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A theoretical model is presented for reagentless- conducting polymer modified electrodes. This model 

is based on nonlinear reaction-diffusion equation with nonlinear term related to Michaels-Menten 

kinetics. The theoretical representation of species concentration for steady-state conditions for all kinetic 

model parameters is presented in this report.  Akbari-Ganji’s method used is to evaluate the analytical 

expressions of concentration of species in the film and current. The effects of the parameter on the 

concentration and current are also analyzed. The limiting conditions of catalytic sites (unsaturation and 

site saturation) are discussed, and corresponding an analytical expression for concentrations and 

transient current is also derived. Our estimated analytical results are compared with the simulation 

results. It is observed that a good agreement has been obtained. 

 

 

Keywords: Mathematical modeling; nonlinear reaction diffusion equation; enzyme, polymer modified 

electrode; Akbari-Ganji’s method. 

 

 

1. INTRODUCTION 

 

The electrochemical immobilization of enzymes has emerged as a reliable method for the 

production of enzyme electrodes. The process of immobilization and the kinetic behaviour of the 

resulting enzyme electrode have been examined [1-3]. Furthermore, because the approach allows for the 

immobilization of the mediator in the polymer as a dopant, it can be used to make so-called reagentless 

biosensors [4-6].         
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The physical entrapment of enzymes in electrochemically generated polypyrrole has been the 

focus of the majority of research [7-9]. However, various film geometries, such as immobilization by 

covalent attachment with functionalized polymers, have been proposed [10,11] or a pyrrole-modified 

enzyme to copolymerize [12]. 

Bartlett et al. [13] explored mathematical formulas relating to approximate analytical 

concentration and current for limiting conditions  at enzyme electrodes. Saravanakumar and Rajendran 

[14] had used the homotopy perturbation method to analyse the enzyme-entrapped conducting polymer 

modified electrode. Lyons et al. [15] reported the steady-state amperometric current response of a 

polymer-modified electrode system with Michaelis-Menten kinetics. 

 

For the appropriate limiting conditions alone, Kan and Hui-Huang [16] developed semi-

analytical expressions for the concentration of species in the film and the current response of enzyme-

entrapped conducting polymer modified electrodes. No analytical equations for the concentration of 

species in the film and the current have been provided to our knowledge for all values of parameters 

𝜶, 𝜷𝒔, 𝒔∞ , 𝒌𝒔, 𝑲. The aim of this communication is to use Akbari-Ganji’s approach to construct an 

analytical equation for the concentration and current for all values of the parameters. 

.  
 

 

2. MATHEMATICAL FORMULATION OF MIXED BOUNDARY VALUE PROBLEM 

The reagentless enzyme reactions take place within the polymer film, the regeneration of 𝐸2 is 

formally represented with an electrochemical reaction [16]. 

𝐸2  
𝑘5
→ 𝐸1 + 𝑛 𝑒−                                     (1) 

The steady- state mass balance nonlinear differential equation for the concentration of species 

can be written as follows: 

𝐷𝑠  
𝑑2𝑠(𝑥)

𝑑 𝑥2 −  𝑅(𝑠(𝑥)) = 0                                                                                           (2) 

where 

 𝑅(𝑠(𝑥)) =  
𝑘2   𝑒∈

1+𝐾𝑀 𝑠(𝑥)+ 𝑘2 𝑘5⁄⁄
                                                                                 (3) 

where 𝑠(𝑥) denotes the concentration of species in film, Km is the Michealis constant, k2  and  

k5 represent the reaction rate constant,e∈ is the total concentration of enzyme species, and Ds is the 

diffusion coefficient of substrate. The following are the corresponding boundary conditions. 

At 𝑥 = 0, 
𝑑 𝑠

𝑑 𝑥
= 0                                                                                                        (4) 

At 𝑥 = 𝐿, 𝐷𝑠  (
𝑑 𝑠

𝑑 𝑥
) =  ℎ𝑠( 𝑠∞ −  𝑘𝑠𝑠(𝑥))                                                                         (5) 

where s∞ is the bulk concentration of substrate, L is the inner side of the film, and ks is the 

partition coefficient for substrate, and hsis the mass transport coefficient of substrate. By defining the 

following dimensionless parameters, 

 𝛼 =  (
𝑘2 𝑒∈ 𝐿2

𝐾𝑀𝐷𝑠
)

1 2⁄

, 𝛽𝑠 =  
𝐷𝑠

ℎ𝑠  𝑘𝑠 𝐿
, and 𝐾 =  

𝑘2+ 𝑘5

𝐾𝑀
                                                 (6) 

Eq. (2) can be reduced to the dimensionless form: 
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𝑑2𝑠(𝑥)

𝑑 𝑥2 − 
𝛼2𝑠(𝑥)

𝐿2 (1+𝐾 𝑠(𝑥))
= 0                                                                                         (7) 

The boundary conditions in dimensionless form in enzyme electrode are as follows: 

At 𝑥 = 0, 
𝑑 𝑠

𝑑 𝑥
= 0                                                                                                      (8) 

At 𝑥 = 𝐿,
𝑑 𝑠

𝑑 𝑥
=  

( 𝑠∞− 𝑘𝑠𝑠)

𝛽𝑠 𝑘𝑠 𝐿
 ⇒ 

𝑑 𝑠

𝑑 𝑥
−

𝑠∞

𝛽𝑠 𝑘𝑠 𝐿
=

− 𝑠(𝑥)

𝛽𝑠  𝐿
                                                        (9) 

The current response is [16] 
𝑖

𝑛𝐹 𝐷𝑠
= (

𝑑 𝑠

𝑑𝑥
)

𝑥=𝐿
                                                                                                    (10)                                                            

 

 

 

3. APPROXIMATE ANALYTICAL EXPRESSION OF THE CONCENTRATION USING  

AKBARI-GANJI’S METHOD 

Recently many asymptotic techniques have been available to solve nonlinear differential 

equations. The Akbari-Ganji method [17-21], Taylor series method [22,23], homotopy analysis method 

[24], variational iteration method [25], Adomian decomposition method [26,27], are also examples of 

such methods. 

The Akbari Ganji method (AGM) is a powerful algebraic (semi-analytic) strategy for solving 

such problems in this regard. In the AGM, a solution function with unknown constant coefficients should 

satisfy the differential equation and initial conditions initially. Assume that the solution to Eq. (7) is of 

the following hyperbolic form. 

 𝑠(𝑥) = 𝐴0 cosh(𝑚𝑥) + 𝐵0 sinh(𝑚𝑥)                                                                        (11)  

where  𝐴0, 𝐵0 and 𝑚 are constant. The values of 𝐴0 , 𝐵0are found easily from boundary conditions 

(8) and (9), that is  

 𝐴0 =  
𝑠∞

𝑘𝑠[cosh(𝑚𝐿)+𝑚 𝐿 𝛽𝑠sinh (𝑚𝐿)]
, 𝐵0 =  0                                                       (12) 

As a result, Eq. (11) becomes 

𝑠(𝑥) =  𝐴0 cosh(𝑚𝑥) =
𝑠∞ cosh (𝑚𝑥)

𝑘𝑠[cosh(𝑚𝐿)+𝑚 𝐿 𝛽𝑠sinh (𝑚𝐿)]
                            (13) 

We use the general form of Eq. (7) to find the constant m in Eq. (13). 

𝐹(𝑥) =  𝐿2(1 + 𝐾 𝑠(𝑥))
𝑑2 𝑠(𝑥)

𝑑 𝑥2
− 𝛼2 𝑠(𝑥) = 0                                                                     (14) 

We obtain Eq. (14) by substituting it for Eq. (13) 

𝐹(𝑥 = 0) =  𝐿2(1 + 𝐾 𝐴0)𝑚2𝐴0 − 𝛼2 𝐴0 = 0                                                                  (15)                                                               

This gives 

𝐿2𝑚2(1 + 𝐾 𝐴0) − 𝛼2  = 0                                                                                                 (16)                                                                 

𝐹Substitute Eq. (16) into Eq. (13) gives the following analytical expression of a substrate 

concentration in species 𝑠(𝑥) for all dimensionless parameters 𝛼, 𝛽𝑠 and 𝐾. The current response can be 

obtained as follows:  
𝑖

𝑛 𝐹𝐷𝑠
=  (

𝑑 𝑠 

𝑑 𝑥
)

𝑥=𝐿
=  [

𝑚 𝑠∞ tan ℎ (𝑚 𝐿)

𝑘𝑠(1+𝑚 𝐿 𝛽𝑠 tanh( 𝑚 𝐿 )
]                                                                       (17) 
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4. THE ANALYTICAL EXPRESSIONS OF CONCENTRATION AND CURRENT FOR THE  

LIMITING CASES. 

The two limiting conditions are zero-order kinetics and first-order kinetics. The limiting case 

identities are based on the extent to which the enzyme kinetics have been saturated and hence on the 

magnitude of the substrate concentration about the enzyme's Michaelis constant. 

 When the substrate concentration exceeds the Michaelis constant, zero-order kinetics is used. 

The substrate binds all enzyme active sites, and the reaction rate is unaffected by substrate concentration.  

The kinetics are unsaturated when the substrate concentration is less than the Michaelis constant. 

Instead, they refer to how the substrate has saturated the enzyme catalyst sites; not all active sites have 

been occupied. As a result, the reaction rate varies linearly as the substrate concentration increases. 

According to these limiting constraints, the nonlinear kinetic term can be reduced to a linear form. The 

reaction/diffusion equation is no longer nonlinear in these limiting circumstances, allowing for a more 

straightforward solution. 

 

4.1   Unsaturated (First-Order) Catalytic Kinetics.  

In this case, 𝐾𝑆 < 1 𝑜𝑟   (𝐾𝑀 𝑠) ≫⁄ [1 + (𝑘2 𝑘5⁄ )], Eq. (3) reduce to 𝑅 =  𝑘2𝑒∈ 𝑠 𝐾𝑀⁄  and Eq. 

(7) reduces to the linear reaction-diffusion equations 
𝑑2𝑠(𝑥)

𝑑 𝑥2 − 
𝛼2𝑠(𝑥)

𝐿2 
= 0                                                                                                            (18) 

The boundary conditions are                                                                     

At 𝑥 = 0,        
𝑑 𝑠

𝑑 𝑥
= 0                                                                                                          (19)                                             

At 𝑥 = 𝐿,      
𝑑 𝑠

𝑑 𝑥
−

𝑠∞

𝛽𝑠 𝑘𝑠 𝐿
=

− 𝑠(𝑥)

𝛽𝑠  𝐿
                                                                                       (20) 

The concentration of substrate species  

𝑠(𝑥) =  
𝑠∞ 𝑐𝑜𝑠ℎ(

𝛼 𝑥

𝐿
)

𝑘𝑠(𝑐𝑜𝑠ℎ 𝛼+𝛼 𝛽𝑠 sinh 𝛼 )
                                                                                             (21) 

The current response is  
𝑖

𝑛 𝐹𝐷𝑠
=  

   𝑠∞𝛼 𝑡𝑎𝑛ℎ𝛼

𝐿 𝑘𝑠(1+ 𝛼 𝛽𝑠 tanh 𝛼)
                                                                                                  (22) 

 

4.2 Saturated (Zero-Order) Catalytic Kinetics.  

The significant limiting situation in practice under consideration is when 𝐾𝑆 > 1 or 

   (𝐾𝑀 𝑠) ≪⁄ [1 + (𝑘2 𝑘5⁄ )], Eq. (3) reduce to 𝑅 =  𝑘2𝑒∈ (1 +
𝑘2

𝑘5
)⁄  and Eq. (7) reduces to the 

linear reaction-diffusion equations 
𝑑2𝑠(𝑥)

𝑑 𝑥2 − 
𝛼2

𝐿2 𝐾
= 0                                                                                                           (23) 

At 𝑥 = 0,        
𝑑 𝑠

𝑑 𝑥
= 0                                                                                                    (24)                                                              

At 𝑥 = 𝐿,      
𝑑 𝑠

𝑑 𝑥
−

𝑠∞

𝛽𝑠 𝑘𝑠 𝐿
=

− 𝑠(𝑥)

𝛽𝑠  𝐿
                                                                                (25) 

The concentration of substrate species  
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𝑠(𝑥) =
1

2
[

𝛼2𝑥2

𝐿2𝐾
−

𝛼2

2𝐾
−

𝛽𝑠𝐿2

𝐾
+

s∞

ks
]                                                                          (26) 

  The current response is  

   
𝑖

𝑛 𝐹𝐷𝑠
=  

   𝑠∞𝛼 2

𝐿 𝐾
=

𝑠∞𝛼 2𝐾𝑀

𝐿(𝑘5+𝑘2 )
                                                                                  (27)       

Our results for the limiting case are identical to the results obtained by Kan and Hui-Huang [16].  

 

 

 

5. DISCUSSION. 

Equation (13) is the new, general and simple analytical expressions of the concentration profile 

of the species  s(x) in conducting polymer electrodes.  

 

 
Figure 1. Comparison of analytical expression (Eq. (13)) of substrate concentration of species 𝑠(𝑥) with 

simulation result for various values of parameters 𝛼. The other parameter values are  𝑠∞ =
0.1 (𝑚𝑜𝑙/𝑐𝑚3), 𝑘𝑠 = 0.1, 𝐾 = 1, and 𝐿 = 1 (𝑐𝑚). 

 

 

 

Figure 2. Comparison of analytical expression (Eq. (13)) of substrate concentration of species 𝑠(𝑥) with 

simulation result for various values of parameters 𝛽𝑠. The other parameter values are  𝑠∞ =
0.1 (𝑚𝑜𝑙/𝑐𝑚3), 𝑘𝑠 = 0.1, 𝐾 = 1, and 𝐿 = 1 (𝑐𝑚). 
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Figure 3. Comparison of substrate concentration of species 𝑠(𝑥) for limiting case result species 𝑠(𝑥) 

(Zhu Kan and Hui-huang) (Eq. (21)) and general solution result using Eq. (13) for various values 

of parameters 𝛼. The other parameter values are  𝑠∞ = 0.1 (𝑚𝑜𝑙/𝑐𝑚3), 𝑘𝑠 = 1, 𝐾 =
0.1, and 𝐿 = 1 (𝑐𝑚). 

 

This concentration depends on parameters 𝛼, 𝛽𝑠, 𝑠∞ , 𝑘𝑠, 𝐾,  and 𝐿.  The steady-state substrate 

concentration profile of the substrate 𝑠(𝑥)  is compared with simulation results (Figs 1,2) and limiting 

case results (Figs 3,4) [16] respectively. 
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Figure 4. Comparison of substrate concentration of species 𝑠(𝑥) for limiting case result (Zhu Kan and 

Hui-huang) (Eq. (21)) and general solution result using Eq. (13) for various values of parameters 

𝛽𝑠. The other parameter values are 𝑠∞ = 0.1 (𝑚𝑜𝑙/𝑐𝑚3), 𝑘𝑠 = 1, 𝐾 = 0.01, and 𝐿 = 1(𝑐𝑚). 

 

 

The concentration and current are depends upon the parameter α, βs, s∞ , ks, K,  and L. The rate 

of enzyme catalytic reaction divided by the rate of diffusion in the polymer film yields 

𝛼2.   The parameter 𝛽𝑠 is the ratio of mass-transport coefficient in the polymer film to  the solution. The 

remaining parameters s∞ , ks, K,  and L are all ready defined in the section 2. 

  

Table 1. Comparison beteween analytical and previous  results for current  
𝑖

𝑛𝑓𝐷𝑠
 for various values of 

parameter 𝛽𝑠when 𝑠∞ = 0.1 (𝑚𝑜𝑙/𝑐𝑚3), 𝑘𝑠 = 0.1, 𝐾 = 0.01  and 𝐿 = 0.1 (𝑐𝑚) 

 

𝛼 𝛽𝑠 = 0.01    𝛽𝑠 = 10 

This work 

AGM 

Eq. (17) 

Zhu Kan & 

Hui-huang 

[16] Eq. (22) 

abs.error This work 

AGM 

Eq. (17) 

Zhu Kan & 

Hui-huang 

[16] Eq. (22) 

abs.error 

0.01 0.0009900 0.0010000 0.0000100 0.0009891 0.0009970 0.0000079 

0.5 2.2865572 2.3052592 0.0187020 0.6974151 0.6979386 0.0005235 

1 7.5210523 7.5583773 0.0373250 0.8838762 0.8839361 0.0000599 

5 47.612024 47.614930 0.0029060 0.9803904 0.9803904 0 

10 90.909090 90.909090 0 0.9900990 0.9900990 0 

50 333.33333 333.33333 0 0.9980040 0.9980040 0 

100 500.00000 500.00000 0 0.9990010 0.9990010 0 

500 833.33335 833.33335 0 0.9998000 0.9998000 0 

1000 909.09091 909.09091 0 0.9999000 0.9999000 0 
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Table 2. Comparison beteween analytical and previous  results for current  
𝑖

𝑛𝑓𝐷𝑠
 for various values of 

parameter  𝛽𝑠 when 𝑠∞ = 0.1 (𝑚𝑜𝑙/𝑐𝑚3), 𝑘𝑠 = 0.1, 𝐾 = 0.01  and 𝐿 = 0.1 (𝑐𝑚) 

 

𝛽𝑠 𝛼 = 0.01 𝛼 = 0.1 

This work 

AGM 

Eq. (17) 

Zhu Kan & 

Hui-huang 

[16] Eq. (22) 

abs.error This work 

AGM 

Eq. (17) 

Zhu Kan & 

Hui-huang 

[16] Eq. (22) 

abs.error 

0.01 0.0009900 0.0010000 0.0000100 0.0986796 0.0996580 0.0009784 

0.5 0.0049999 0.0099990 0.0049991 0.4991665 0.9917380 0.4925715 

1 0.0049998 0.0099990 0.0049992 0.4985401 0.9868440 0.4893039 

5 0.0049993 0.0099950 0.0049957 0.4935381 0.9493691 0.4558310 

10 0.0049987 0.0099900 0.0049913 0.4872899 0.9063462 0.4190563 

50 0.0049937 0.0099500 0.0049563 0.4382045 0.6651894 0.2269849 

100 0.0049870 0.0099010 0.0049140 0.3817228 0.4991686 0.1174458 

500 0.0049370 0.0095250 0.0045880 0.1614078 0.1665742 0.0051664 

1000 0.0048750 0.0090910 0.0042160 0.0900726 0.0908816 0.0008090 

 

 

Fig. 3(a-c), shows the effect of parameter α on the concentration of substrate in conducting 

polymer electrodes. From the Figures it is inferred that the concentration decreased by increasing the 

parameter  α. Fig. 4(a-c), it is inferred that concentration decreases when βs decreases for different values 

of α. The concentration of substrate reaches its maximum when α <  0.01. Tables 1 and 2 show that the 

analytical and limiting case result for the current are in strong agreement.   

 

5.1 Biosensor Sensitivity 

Sensitivity is the ratio of change in stationary current to change in concentration. A low value 

indicates that it is less sensitive to change in substrate concentration. Variations in current and substrate 

concentration must be studied to produce high accuracy sensors. Biosensor sensitivity can be obtained 

as follows: 

𝐵𝑠(𝑠∞) =
𝜕𝐼(𝑠∞)

𝜕𝑠∞
×

𝑠∞

𝐼(𝑠∞)
                               (28) 

where 𝐵𝑠 is biosensor sensitivity. 𝐼𝐶𝐶𝐸(𝑠∞) is steady-state current density measured at the 

substrate concentration 𝑠∞. When the thickness of the enzyme L is very small, 𝐴0 =  
𝑠∞

𝑘𝑠
. Now from the 

eq. (16) we get 

𝐿2𝑚2 (1 + 𝐾 
𝑠∞

𝑘𝑠
) − 𝛼2  = 0                                (29)                                                                                    

Simplifying the above equation, we obtain 
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𝑚 =
𝛼

𝐿
√

𝑘𝑠

𝑘𝑠+𝑠∞ 
                                                                                                         (30)                                                              

Sensitivity becomes  

𝐵𝑠(𝑠∞) =  
𝐿 𝑘𝑠𝐵

𝛼 𝜂 𝐴
[

𝛼 𝜂 𝐴

𝐿 𝑘𝑠𝐵
−

𝛼𝑠∞𝐴 𝐾

2 𝐿 𝜂
−

𝛼2𝑠∞ 𝐾 (1−𝐴2)

𝐿 𝐵 (𝑘𝑠+𝐾 𝑠∞)2 +
𝛼2𝛽𝑠𝑠∞𝐾 𝐴2

2 𝐿 𝐵2(𝑘𝑠+𝐾 𝑠∞)2 +
𝛼3𝛽𝑠𝑠∞𝐾𝜂 𝐴(1−𝐴2)

2 𝐿 𝐵2(𝑘𝑠+𝐾 𝑠∞)2 ]  (31) 

 where 𝜂 =  √
𝑘𝑠

𝑘𝑠+𝑠∞ 
, 𝐴 = tanh(𝛼 𝜂) , 𝐵 = 1 + 𝛼 𝛽𝑠 𝜂 𝐴                                               (32) 

 

 

  

 

Figure 5. Sensitivity using Eq. (31) for fixed values of parameters(a)  𝛽𝑠=0.01, 𝐿 = 0.5 𝑐𝑚, 𝐾 = 1, 𝑘𝑠 =
5.(b) 𝛼=0.5, 𝐿 = 0.5 𝑐𝑚, 𝐾 = 5, 𝑘𝑠 = 5.(c) 𝛼 = 0.5, 𝛽𝑠=5, 𝐿 = 0.5 𝑐𝑚, 𝐾 = 0.01. .(d) 𝛼 =
0.5, 𝛽𝑠=0.01, 𝐿 = 0.5 𝑐𝑚, , 𝑘𝑠 = 0.5. 

 

Sensitivity of the biosensor versus substrate concentration is plotted in Fig.5 for various values 

parameters. From the figure it is inferred that the parameter α,   s∞  increases or   𝛽𝑠,  ks, K decreases   the 

sensitivity  𝐵s decreases. It is possible to observe from the smooth curves of figure 5 (a) to (d) that 0 ≤

𝐵s ≤ 1 for all values of parameters. 

 

5.2 Biosensor Resistance 

The resistance 𝐵𝑅   is described as the gradient of steady-state biosensor current as a function of 

membrane thickness L. 

𝐵𝑅(𝐿) =
𝜕𝐼(𝐿)

𝜕𝐿
×

𝐿

𝐼(𝐿)
=  (

− 𝛼𝜂𝑠∞ 𝐴 

𝐿2𝑘𝑠𝐵
) (

𝐿2𝑘𝑠𝐵

𝛼𝜂𝑠∞ 𝐴
) =  −1                                                  (33) 
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6. CONCLUSIONS 

In this paper, the approximate analytical expression of concentration of substrate for all 

experimental values of parameters is derived using Akbari-Ganji’s method. The derived analytical 

results and simulation results are in good agreement. The effects of various parameter on the 

concentration , current and sensitivity  are discussed. These results can be used to improve and construct 

enzyme electrodes for amperometric biosensors and biofuel cells. 

 

 

 

NOMENCLATURE:  

 

Symbols Description Units 

𝐷𝑠 Diffusion coefficient of substrate 𝑐𝑚2 𝑠−1 

ℎ𝑠 Mass transport coefficient of substrate 𝑚/𝑠 

          𝑖/𝑛𝐹 current density at an enzyme electrode  𝜇 𝐴 𝑐𝑚2 𝐶⁄  

𝐾𝑀 Michealis-Menten constant 𝑚𝑜𝑙 𝑐𝑚3⁄  

𝑘𝑠 Partition coefficient of substrate                 None 

𝐾 Dimensionless parameter               None 

𝑘2, 𝑘5 Rate constants 𝑚𝑜𝑙𝑒−1/𝑠−1 

𝐿 Inner side of the film 𝑐𝑚 

𝑠(𝑥) Concentration of the substrate  𝑚𝑜𝑙/𝑐𝑚3 

𝑠∞ Substrate concentration in bulk solution  𝑚𝑜𝑙/𝑐𝑚3 

𝑒∈ Total concentration of the enzyme 

species 
𝑚𝑜𝑙/𝑐𝑚3 

𝑥 Distance 𝑐𝑚 

𝛼 =  (
𝑘2 𝑒∈ 𝐿

2

𝐾𝑀𝐷𝑠
)

1 2⁄

 
The ratio of the rate of enzyme catalysis 

to the rate of diffusion in a polymer film 

                None 

𝛽𝑠 =  
𝐷𝑠

ℎ𝑠  𝑘𝑠 𝐿
 

The mass-transport coefficient in the 

polymer film compare to a mass-

transport coefficient in the solution. 

              None 

 

 

 

APPENDIX A: 

 

MATLAB Code for Numerical Solution of the Non-Linear Eq. (7) 

function pdex4 

 m = 0; 

 x = linspace(0, 1); 

 t = linspace(0, 1000000); 

 sol = pdepe(m, @pdex4pde, @pdex4ic, @pdex4bc, x, t); 

 u1 = sol(:, :, 1); 

 % ————————————————————– 
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figure 

 plot(x, u1(end,:)) 

 title('u1(x, t)') 

 xlabel('Distance x') 

 ylabel('u1(x, 1)') 

function [c, f, s] = pdex4pde (x, t, u, DuDx) 

 c =1; 

 f =1. * DuDx; 

 b=1; alpha=10; k=1; 

 F =-(alpha^2*u (1))/(b^2*(1+k*(u (1)))); 

 s =F; 

 % ————————————————————– 

function u0 = pdex4ic(x) 

u0 = [0]; 

 % ————————————————————– 

function [pl, ql, pr, qr] = pdex4bc (xl, ul, xr, ur, t) 

 a=0.1; g=0.1; beta=1; n=1; 

 pl = [0]; 

 ql = [1]; 

 pr = -(a-g*ur(1))/(beta*g*n); 

 qr = [n]; 
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