algorithm can track the actual 

SOC well in each stage of SOC. The small root mean square error indicates that MPGA has good stability 

and will not have large fluctuations. 

According to figure 16, GA-optimized BP has higher accuracy in SOC estimation than BP neural 

network alone, and it is not like EKF in the stage of SOC<0.4 that the error increases gradually with the 

decrease of SOC. BP optimized by MPGA is better than GA in estimating SOC, indicating that MPGA 

increases the diversity of species under the action of multiple populations and makes the genetic effect 

better, which is consistent with the error evolution curve. 

 

 

 

4. CONCLUSION 

1) Based on the improved Thevenin model, this paper adopts the adaptive FFRLS algorithm to 

carry out online parameter identification. The maximum error of the parameter identification error curve 

is 0.015 and the error is stable at 0.05. It has strong real-time tracking ability and good online 

identification effect. 

2) In this paper, GA is used to find the initial weight of BP, which makes the prediction result of 

BP deterministic and greatly increases the accuracy of BP prediction ability. By introducing the concept 

of MPGA, the immature phenomenon of MGA is solved. Through the evolutionary error curve and SOC 

error curve, it can be concluded that the final evolutionary error of GA is larger than that of MPGA. The 

three errors of SOC estimation are also small, indicating that the BP effect of MPGA optimization is 

better than that of GA optimization. 

3) The error of SOC estimation by different methods was compared through DST test of lithium 

battery measurement. The results show that the three errors of method E are smaller under DST condition. 

The maximum error is 0.0123. The average error is 0.004119, and the root mean square error is 0.005564. 

The overall error is also more stable than that of other algorithms. Method E can track the actual SOC 

of lithium battery more accurately and stably. 
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