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This paper proposes a new state of charge (𝑆𝑂𝐶) estimation algorithm based on Kalman filters (KF). In 

the first stage, the equivalent circuit model’s parameters are estimated by a least square estimation 

window-wise, assuming a linear 𝑆𝑂𝐶 and open-circuit voltage (𝑂𝐶𝑉) relation. The algorithm accurately 

estimates the parameters and observes the changes that depend on 𝑆𝑂𝐶. Moreover, based on the 

estimated parameters, the 𝑂𝐶𝑉 values are identified. In the next stage, window-wise Kalman filter(ES-

KF) without hysteresis voltage and extended Kalman filter (ES-EKF) and sigma-point Kalman filter 

(ES-SPKF) algorithm with hysteresis voltage are executed to estimate 𝑆𝑂𝐶. Having fewer state 

equations and hysteresis parameters tuned up, the ES-EKF and ES-SPKF perform accurately and 

improve the results of previous algorithms. The proposed methods are validated by experiments with 

three different datasets obtained from lab tests. We also show 𝑆𝑂𝐶-𝑂𝐶𝑉 curve can be obtained in a  

simple way that replaces the time-consuming C/30 tests. 
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1. INTRODUCTION 

 

The battery is the most attractive energy storage device, because of its high energy density and 

portability. Portable utilities, electric vehicles, and industries use batteries as their main energy storage 

device. Various battery technologies are being developed and the energy and power densities of the 

batteries are continuously advancing. Nowadays, lithium-ion batteries are being used extensively for 

their higher energy density, longer cycle life, and more environmental friendliness. 

http://www.electrochemsci.org/
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Electric vehicles (EV), and Plug-in hybrid-electric vehicles (PHEV) are recent technologies to 

achieve efficient utilization of energy sources. To ensure safety and efficiency, the battery management 

system (BMS) monitors and controls the battery states and operations by measuring the current, voltage, 

and temperature. The SOC, which is the level of the remaining charge relative to the total capacity, is a 

crucial parameter and is among the states that need to be monitored. Estimating SOC is the fundamental 

challenge for BMS because the parameter uncertainty and nonlinear dynamics of the battery make it a 

complex and difficult task. 

Broadly, the SOC estimation methods can be divided into two categories; model-free methods 

and model-based methods. Ampere-hour counting (Ah counting) [1] is the most basic model-free method 

to estimate SOC. In this method, SOC is calculated by integrating the loaded current to determine how 

much charge is remained. Although, Ah counting is a useful theoretical method, it can not be used in a 

practice, because it suffers from the unknown initial SOC value and the accumulated uncertainty due to 

the integration process. Therefore, a proper recalibration must be incorporated into it and Ah counting 

method is often combined with other techniques to obtain better accuracy. Another conventional model-

free method is using look-up tables or SOC-OCV relation. This approach is used independently or in a 

combination of Ah counting [2, 3]. However, measuring OCV requires a long rest time, therefore, it is 

not used in online applications. Another class of model-free methods are data-driven methods. Data-

driven methods [4, 5, 6, 7] use various techniques such as neural networks, support vector machines and 

fuzzy logic to train black-box battery model based on the empirical data for the purpose of SOC 

estimation. The advantage of these methods is they do not require deep domain-specific knowledge of 

the batteries [8]. However, they may need a large amount of training data and preparatory work to 

achieve an accuracy. 

More sophisticated approaches are the model-based SOC estimation methods [9]. Basically, there 

are two types of battery models: electrochemical and electrical models. The electrochemical models use 

equations based on physical laws that govern the internal electrochemical processes in the battery. 

Although the electrochemical models are very accurate, the coupled partial differential equations make 

them very difficult to implement. An electrical model uses electrical circuit elements such as voltage 

source, resistors, and capacitors, to describe battery dynamic behavior. It is ideal for system simulation 

and implementation in embedded microcontrollers [10-12]. From the view of SOC estimation, based on 

the battery modeling, the current literature consists of two types estimation methods: sequential 

probabilistic inference methods and observer-based techniques. With the assumption of Gaussian noises, 

Kalman filter (KF) and its variants such as extended KF (EKF), sigma-point KF (SPKF), and cubature 

KF are Gaussian sequential probabilistic inference methods and they have been successfully applied to 

the SOC estimation problems [13-22]. The EKF is a widely used nonlinear KF and it linearizes the system 

dynamics efficiently. In the works [15, 23], the authors employed EKF with the electrical model for SOC 

estimation. If the noise covariance matrices initialized properly and the model parameters are tuned up, 

the KF based methods perform accurately and continuously. The unscented KF and central difference 

KF methods [14, 24, 25, 26, 19], which are different forms of SPKF, address model nonlinearities more 

efficiently. Extensive and exhaustive experimental tests considering different forms of nonlinear KFs 

and parameter identifications (with or without hysteresis model) were presented in [19]. 
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Particle filter (PF) is another type of sequential probabilistic inference scheme that deals with 

non Gaussian noise. PFs approximate the probability density functions of nonlinear systems being 

modeled by Monte-Carlo simulations. Although, PFs give accurate results when the system nonlinearity 

is high, they require great computational resources [27, 28]. On the other hand, observer-based SOC 

estimations techniques are computationally efficient, since they employee the deterministic assumption. 

The literature includes various type of observer-based SOC estimation techniques: Luenberger observer 

[29-31], proportional integral observer [32], adaptive observer and sliding mode observer [33-36]. For 

the details of above-mentioned methods and the other ones such as reduced-order models, we refer to 

excellent review papers [37, 9, 38, 39, 40] and references therein. 

The model parameters depend on the SOC, ambient temperature, and the age. Therefore, online 

parameter estimation algorithms are desirable for capturing SOC dependent change. In the works [41, 

42, 31, 43, 36, 44], a sliding window least-square estimator was used. This method extracts the model 

parameters online taking into account the parameter changes during the battery operation and it has a 

better stability. However, this method uses look-up table to extract some parameters of piecewise linear 

model for SOC co-estimation. More efficient parameter estimation scheme, and least square SOC 

estimator were proposed in [45]. 

In this paper, we consider the natural extension of the parameter estimation scheme proposed in 

[45] and obtain more accurate, computationally efficient SOC estimator by KFs. The novelty of this paper 

is summarised as follows: 

• We introduce a refined version of the discretization used in [45]  to execute KF-family 

SOC estimation algorithms. 

• The special discretization proposed in this paper allows to compute OCV values 

accurately window-wise, and therefore, the number of state equations in KF-family algorithms reduced 

by one and it saves the computational cost. 

• The KF-family based co-estimation scheme, in which the OCV values are computed 

window-wise and the parameter variability is taken into account, yields more accurate results compared 

to the previously studied methods given in [13, 45]. 

• Our method allows to acquire SOC-OCV curve from the computed OCV values without 

C/30 tests. 

• The proposed KF-family SOC estimation algorithm is a probabilistic method based on 

the electrical model. Therefore, the complicated electrochemical processes inside the battery are 

represented efficiently and the uncertainty is handled in an optimal way. 

The rest of this article is organized as follows. The section 2 introduces the battery model, the 

proposed discretization, parameter identification scheme and discusses the use of KFs with and without 

the hysteresis effect for the identified parameters. In section 3, the experimental results with data 

obtained from lab tests were given to validate the proposed method. 

 

2. BATTERY MODEL 

In this work, we assume the terminal voltage V and current I are known only, and we do not 

consider the temperature dependence and the battery capacity degradation. An electrical model (or 
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equivalent circuit model) of a battery consists of a series resistance R0 and parallel RC components 

(Fig.1). The purpose of using an electrical model is to imitate or approximate the dynamic behavior of a 

battery by the dynamics of the electrical model. Theoretically, one can add as many RC components as 

one wants. However, adding RC components increases the order of the dynamical systems (order of 

differential equations) being modeled. Although higher-order electrical models can give accurate 

simulation results, computational complexity and numerical stability issues often degrade the estimation 

results. In the work [10], two RC components are used to simulate the behavior of the Li-Po cells with 

reasonable accuracy. And each of the RC components acts as a slow and fast change of the variable. But 

one RC component model can yield good enough accuracy [31, 43, 15] for a shorter time window 

expressing faster transients. 

The relation of OCV and SOC is nonlinear and contributes to the complexity of battery dynamics 

significantly. An approximation of the SOC-OCV curve by simpler functions (linear, quadratic, sigmoid, 

etc.) is necessary to manipulate the model’s underlying equations. In this paper, one RC component 

model is considered as in the Fig.1, and the SOC-OCV curve is represented by: 

OCV = f(SOC).                                                                      (1) 

The terminal voltage V is the sum of individual element voltages: 

V = OCV + V0 + VRC,                                                                       (2) 

where V0 is the voltage across the resistor element R0 and VRC is the voltage across the RC 

component. The VRC follows the differential equation 

V̇RC = −
1

RC
VRC +

1

C
I.                                                                 (3) 

Combining (2) and (3) yields 

RCV̇ − RCR0İ − (R0 + R)I + V = OCV + RCOCV̇ .                                    (4) 

The SOC, by definition, satisfies the equation 

SOĊ =
η

Q
I,                                                                        (5) 

where Q is the total capacity of the cell and η is the Coulombic efficiency. For the time window 

{tk},  k = k0, k0 + 1, . . . , k0 + n, we approximate the SOC-OCV curve by linear relation 

OCV = aSOC + b,                                                                     (6) 

where a and b are constants. This approximation is reasonable one if the time window and range 

of variability for SOC are short. 

 

 
 

Figure 1. Battery circuit model with one RC branch 
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Putting (6) into (4) gives 

RCV̇ − RCR0İ − (R0 + R +
aRCη

Q
) I + V = aSOC + b.                               (7) 

 

2.1. Parameter identification 

Since the equations (7) are an overdetermined system of linear equations, a simple linear least 

square method can be invoked to extract the parameters. In order to discretize the equations (7), we use 

the trapezoidal rule as follows: 

f((k + 1/2)T) =
f[k+1]+f[k]

2
,

ḟ((k + 1/2)T) =
f[k+1]−f[k]  

T

                                                     (8) 

where f[k] = f(kT). The bilinear transform, which is a transformation from continuous time 

system (in the Laplace domain) to discrete time system (in the Z-domain) uses the trapezoidal rule (8). 

Unlike the method used in [31], where the bilinear transform is applied to the second order version of 

(8) (one more differentiation), the trapezoidal rule is applied to (7) directly. In the next stage, the SOC is 

expressed by coulomb counting method with the rectangle rule for integral: 

SOC[k] = SOC[k0] +
Tη

Q
(J[k] − I[k])                                                    (9) 

with J[k] = ∑ Ik
j=k0

[j] for k = k0, k0 + 1, . . . , k0 + n. 

In the work [45], trapezoidal rule for integral was used for coulomb counting. The reason that 

we use the rectangle rule for integral in this paper is the equation (9) is compatible with the state equation 

in KF-based SOC estimation. 

Using (8) for V, I and computing SOC by (9), we obtain the following discrete differential 

equations: 

V[k + 1] = a1V[k] + a2I[k + 1] + a3I[k] + a4J[k] + a5                    (10) 

where 

a1 =
2RC − T

2RC + T
,

a2 =
2RCR0 + T(R0 + R + aRCη/Q)

2RC + T
,

a3 =
−2RCR0 + T(R0 + R + aRCη/Q) − aT2η/Q

2RC + T
,                         (11)

a4 =
2aT2η

Q(2RC + T)
,

a5 =
2TOCV[k0]

2RC + T
.

 

The values V[k + 1], V[k], I[k + 1], I[k], J[k] are known (measured) values within the current 

time window, the system (10) and (11) can be solved in a least square sense. Therefore, the parameters 

a, R0, R, C and the value OCV[k0] are estimated directly. The least square estimation needs a proper 

variability in the inputs in order to yield a stable solution. Less variability causes numerical instability 

and too much variability yields a longer time window length, which is undesirable from the view of 
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online estimations. In this work, the variability of inputs expressed by the excitation level. The excitation 

level measured by the jumps of the current input and is counted as one if 

|I[k + 1] − I[k]| >
Q

e
                                                                    (12) 

satisfies. Here, e is a constant to tolerate some noise and the value e = 1000 is used in this work. 

If the excitation level reaches a certain threshold, the length of the time window is determined. This 

simple scheme feeds variable-length time windows into the least square estimator.  

In general, there are two types of implementations of the least square algorithms; the block (BLS) 

and recursive (RLS) forms. In the BLS estimation, all the measurement variables are collected at once 

and a least square problem is solved for the whole data. The main disadvantage of the BLS algorithm is 

its computational cost, when it is applied to the sequential data processing problem. When a new 

measurement becomes available, the whole estimation needs to be repeated. The RLS estimation is 

computationally efficient as it aggregates the current measurement to the previous computation. 

However, the RLS estimation depends on the initial value and it suffers from the convergence problem 

and the loss of parameter tracking. Its improved version, forgetting parameter RLS, is often used in 

battery parameter estimation [20, 46, 47]. Note that there is no mechanism to choose the time window 

size in RLS applications of battery parameters, as the RLS estimation runs continuously. Moreover, the 

least square estimator should stop when there is not enough information about the dynamics (excitation). 

However, our implementation of the excitation level in the battery parameter estimation makes BLS 

algorithm a perfect choice. As soon as the window size is determined based on the excitation level, the 

BLS is executed once for only that time window and there is no redundant computation. This parameter 

estimation strategy eliminates both problems of BLS and RLS algorithms at the same time. We refer to 

[48] for detailed discussions of variable-length least square parameter estimation. 

In the next stage, if we are to ignore the hysteresis effect, the value SOC[k0] and the parameter b 

can be determined by 

SOC[k0] = f −1(OCV[k0]),  b = OCV[k0] − aSOC[k0].                        (13) 

The estimation algorithm purposed in [31] was able to determine only 4 parameters a, R0, R, C in 

the first stage and a look-up table of piece-wise linearization of SOC-OCV curve was used to determine 

b. However, the estimation scheme (10)-(13)  determines not only the parameters a, b, R0, R, C, but also 

the initial values of SOC[k0] and OCV[k0]. Moreover, the linearization (6) of SOC-OCV curve was 

performed within the time window, while the linearization purposed in  was done statically (not 

depending on time). Therefore, our estimation scheme has a better adaptation, and extensive numerical 

testing results are reported in [45] for the original version. Since the initial value OCV[k0] was 

determined, the circuit voltage VRC can be computed by 

𝑉𝑅𝐶[𝑘 + 1] = 𝑒−
𝑇

𝑅𝐶𝑉𝑅𝐶[𝑘] − 𝑅 (𝑒−
𝑇

𝑅𝐶 − 1) 𝐼[𝑘],                              (14) 

𝑉𝑅𝐶[𝑘0] = 𝑉[𝑘0] − 𝑂𝐶𝑉[𝑘0] − 𝑅0𝐼[𝑘0]                                           (15) 

within time window. Consequently, the 𝑂𝐶𝑉[𝑘] values are determined by 

𝑂𝐶𝑉[𝑘] = 𝑉[𝑘] − 𝑉𝑅𝐶[𝑘] − 𝑅0𝐼[𝑘].                                            (16) 

In the next section, we present the KF-based 𝑆𝑂𝐶 estimation algoritm that use the values (16). 
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2.2. SOC estimation by KFs 

Gaussian sequential probabilistic inference scheme is used for the following general model: 
𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘 , 𝑤𝑘),                                                        (17𝑎)

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘 , 𝑣𝑘)                                                               (17𝑏)
 

where 𝑤𝑘 and 𝑣𝑘 Gaussian noise processes with means 𝑤‾  and 𝑣‾ and covariance matrices 𝛴𝑤 and 

𝛴𝑣 respectively. The following is the summary of general Gaussian sequential probabilistic inference 

scheme, where Plett’s notations were used from [14]. 

 

Definition

𝑥̃𝑘
− = 𝑥𝑘 − 𝑥̂𝑘

−, 𝑦̃𝑘 = 𝑦𝑘 − 𝑦̂𝑘

𝛴𝑦̃,𝑘 = 𝐸[(𝑦̃𝑘)(𝑦̃𝑘)𝑇] 𝛴𝑥̃𝑦̃,𝑘
− = 𝐸[(𝑥̃𝑘

−)(𝑦̃𝑘)𝑇]

𝑌𝑘 = {𝑦0, 𝑦1, … , 𝑦𝑘}

Initialization

For 𝑘 = 0, set 𝑥̂0
+ = 𝐸[𝑥0]

𝛴𝑥̃,0
+ = 𝐸[(𝑥0 − 𝑥̂0

+)(𝑥0 − 𝑥̂0
+)𝑡]

Predict

State estimate 𝑥̂𝑘
− = 𝐸[𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)|𝑌𝑘−1]

Covariance 𝛴𝑥̃,𝑘
− = 𝐸[(𝑥̃𝑘

−)(𝑥̃𝑘
−)𝑇]

Update

Output estimate 𝑦̂𝑘 = 𝐸[𝑔(𝑥𝑘, 𝑢𝑘 , 𝑣𝑘)|𝑌𝑘−1]

Optimal Kalman gain 𝐿𝑘 = 𝛴𝑥̃𝑦̃,𝑘
− 𝛴𝑦̃,𝑘

−1

State estimation 𝑥̂𝑘
+ = 𝑥̂𝑘

− + 𝐿𝑘[𝑦𝑘 − 𝑦̂𝑘]

Error covariance 𝛴𝑥̃,𝑘
+ = 𝛴𝑥̃,𝑘

− − 𝐿𝑘𝛴𝑦̃,𝑘𝐿𝑘
𝑇

 

 

When the dynamics of the system being modeled is linear, i.e., the functions 𝑓 and 𝑔 are linear, 

the above scheme called KF, and it is the exact minimum mean-square-error state estimator. If the system 

dynamics is nonlinear, other variants of KF are used. The EKF linearizes the model at each time point, 

and it performs well when the system nonlinearities are not high. The SPKF (or unscented KF) linearizes 

the model statistically at each point in time, and it tends to give reasonable estimates even if 

nonlinearities are high. 

In the first phase of purposed 𝑆𝑂𝐶 estimation method, the parameters 𝑎, 𝑏, 𝑅0, 𝑅, 𝐶 and the 

𝑂𝐶𝑉[𝑘] values are estimated by (10)-(16). In the next phase, two types of KF (linear and nonlinear) are 

purposed depending on the influence of hysteresis effect. If the hysteresis effect is neglected, we can use 

the following simple linear model window-wise to estimate 𝑆𝑂𝐶: 

𝑆𝑂𝐶[𝑘 + 1] = 𝑆𝑂𝐶[𝑘] +
𝑇𝜂

𝑄
𝐼[𝑘] + 𝑤[𝑘],                                      (18𝑎)

𝑂𝐶𝑉[𝑘] = 𝑎𝑆𝑂𝐶[𝑘] + 𝑏 + 𝑣[𝑘],                                               (18𝑏)

 

where 𝑤[𝑘] and 𝑣[𝑘] are process and sensor noises with Gaussian distributions. Let us denote 

this combined estimation scheme (10)-(16) and (18a)-(18b) by ES-KF. 

If we are to consider hysteresis effect significantly, the following hysteresis model can be used: 

𝑂𝐶𝑉 = 𝑓(𝑆𝑂𝐶) + 𝑀0𝑠[𝑘] + 𝑀ℎ[𝑘],                                            (19) 
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where 𝑓(𝑆𝑂𝐶) denotes the average of main charge curve and discharge curve. In (19),  𝑀ℎ[𝑘] 

measures the part of hysteresis voltage that changes with 𝑆𝑂𝐶 and ℎ[𝑘] follows the differential equation: 

ℎ[𝑘 + 1] = {
𝑒−𝛾𝐼[𝑘]𝑇/𝑄ℎ[𝑘] + 1 − 𝑒−𝛾𝐼[𝑘]𝑇/𝑄 ,  if 𝐼[𝑘] ≥ 0,

𝑒𝛾𝐼[𝑘]𝑇/𝑄ℎ[𝑘] + 𝑒𝛾𝐼[𝑘]𝑇/𝑄 − 1,  if 𝐼[𝑘] < 0,
                         (20) 

where 𝛾 is the hysteresis growth parameter. The voltage 𝑀0𝑠[𝑘] models the instantaneous 

hysteresis that measures the change of voltage when current changes the direction suddenly and 𝑠[𝑘] is 

computed by 

𝑠[𝑘] = {
sign(𝐼[𝑘]),  if |𝐼[𝑘]| > 0,

𝑠[𝑘 − 1],  otherwise.
                                                  (21) 

The hysteresis modeling (19) is introduced in [13] as a part of enhanced self-correcting model 

(ESC). The hysteresis effect is very complicated process and there is a certain difficulty for modeling it, 

we refer to [13] and [17] for the detailed discussions. The parameters 𝑀0, 𝑀 and 𝛾 should be estimated 

offline for measured values of 𝑂𝐶𝑉 − 𝑓(𝑆𝑂𝐶). 

Therefore, the dynamic state-space model of a battery is written as 

𝑆𝑂𝐶[𝑘 + 1] = 𝑆𝑂𝐶[𝑘] +
𝑇𝜂

𝑄
𝐼[𝑘] + 𝑤[𝑘] ,                                       (22𝑎)

ℎ[𝑘 + 1] = 𝑒−𝛾𝐼[𝑘]𝑇/𝑄ℎ[𝑘] + sign(𝐼[𝑘])(1 − 𝑒−𝛾𝐼[𝑘]𝑇/𝑄),                  (22𝑏)

𝑂𝐶𝑉[𝑘] = 𝑓(𝑆𝑂𝐶[𝑘]) + 𝑀0𝑠[𝑘] + 𝑀ℎ[𝑘] +𝑣[𝑘].                           (22𝑐)

 

The equations (22a) and (22b) are the state equations and (22c) is the output equation for KF 

algorithm. Note that 𝑉𝑅𝐶[𝑘] is not included as one of battery states compared to the original model 

introduced in [13], since it is determined already from 𝑂𝐶𝑉[𝑘0] window-wise. Similarly with ES-KF, 

let us denote this co-estimation scheme (10)-(16) and (22a)-(22c) by ES-EKF and ES-SPKF depending 

on the type of Kalman filter used. The Fig.2 shows the purposed 𝑆𝑂𝐶 estimation scheme as a flow 

diagram. 

 
 

Figure 2. The purposed 𝑆𝑂𝐶 coestimation algorithm by KFs. 
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3. RESULTS AND DISCUSSION 

In this section, we present the numerical tests to validate our method for three different datasets 

and discuss the results. 

 

3.1. Test with NMC532/Graphite pouch cell 

This section presents the test results for NMC532/Graphite pouch cell. A pouch cell consists of 

a graphite anode, and NMC532 (𝐿𝑖𝑁𝑖0.5𝑀𝑛0.3𝐶𝑜0.2𝑂2) cathode, where each 21 and 20 two-side 

coated anode and cathodes are stacked as zig-zag stacking method. This stacked anodes and cathodes 

are wrapped by Al pouch film with liquid electrolyte. The cell operating voltage range is 3.0 - 4.25V 

and the maximum continuous charge/discharge current is 0.7C. 

 

 

 
 

A 

 

 
 

B 

 

 

Figure 3. Test bench(a) The NMC532/Graphite pouch cell and the incubator 

(right) for keeping the cell under 25∘C          (b) The WBCS-3000s cycler(left) for galvanostatic 

cell test and the cell test monitoring computer system. 
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Figure 4. 𝑆𝑂𝐶-𝑂𝐶𝑉 relation at 𝑇 = 25∘𝐶. 

 

 

 
  

Figure 5. Current and voltage (Lower graph is magnified one of the former). 

 

 

Model name of charge and discharge cycler is WBCS 3000s . The control voltage range is ±5𝑉 

and the maximum current is 1𝐴 per each channel. The test equipments are shown in Fig.3ab. The charge 

and discharge curves (Fig.4) are obtained by 𝐶/30 current test. All the battery tests are conducted in the 

battery research and test laboratory at Gwangju Institute of Science and Technology (GIST). For 

dynamic tests Fig.5, we exercised the dynamic current profile 40 times starting from the initial 𝑆𝑂𝐶 

value of 1, and the last 𝑆𝑂𝐶 value is 0.68. This dynamic current profile differs from the UDDS profile 

considered in [14, 45]. As we see from Fig.5, it comprises short constant current intervals. 
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The estimated hysteresis parameters 𝑀0̂, 𝑀̂ and 𝛾 for different 𝑆𝑂𝐶 values are tabulated in 

Table.1 and 𝑀 and 𝑀0 linearly estimated parameters for 𝛾 = 6.5411, which is the average value of 𝛾. 

Instantaneous hysteresis parameter 𝑀0 is estimated with very small negative values. This tells us 

instantaneous hysteresis has some small reverse effect for constant current profile, if we compare it to 

the latter section, where the considered UDDS current profile has many sudden jumps. Consequently, it 

says instantaneous hysteresis could have different characteristics depending on the current history. Its 

effect on overall 𝑆𝑂𝐶 estimation is very little and some comparisons were made in [45]. In Fig.6, the 

extracted parameters 𝑅0, 𝑅, 𝐶, 𝑎, 𝑏 and window sizes with excitation level 53 are graphed against the 

number of window. The excitation level is a crucial parameter that decides the time window and it should 

be tuned carefully. Higher value generates longer time windows and smaller value (therefore, shorter 

time window length) may cause numerical stability. In this experiment, the average length of time 

windows was 630. The variability of 𝑅0 and 𝑅 is clearly shown, while 𝐶 takes the average value of 434 

most of the times. 

 

 

Table 1. Offline estimation of 𝑀0, 𝑀 and 𝛾. 

 

𝑆𝑂𝐶 𝑀 𝑀0 𝑀̂ 𝑀0̂ 𝛾 

0.964 0.026 -2.5e-05 0.032 -0.00015 14.7 

0.956 0.034 -3.3e-05 0.039 -0.00014 12.0 

0.949 0.042 -4.0e-05 0.045 -0.00015 11.9 

0.942 0.049 -6.9e-05 0.051 -0.00015 10.1 

0.935 0.057 -5.9e-05 0.058 -0.00012 9.1 

0.928 0.063 -9.4e-05 0.064 -0.00014 8.1 

0.921 0.071 -0.00014 0.072 -0.00017 7.4 

0.914 0.074 -0.00016 0.074 -0.00019 7.3 

0.907 0.079 -0.00014 0.079 -0.00017 7.1 

0.899 0.087 -0.00015 0.087 -0.00016 6.7 

0.892 0.092 -0.00020 0.092 -0.00019 6.2 

0.885 0.099 -0.00022 0.099 -0.00019 5.8 

0.878 0.102 -0.00023 0.102 -0.00020 5.8 

0.871 0.107 -0.00020 0.107 -0.00017 5.9 

0.864 0.115 -0.00023 0.115 -0.00018 5.6 

0.857 0.121 -0.00028 0.121 -0.00020 5.0 

0.850 0.129 -0.00029 0.129 -0.00021 4.9 

0.842 0.133 -0.00031 0.134 -0.00023 5.1 

0.835 0.140 -0.00032 0.140 -0.00023 4.9 

0.828 0.148 -0.00032 0.148 -0.00022 4.8 

0.821 0.157 -0.00038 0.157 -0.00025 4.4 

0.814 0.164 -0.00041 0.165 -0.00026 4.3 

0.807 0.166 -0.00043 0.167 -0.00029 4.5 

0.800 0.170 -0.00043 0.171 -0.00028 4.4 

0.793 0.177 -0.00043 0.177 -0.00030 4.7 

0.786 0.181 -0.00049 0.182 -0.00032 4.3 

0.779 0.187 -0.00051 0.188 -0.00033 4.2 
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𝑆𝑂𝐶 𝑀 𝑀0 𝑀̂ 𝑀0̂ 𝛾 

0.771 0.190 -0.00048 0.190 -0.00033 4.6 

0.764 0.194 -0.00049 0.195 -0.00035 4.8 

0.757 0.202 -0.00051 0.202 -0.00037 4.8 

0.750 0.208 -0.00056 0.209 -0.00039 4.5 

0.743 0.214 -0.00055 0.215 -0.00037 4.5 

0.736 0.216 -0.00055 0.217 -0.00040 4.9 

0.729 0.221 -0.00054 0.222 -0.00041 5.0 

0.721 0.228 -0.00053 0.228 -0.00041 5.2 

0.714 0.234 -0.00060 0.235 -0.00045 4.8 

0.707 0.241 -0.00059 0.242 -0.00044 5.0 

0.700 0.245 -0.00057 0.246 -0.00045 5.3 

 

In Fig.7, the estimated 𝑂𝐶𝑉 (purple) and the terminal voltage 𝑉(light blue) are graphed for the 

same time interval as in Fig.5. Compared the magnitudes of 𝑂𝐶𝑉 and 𝑉, it is seen that the dynamics of 

electrical circuit model explains much part of the terminal voltage. Ideally, if 𝑆𝑂𝐶-𝑂𝐶𝑉 relation is just 

one curve (that is there is no hysteresis effect), one would expect the estimated 𝑂𝐶𝑉 is smooth piece-

wise lines that coincides with 𝑆𝑂𝐶-𝑂𝐶𝑉 curve. However, as seen in Fig.7, the identified 𝑂𝐶𝑉 values are 

not exactly piece-wise lines because of the hysteresis effect. Based on the estimated hysteresis 

parameters in Table.1, we see this remaining voltage difference is modeled with enough accuracy by the 

hysteresis model (19). Another important observation is the average 𝑆𝑂𝐶-𝑂𝐶𝑉 curve can be 

approximated by the fitted curve of 𝑂𝐶𝑉 values with some offset. We show the average 𝑆𝑂𝐶-𝑂𝐶𝑉 curve 

can be extracted from the driving cycle data in section 3.3. 

 

 

 
 

 

Figure 6. Estimated parameters and time window sizes with excitation level 53 (𝑥 axis is for the number 

of time window). 
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Figure 7.  The terminal voltage and the estimated 𝑂𝐶𝑉. 

 

 

 
 

Figure 8. Error bounds of ES-SPKF and ES-EKF estimations. 

 

 

Table 2. 𝑺𝑶𝑪 estimation errors (in percents). 

 

Methods ES-KF ES-EKF ES-SPKF 

RMS 0.0890% 0.1091% 0.0517% 

MAE 0.0785% 0.0967% 0.0388% 

MAX 3.3% 2.970% 2.9718% 

EOB 0.0046% 0.4112% 0.9% 
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Finally, the result of 𝑆𝑂𝐶 estimation is presented in Table.2, where the root mean square error 

(RMS), mean absolute error (MAE), maximum absolute error (MAX) and the error outside 3-sigma limit 

(EOB) are tabulated. The noise variances for KF-based estimations are chosen to be 𝛴𝑤 = 2𝑒 − 3 and 

𝛴𝑣 = 2𝑒 − 3 by trail and error test. The error bounds for ES-EKF and ES-SPKF are presented in Fig. 8. 

Both ES-EKF and ES-SPKF algorithms perform almost equally in this experiment. Starting from wrong 

initial 𝑆𝑂𝐶 value 0.98, the 3-sigma bound enters the interval [−0.5%, 0.5%] in first 5 minutes and the 

error never leaves the bound [−0.2%, 0.2%]. Because of the nonlinearity involved, the error of ES-EKF 

fluctuates, while ES-SPKF shows more stable trend. The error for ES-KF is comparable to that of two 

others. Considering the less computational effort and the estimation accuracy of ES-KF, the ES-KF 

algorithm can be a reasonable candidate in the pool of 𝑆𝑂𝐶 estimation algorithms for this experiment. 

However, we will see this may not be the case for different battery experiments in the next sections. 

 

3.2. Test with lithium-ion "E2" cell 

In this section, we compared the performances of the proposed methods ES-KF, ES-EKF and 

ES-SPKF with that of EKF and SPKF reported in [13] for lithium-ion "E2" cell data and for two ambient 

temperatures 𝑇 = 5∘𝐶 and 𝑇 = 25∘𝐶. The battery’s current and terminal voltage is displayed in Fig.9. 

This data is obtained by repeatedly exercising the "urban dynamometer drive schedule" (UDDS) profile. 

There are around 720 seconds of rest time after each UDDS profile exercise. Fig.10 shows the charge 

and discharge curves at the temperatures 𝑇 = 5∘𝐶 and 𝑇 = 25∘𝐶. 

 

 

 
 

Figure 9. Current and voltage of dynamic test data of the UDDS pattern (𝑇 = 25∘𝐶) 
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Figure 10. 𝑆𝑂𝐶-𝑂𝐶𝑉 relation at 𝑇 = 5∘𝐶 and 𝑇 = 25∘𝐶 

 

 

Table 4 and 5 show the values of 𝑀, 𝑀0 estimated linearly for 𝛾25 = 39.6, 𝛾5 = 64.4, which are 

taken as the averages of estimated values 𝛾 for each temperature. We observed that for the case 𝑇 =

25∘𝐶 the instantaneous hysteresis parameter 𝑀0 is estimated significantly compared with that reported 

in [45]. This is because the rectangle rule for integral used in (9) captures the instantaneous hysteresis 

more efficiently, whereas the trapezoidal rule for integral was used instead in [45]. Another effect 

observed in Table 5 is hysteresis level for 𝑇 = 5∘𝐶 is higher than for 𝑇 = 25∘𝐶, which is expected, since 

the battery dynamics is more severe in cooler temperatures. Fig.11 shows the estimated parameters and 

time window sizes. The excitation level 790 was found suitable for this experiment. The higher excitation 

level is due to the rest time of 720 seconds in the test data. Note that the excitation level can be reduced 

significantly by excluding the interval of rest time from the least square estimation, since the hysteresis 

voltage changes in an adverse way during it . 

The values of 𝑅0, 𝑅 and 𝐶 shown in Table 3 and the noise covariances 𝛴𝑤 = 0.2 and 𝛴𝑣 = 0.2 

are the parameters values used in the original ESC model for SPKF and EKF in [13]. The performances 

of the methods ES-KF, ES-EKF, ES-SPKF, EKF and SPKF are compared in Table 6 and Fig. 12, 13. 

All the methods use the same noise covariances 𝛴𝑤 = 0.2 and 𝛴𝑣 = 0.2. 

 

 

Table 3. The parameters reported in [13]. 

 

 𝑅0 𝑅 𝐶 𝑀 𝑀0 

𝑇 = 25∘𝐶 0.0112 0.0025 958.4886 0.0443 0.0025 

𝑇 = 5∘𝐶 0.0313 0.0071 254.9203 0.0805 0 
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Table 4. Offline estimation of 𝑀0, 𝑀 and 𝛾 for 𝑇 = 25∘𝐶. 

 

𝑆𝑂𝐶 𝑀 𝑀0 𝑀̂ 𝑀0̂ 𝛾 

0.887 0.040 0.0034 0.042 0.0042 125.5 

0.840 0.052 0.0021 0.052 0.0022 70.2 

0.793 0.047 0.0022 0.047 0.0021 59.1 

0.746 0.046 0.0021 0.045 0.0022 74.5 

0.699 0.049 0.0021 0.049 0.0022 70.2 

0.652 0.053 0.0023 0.054 0.0022 57.8 

0.604 0.057 0.0024 0.057 0.0023 57.0 

0.557 0.059 0.0024 0.059 0.0023 57.0 

0.510 0.062 0.0026 0.062 0.0024 57.0 

0.463 0.068 0.0025 0.069 0.0023 57.0 

0.416 0.077 0.0027 0.077 0.0025 57.0 

0.369 0.091 0.0032 0.091 0.0029 57.0 

0.322 0.100 0.0035 0.100 0.0032 57.0 

0.275 0.096 0.0036 0.097 0.0033 57.0 

0.228 0.090 0.0035 0.090 0.0032 57.0 

0.181 0.078 0.0028 0.078 0.0026 57.0 

0.134 0.115 0.0022 0.115 0.0026 74.5 

0.087 0.228 0.0053 0.229 0.0046 57.0 

 

Table 5. Offline estimation of 𝑀0, 𝑀 and 𝛾 for 𝑇 = 5∘𝐶. 

 

𝑆𝑂𝐶 𝑀 𝑀0 𝑀̂ 𝑀0̂ 𝛾 

0.887 0.009 -0.0007 0.013 0.00062 123.5 

0.836 0.031 0.0007 0.029 0.00102 66.3 

0.786 0.031 0.0008 0.030 0.00132 51.3 

0.735 0.029 0.0005 0.028 0.00097 51.3 

0.684 0.033 0.0006 0.032 0.00099 47.0 

0.633 0.037 0.0009 0.036 0.00111 43.4 

0.582 0.038 0.0010 0.038 0.00115 42.7 

0.532 0.041 0.0011 0.041 0.00122 42.4 

0.481 0.046 0.0013 0.046 0.00132 40.4 

0.430 0.061 0.0021 0.062 0.00123 30.4 

0.379 0.088 0.0040 0.094 0.00078 16.7 

0.328 0.100 0.0052 0.109 0.00065 11.4 

0.278 0.091 0.0046 0.098 0.00063 12.5 

0.227 0.077 0.0038 0.082 0.00066 13.9 

0.176 0.054 0.0023 0.057 0.00059 18.3 

0.125 0.060 0.0007 0.059 0.00093 42.1 

0.074 0.102 0.0034 0.107 0.00038 19.7 

 

Because of the hysteresis voltage, the initial value 𝑆𝑂𝐶[𝑘0] and 𝑏 determined by (13) have large 

error. This causes the uncertainty in the measurement equation grow so big that ES-KF suffers from 

large error bound and very unstable 𝑆𝑂𝐶 estimation as depicted in Fig.13. This result is in contrast with 

the previous section, where the maximum charge/discharge current is 0.5A. 
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The methods EKF, SPKF, ES-EKF and ES-SPKF, which model the hysteresis voltage, yield 

comparable results with each other. Among them, the methods ES-EKF and ES-SPKF perform better 

than EKF and SPKF [13] and they are improving the results in [45] where the least square 𝑆𝑂𝐶 estimator 

was used.  

 
Figure 11. Estimated parameters and time window sizes for 𝑇 = 25∘𝐶 and 𝑇 = 5∘𝐶 with excitation level 

790 (𝑥 axis is for the number of time window). 

 

Table 6. RMS errors (in percents). 

 

Methods 𝑇 = 25∘𝐶 𝑇 = 5∘𝐶 

ES-KF 2.6363% 8.6335% 

EOB 4.9495% 36.9960% 

EKF 0.5104% 1.5252% 

EOB 2.0286% 35.9171% 

ES-EKF 0.1580% 0.5696% 

EOB 0% 0% 

SPKF 0.5341% 0.8368% 

EOB 3.6723% 10.5274% 

ES-SPKF 0.1569% 0.2650% 

EOB 0% 0.2783% 
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Figure 12. Error bounds for 𝑇 = 5∘𝐶 

 

 

 
 

Figure 13.  𝑆𝑂𝐶 estimation for 𝑇 = 5∘𝐶 

 

The method ES-SPKF outperforms all the others because of it’s efficient handling of 

nonlinearity. The improvement of ES-EKF and ES-SPKF can be explained by two ideas proposed in this 

work. First, the nonlinearity in battery dynamics localized efficiently and the parameters are extracted 

online with dependence on the 𝑆𝑂𝐶 as in Fig.14. Second, the initial value 𝑂𝐶𝑉[𝑘0] is estimated along 

with other parameters and it enables us to calculate all 𝑂𝐶𝑉[𝑘]. This process lets us to use fewer state 

equations (22a) and (22b) in KF algorithm 

 

3.3. Test with 18650 PF Battery 

In this section, the ES-EKF and ES-SPKF algorithms tested for 18650PF Li-ion battery dataset, 

which is publicly available at [49] and used by the deep-learning based 𝑆𝑂𝐶 estimation methods reported 

in [50, 7, 8]. The 18650PF Li-ion battery has 𝐿𝑖𝑁𝑖𝐶𝑜𝐴𝑙𝑂2 chemistry, and 2.9𝐴ℎ nominal capacity. The 

dataset includes four basic dynamic driving tests: UDDS, HWFET, LA92 and US06, and random mixes 

of them: Cycle-1, Cycle-2, Cycle-3, Cycle-4 and NN. The original data which has 10Hz sample rate 

converted to the data with 1Hz sample rate, and the current and voltage for Cycle-3 pattern was shown 
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in Fig. 14. Since the data set does not contain the 𝑆𝑂𝐶-𝑂𝐶𝑉 curve (obtainable by C/30 test), the first 

task is the acquisition of 𝑆𝑂𝐶-𝑂𝐶𝑉 relation based on the available driving cycle data. 

 

 

 
 

Figure 14. Current and voltage of dynamic test data of the Cycle-3 pattern for 𝑇 = 25∘𝐶 

 

 

In order to do so, we obtain 𝑂𝐶𝑉 values for each test by executing (10)-(16) algorithm. Fig.15 

shows the estimated 𝑂𝐶𝑉 values for each driving test cases and the average 𝑆𝑂𝐶-𝑂𝐶𝑉 curve, which is 

fitted by 7-th order polynomial with coefficients 

𝑝 = [−32.4,  122.3, −181.7,  131.5, −44.5,  3.9,  1.8,  3.1]. 

Compared to the previous experiments, there are many driving cycle patterns in this dataset. If 

we repeat the offline estimations of 𝑀, 𝑀0, 𝛾 with dependence on 𝑆𝑂𝐶 for each driving cycle, we get 

slightly different values. We did not see any reasonable 𝑆𝑂𝐶 dependence for averaged values of them. 

This suggests that the values of 𝑀, 𝑀0, 𝛾 must be generalized over entire data. Therefore, we estimated 

𝑀, 𝑀0, 𝛾 for each driving cycle without 𝑆𝑂𝐶 dependence and averaged them over all driving cycles. The 

average values are found to be 𝑀 = 0.0482, 𝑀0 = −4.34𝑒 − 5, 𝛾 = 36.3289 and the experiments 

show they generalize good enough the hysteresis effect. 

 

 

 
 

Figure 15. 𝑆𝑂𝐶-𝑂𝐶𝑉 curve estimated by nonlinear regression. 
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As an example, Fig. 16 presents the estimated parameters and time window sizes with the 

excitation level 600 and 𝑆𝑂𝐶 estimation error and bounds are shown in Fig. 17 for Cycle-3 driving cycle. 

The sensor noise covariance 𝛴𝑤 = 0.002 and the measurement noise covariance 𝛴𝑣 = 0.2 are 

experimentally found. 

Table 7 shows the 𝑆𝑂𝐶 estimation results of two methods ES-SPKF and ES-EKF for the faulty 

initialization of 𝑆𝑂𝐶0 = 0.99. Generally, the estimation errors are in the same order for the mixed 

driving cycle datasets: Cycle-1, Cycle-3, Cycle-3, Cycle-4, which indicates the 𝑆𝑂𝐶-𝑂𝐶𝑉 curve and the 

parameters 𝑀, 𝑀0, 𝛾 generalized good enough over the entire dataset. The error for US06 pattern takes 

the highest value. This is because the US06 pattern has much higher current discharge rate and it is more 

challenging case compared to the others [50]. 

 

 

 
 

Figure 16. Estimated parameters and time window sizes for Cycle-3 for 𝑇 = 25∘𝐶 (𝑥 axis is for the 

number of time window). 

 

 

 
 

Figure 17. 𝑆𝑂𝐶 estimation error and error bounds for Cycle-3 and 𝑇 = 25∘𝐶 with the faulty initialization 

of 𝑆𝑂𝐶0 = 0.8 . 

 

Because of handling uncertainty differently (initial 𝑆𝑂𝐶 value and, assumed noise levels), it is 

difficult to directly compare our method and the machine learning based methods [50, 7, 8]. But, we see 
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the result of our method is in competitive order with the average error values 𝑅𝑀𝑆 = 0.5076,  𝑀𝐴𝐸 =

0.4367,  𝑀𝐴𝑋 = 1.0294 for ES-SPKF. 

 

3.4. Discussion 

Based on the results of three different datasets, the ES-KF method is only applicable when the 

charge/discharge current is in some low level or the polarization of hysteresis voltage is small and 

negligible. However, ES-EKF and ES-SPKF are the universal approaches to estimate 𝑆𝑂𝐶 when 𝑆𝑂𝐶-

𝑂𝐶𝑉 curve is extracted with enough accuracy and the hysteresis parameters 𝑀, 𝑀0,  𝛾 are estimated and 

generalized well over various driving cycles. More sophisticated method to adjust time window size may 

be implemented in practice to adapt to various current profiles. One approach is to set conditions on both 

minimum length of time window and excitation count (12). In general, the purposed KF based 𝑆𝑂𝐶 

coestimation scheme is robust and simple yet. It can yield accurate results when model parameters tuned 

up and generalized well. In order to implement temperature-dependent version of this method, it is 

enough to obtain 𝑆𝑂𝐶-𝑂𝐶𝑉 curves and the parameters 𝑀, 𝑀0,  𝛾 at a few different temperatures and 

interpolate the intermediate values, since other parameters are determined online. The 𝑆𝑂𝐶-𝑂𝐶𝑉 curve 

can be obtained from dynamic data by our method without the lengthy C/30 experiments. Our method 

can be extended naturally to estimate battery health (𝑅0,  𝑄) by employing joint and dual nonlinear KFs. 

 

 

 

4. CONCLUSION 

Online parameter identification and KF-based battery 𝑆𝑂𝐶 estimation technique were proposed 

for an electrical battery model. Firstly, modeling the 𝑆𝑂𝐶-𝑂𝐶𝑉 relation locally linear on the fly, we 

perform a simple linear least square estimation algorithm with variable-length time window and extract 

battery parameters 𝑅0, 𝑅, 𝐶, 𝑎, 𝑏 and 𝑂𝐶𝑉[𝑘0]. This procedure lets us obtain values of 𝑂𝐶𝑉 window-

wise. In the next phase, ES-KF, ES-EKF and ES-SPKF algorithms are executed to estimate the 𝑆𝑂𝐶 

with fewer state equations. Extensive experimental tests are conducted for the real data obtained in the 

designated labs. The ES-EKF and ES-SPKF methods with model parameters estimated online perform 

better than the other methods considered previously and the performances are in competitive manner 

with machine learning based methods. 
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