International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

# **Comparative Experimental and Theoretical Studies of Three Different Expired Pharmaceutical Compounds as Green Corrosion Inhibitors of Mild Steel in Different Acidic Solutions**

Ahmed H. Naggar<sup>1,\*</sup>, Mahmoud H. Mahross<sup>2</sup>, Mohamed Tarek<sup>2</sup>, Abd El-Aziz Y. El-Sayed<sup>2</sup>, Tarek A. Seaf El-Nasr<sup>3</sup>, and Adel A. Abdelwahab<sup>1</sup>

<sup>1</sup> Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Saudi Arabia

<sup>2</sup> Chemistry Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524, Assiut, Egypt

<sup>3</sup> Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia \*E-mail: <u>ahayoub@ju.edu.sa</u>

Received: 20 January 2022 / Accepted: 1 March 2022 / Published: 5 April 2022

Mild steel (MS) corrosion is a crucial industrial problem and thus efficient inhibitors for MS corrosion are highly demanded. Here, the inhibition of MS corrosion in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> solutions utilizing three pharmaceutical compounds expired for human uses (as green inhibitors of MS corrosion) at different exposure times (2 h., 1 day, 2 days and 4 days). These pharmaceutical compounds named as metoclopramide hydrochloride (MCP), chlorpromazine hydrochloride (CPZ) and mebeverine hydrochloride (MEB) and it was studied using electrochemical technique (Potentiodynamic polarization). With raising expired drug concentrations up to 700 ppm, the inhibitory effectiveness of these drugs was improved. Potentiodynamic polarization suggests that at this concentration, CPZ is the most efficient antioxidant after 4 days' exposure time. Potentiodynamic polarization indicates a combined-type inhibition strategy, where the compounds inhibit both anodic and cathodic reactions. Langmuir adsorption isotherm governs the adsorption of investigated inhibitors on MS surface, and the adsorption equilibrium constant ( $K_{ads}$ ) and free energy of adsorption ( $\Delta G^{\circ}_{ads}$ ) were computed. Density functional theory (DFT) utilizing Becke's three parameter exchange functional (B3LYP) at 6-311G (d,p) level was utilized to compute quantum chemical descriptors of the investigated green corrosion inhibitors and their geometric and electronic structures. The theoretical results derived are in good accord with the obtained practical data. Additionally, scanning electron microscope (SEM) was also employed to explore MS surface before and after immersion in acidic media whether it contained the specified corrosion inhibitor or not.

Keywords: Expired pharmaceutical compounds; corrosion inhibitor, mild steel, acidic solution, DFT.

# **1. INTRODUCTION**

The use of corrosion inhibitors is a well-known strategy to prevent metallic material degradation in acidic environments. Organic inhibitors (either natural or synthetic) were used to preserve metals against corrosion in severe acidic environments (e.g. in the acid pickling and cleaning processes of metals) [1-7]. The features of the corrosive environment, the metal surface characteristics, and the electrochemical potential at the metal-solution interface are all factors that influence metal corrosion inhibition. Additionally, the inhibitor molecular structure is an important factor since it impacts the molecular size, the number and charge density of active adsorption sites in the molecule, and the inhibitor capability to form metallic complexes [8,9]. In general, attractive interactions among both the adsorbate and the metal occur in either physisorption or chemisorption [10-12], and inhibitor adsorption on the associated active sites reduces either the anodic or cathodic reaction or both. [13].

Heterocyclic compounds which include P, N, O and S that have been demonstrated to be efficacious inhibitors [14-18]. Also, it was discovered that the inhibition effect of such heterocyclic compounds can be enhanced by addition of conjugated  $\pi$ -electron systems or other electron-rich functional groups such as -OR, -OH, -NR<sub>2</sub>, -NH<sub>2</sub> and -SR. This is due to the existence of active adsorption sites with a high electron density, which aid in the inhibitor adsorption on the metal surface [19-20]. As corrosion inhibitors, a broad range of organic chemicals have been utilized, although many of them are costly and/or toxic [21]. Thus, organic corrosion inhibitors that are both low-cost and environmentally beneficial are so essential. Lately, pharmaceuticals compounds have gained popularity as green corrosion inhibitors for metals in acidic circumstances [22-28]. While using pharmaceuticals as green corrosion inhibitors help overcome utilizing hazardous chemicals, they are typically more expensive and researchers have thus focused their interest on utilizing expired pharmaceuticals as corrosion inhibitors [29-34].

The organic corrosion inhibitors efficacy was discovered to be tightly tied to some quantum chemical descriptors;  $E_{HOMO}$  (highest occupied molecular orbital energy),  $E_{LUMO}$  (lowest unoccupied molecular orbital energy),  $\Delta E$  (energy gap),  $\eta$  (global hardness),  $\sigma$  (global softness) and  $\Delta N$  (electrons number that have been moved to metal atom from inhibitor molecule). Theoretical models have evolved into an efficient tool for measuring the corrosion inhibition efficacy of organic compounds as a result of continual developments in hardware and software. To link the inhibitory efficacy of organic inhibitors to their molecular features, a number of quantum chemical modeling approaches have been developed [35-37]. Density functional theory (DFT), which is a potent tool for determining the relative corrosion inhibition activities of different molecules, is one of the most extensively used approaches in computational chemistry for calculating ground-state geometries [38-40]. DFT provides the capability of including some electron correlation effects at a substantially lower computing cost. It has also provided us with a foundation for creation of new standards for reasoning, anticipating, and ultimately comprehending several facets of chemical processes.

We have previously investigated a number of natural [41-45] and synthetic organic compounds [46,47] as mild steel (MS) corrosion inhibitors. Also, the current work is a continuation of our effort in the field of quantum theoretical studies and its applications in corrosion inhibition using green corrosion inhibitors [48,49]. Herein, the effectiveness of three different expired pharmaceuticals; metoclopramide

hydrochloride (MCP) (antiemetic), chlorpromazine hydrochloride (CPZ) (antipsychotic) and mebeverine hydrochloride (MEB) (antispasmodics) was investigated as green inhibitors for MS corrosion in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> using electrochemical techniques and the obtained results were proved and validated using microscopic (SEM) and theoretical (DFT) methods.

# 2. EXPERIMENTAL

# 2.1. Materials

MS samples were investigated at the Tabbin Institute for Metallurgical studies, Cairo, Egypt and the composition (wt. %) was found as: C 0.17 %, Si 0.022 %, Mn 0.71 %, P 0.010 %, Cr 0.045 %, Ni 0.072 %, Al 0.0017 %, Cu 0.182 %, Sn 0.011 %, F 0.022 %, Mo 0.011 % and Fe 98.74 %. To provide a smooth surface, MS samples were polished with 1200 to 1400 grade emery paper, rinsed with distilled H<sub>2</sub>O, degreased utilized acetone for 5 minutes, laved again utilizing distilled H<sub>2</sub>O, and finally dried.

# 2.2. Corrosive media and inhibitors

1.0 M aqueous HCl or  $H_2SO_4$  are used as an acidic corrosive media. The corrosion-inhibitor pharmaceutical compounds; MCP, CPZ and MEB were obtained from medical company and were used without further purification. Each of these inhibitors was dissolved in a 500 mL of 1.0 M HCl or  $H_2SO_4$  acidic media and applied at drug concentrations of 50, 200, 500 and 700 ppm.

### 2.3. Immersion Experiments

To ensure the accuracy for our suggested procedure, an immersion experiments were conducted for different MS samples in acidic corrosive media (1.0 M HCl or 1.0 M H<sub>2</sub>SO<sub>4</sub>) whether or not a different concentrations of expired pharmaceuticals which applied as corrosion inhibitor are present. For studied MS samples and considering the specified electrochemical experiment period, the immersion trials were executed in 1.0 M HCl or 1.0 M H<sub>2</sub>SO<sub>4</sub> acidic corrosive media for different immersion times 2 h., 1 day, 2 days and 4 days at room temperature.

# 2.4. Corrosion cell

The corrosion cell used in potentiodynamic polarization involves three electrodes: MS as the working electrode, SCE as reference electrode, and platinum wire as auxiliary electrode. The working electrode has a solution-exposed area of  $1 \text{ cm}^2$ .

### 2.5. Experimental measurements

Open circuit (E (mV) *vs.* time (min.)) at no current and potentiodynamic polarization plots were measured with EG&G potentiostat/galvanostat model 273A. The polarization curves were measured

after steeping the MS working electrode in 1.0 M HCl or  $H_2SO_4$  acidic solutions for (2 h., 1 day, 2 days and 4 days), and after the corrosion potential ( $E_{corr}$ ) became stable. Potentiodynamic polarization were measured from ±250 mV at a scan rate is 0.3 mV/sec.

# 2.6. Theoretical calculations:

The theoretical calculations of the various parameters were based on the density functional theory (DFT) [50] utilizing Becke's three parameter exchange functional (B3LYP) at the 6-311G (d,p) basis set [51] implemented in Gauss View 5.0 with Gaussian 09W program package [52].

# 2.6. Scanning electron microscope (SEM)

SEM is utilized to gain insight into the MS surface morphology after steeping in 1.0 M HCl or  $H_2SO_4$  acidic media without and with the corrosion inhibitors. SEM analysis was proceeded in the electronic microscope office (JEOL, JSM5400LV) in Assiut University, Egypt.

# **3. RESULTS AND DISCUSSION**

# 3.1. Open circuit potential measurements (OCP)



**Figure 1.** Potential-time curves for MS after 4 days' immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).







**Figure 3.** Potential-time curves for MS after 1-day immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).



**Figure 4.** Potential-time curves for MS after 2 days' immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).

Figure 1 presents OCP measurements for MS in the blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media and in existence of specified concentrations of MCP, CPZ and MEB after 4 days' exposure time. Corresponding results for 2 h., 1 day and 2 days' exposure times are shown in Figures 2, 3 and 4, respectively.

The slightly negative of steady state potential  $(E_{s.s})$  compared to the immersion potential  $(E_{im})$  for almost blank solution indicates destruction of the pre-immersion oxide stratum on MS electrodes surface.

Compared to the blank solution, addition of the inhibitors results in slightly negative or positive  $E_{s.s}$  compared to  $E_{s.s}$  of blank, showing the creation of an inhibitor stratum on the MS surface that blocks the cathodic and anodic sites, respectively. The obtained  $E_{s.s}$  values of the studied solutions were recorded in Table 1.

| Table 1. | Values of $E_{s.s}$ (m) | V) for MS in 1.0 N | I HCl or H <sub>2</sub> SO <sub>4</sub> | acidic media in   | absent and | existence of |
|----------|-------------------------|--------------------|-----------------------------------------|-------------------|------------|--------------|
| n        | umerous concentrat      | tions of MCP, CPZ  | and MEB at di                           | fferent immersion | n times.   |              |

| Test            | Como  |                  |                   |                  | 1.0 M             | I HCl            |                   |                  |                   |                  |                   |                  | 1.0 M             | H <sub>2</sub> SO <sub>4</sub> |                   |                  |                   |
|-----------------|-------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|--------------------------------|-------------------|------------------|-------------------|
| Solution        | (ppm) | 2                | h                 | 1 d              | lay               | 2 d              | ays               | 4 d              | ays               | 2                | h                 | 1 d              | ay                | 2 d                            | ays               | 4 da             | ays               |
| Solution        | (ppm) | -E <sub>im</sub> | -E <sub>s.s</sub> | -E <sub>im</sub>               | -E <sub>s.s</sub> | -E <sub>im</sub> | -E <sub>s.s</sub> |
| Without<br>drug |       | 460              | 473               | 474              | 480               | 480              | 481               | 442              | 474               | 467              | 465               | 475              | 480               | 501                            | 503               | 474              | 473               |
| MCP             | 50    | 431              | 448               | 428              | 480               | 440              | 475               | 417              | 501               | 456              | 459               | 448              | 454               | 432                            | 432               | 424              | 421               |
|                 | 200   | 436              | 465               | 439              | 497               | 408              | 464               | 363              | 459               | 458              | 463               | 439              | 450               | 443                            | 450               | 417              | 414               |
|                 | 500   | 459              | 488               | 460              | 500               | 434              | 477               | 379              | 455               | 437              | 442               | 422              | 437               | 411                            | 427               | 403              | 394               |
|                 | 700   | 440              | 477               | 450              | 505               | 448              | 498               | 450              | 504               | 451              | 449               | 428              | 434               | 414                            | 416               | 360              | 307               |
| CPZ             | 50    | 469              | 497               | 463              | 502               | 448              | 496               | 477              | 508               | 459              | 466               | 436              | 440               | 429                            | 429               | 480              | 487               |

| 700 	 450 	 480 	 418 	 465 	 442 	 474 	 400 	 471 	 438 	 439 	 442 	 444 	 478 	 477 	 486 	 482 | MEB | 200<br>500<br>700<br>50<br>200 | 441<br>457<br>432<br>466<br>419<br>484 | 483<br>489<br>458<br>481<br>468<br>488 | 440<br>440<br>440<br>479<br>443<br>471 | 475<br>469<br>453<br>492<br>486<br>480 | 405<br>425<br>441<br>456<br>452 | 442<br>434<br>487<br>480<br>480<br>470 | 434<br>444<br>460<br>462<br>424 | 452<br>464<br>469<br>476<br>504 | 432<br>417<br>418<br>454<br>446 | 443<br>423<br>423<br>463<br>448<br>449 | 425<br>424<br>408<br>465<br>457<br>448 | 427<br>423<br>409<br>465<br>459<br>449 | 432<br>458<br>410<br>508<br>495<br>484 | 431<br>471<br>412<br>499<br>494<br>478 | 459<br>468<br>487<br>494<br>512<br>485 | 457<br>474<br>491<br>495<br>500<br>487 |
|-----------------------------------------------------------------------------------------------------|-----|--------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                                                                                     |     | 200<br>500<br>700              | 419<br>484<br>450                      | 468<br>488<br>480                      | 443<br>471<br>418                      | 486<br>480<br>465                      | 452<br>454<br>442               | 480<br>479<br>474                      | 424<br>464<br>400               | 504<br>472<br>471               | 446<br>441<br>438               | 448<br>449<br>439                      | 457<br>448<br>442                      | 459<br>449<br>444                      | 495<br>484<br>478                      | 494<br>478<br>477                      | 512<br>485<br>486                      | 500<br>487<br>482                      |

#### 3.2. Potentiodynamic measurements

Potentiodynamic polarization was executed to get a full information about the corrosion current density ( $I_{corr}$ ), polarization resistance ( $R_p$ ), corrosion rate (C.R.) and inhibition efficiency (I.E.%).

Figure 5 represents Potentiodynamic polarization plots (anodic and cathodic polarization curves) for the MS electrodes in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media at 4 days' exposure time in absent and existence of numerous concentrations of selected pharmaceutical compounds which used as green organic inhibitors. Corresponding results for 2 h, 1 day and 2 days' exposure times are shown in Figures 6, 7 and 8, respectively. These figures showed that the presence of selected pharmaceutical compounds resulting in shift  $E_{corr}$  values for the *MS* electrode to slightly positive or negative potentials against blank indication to blocking of inhibitor molecules on the anodic and cathodic reactions, respectively.



Figure 5. Potentiodynamic polarization curves for MS after 4 days' immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).



Figure 6. Potentiodynamic polarization curves for MS after 2 *h*. immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).



Figure 7. Potentiodynamic polarization curves for MS after 1-day immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).



Figure 8. Potentiodynamic polarization curves for MS after 2 days' immersion time in blank 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media (black line) and in existence of successive concentrations of: (A) MCP, (B) CPZ and (C) MEB; 50 ppm (red line), 200 ppm (blue line), 500 ppm (green line) and 700 ppm (magenta line).

MS electrochemical characteristics in the existence and absent of varied amounts of expired medicinal drugs in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic medium after 4 days' immersion time are given in Table 2 while the same parameters after 2 h, 1 day and 2 days' exposure time are shown in Tables 3, 4 and 5, respectively.

From data presented in Table 2, it is apparent that blank H<sub>2</sub>SO<sub>4</sub> is more corrosive than HCl as a result of SO<sub>4</sub><sup>-2</sup> is more aggressive than Cl<sup>-</sup>. Also, the calculated values in Table 2, indicates high performance of selected expired pharmaceuticals as corrosion inhibitors. It could be seen that, both of resistance polarization ( $R_p$ ) and inhibition efficiency (*I.E.%*) raises as expired MCP, CPZ and MEB concentrations raised (50, 200, 500 and 700 ppm) as the immersion time in studied acidic media (1.0 M HCl or H<sub>2</sub>SO<sub>4</sub>) raises; 2 h, 1 day, 2 days' and 4 days. Moreover, and at the same conditions, Table 2 illustrate a notable decrease in corrosion rate (*C.R.*). So, it can be seen that the best result was achieved using 700 ppm of CPZ in each acidic media to reach 85.10 % and 97.13 % in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub>, respectively.

**Table 2.** Polarization parameters of MS in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media in absent and existence of various MCP, CPZ and MEB concentrations after 4 days' immersion times

|                                              |                      |                 |                |                | 1.0 M          | 1 HCl          |                 |                |                |                 |                 |                 |                |
|----------------------------------------------|----------------------|-----------------|----------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|-----------------|----------------|
|                                              |                      |                 |                |                |                |                | With In         | hibitor        |                |                 |                 |                 |                |
| Polarization                                 | Without<br>Inhibitor | I               | MCP Con        | c. (ppm)       |                |                | CPZ Con         | c. (ppm)       |                |                 | MEB Cor         | ıc. (ppm)       |                |
| rarameter                                    | minutor              | 50              | 200            | 500            | 700            | 50             | 200             | 500            | 700            | 50              | 200             | 500             | 700            |
| $\mathbf{R}_{\mathrm{P}}\left(\Omega ight)$  | 20                   | 66              | 221            | 250            | 280            | 374            | 391             | 433            | 461            | 65              | 101             | 168             | 192            |
| E <sub>corr</sub> (mV)                       | -447                 | -489            | -467           | -463           | -496           | -502           | -468            | -463           | -473           | -461            | -419            | -452            | -473           |
| I <sub>corr</sub> (µA/Cm <sup>2</sup> )      | 565.2                | 302.1           | 150.0          | 110.0          | 95.04          | 301.1          | 142.0           | 106.0          | 84.00          | 303.3           | 156.3           | 125.0           | 101.0          |
| C.R (mpy)                                    | 516.8                | 275.9           | 137            | 100.5          | 86.79          | 275.0          | 129.6           | 96.77          | 76.67          | 277.0           | 142.7           | 114.1           | 92.19          |
| I.E (%)                                      |                      | 46.55           | 73.46          | 80.53          | 83.20          | 46.72          | 74.90           | 81.20          | 85.10          | 46.34           | 72.35           | 77.90           | 82.10          |
| Surface coverage (θ)                         |                      | 0.465           | 0.735          | 0.805          | 0.832          | 0.467          | 0.749           | 0.812          | 0.851          | 0.463           | 0.724           | 0.779           | 0.821          |
|                                              |                      |                 |                |                | 1.0 M          | $H_2SO_4$      |                 |                |                |                 |                 |                 |                |
| Polarization                                 | Without              |                 |                |                |                |                | With In         | hibitor        |                |                 |                 |                 |                |
| Parameter                                    | Inhibitor            | I               | MCP Con        | c. (ppm)       |                |                | CPZ Con         | c. (ppm)       |                |                 | MEB Cor         | nc. (ppm)       |                |
|                                              |                      | 50              | 200            | 500            | 700            | 50             | 200             | 500            | 700            | 50              | 200             | 500             | 700            |
| $\mathbf{R}_{\mathbf{P}}\left( \Omega ight)$ | 4                    | 25              | 40             | 89             | 121            | 34             | 76              | 118            | 156            | 11              | 25              | 37              | 56             |
| E <sub>corr</sub> (mV)                       | -457                 | -411            | -405           | -376           | -343           | -470           | -430            | -488           | -463           | -485            | -486            | -475            | -478           |
| I <sub>corr</sub> (µA/Cm <sup>2</sup> )      | 7118.0               | 1317.0          | 1154.0         | 516.2          | 255.0          | 1523.0         | 1164.0          | 590.0          | 204.0          | 2890.0          | 2015.0          | 1210.0          | 450.0          |
| C.R (mpy)<br>I.E (%)                         | 6500.0               | 1252.0<br>80.74 | 1053.0<br>83.8 | 471.4<br>92.75 | 232.9<br>96.42 | 1391.0<br>78.6 | 1063.0<br>83.65 | 538.7<br>91.71 | 186.3<br>97.13 | 2663.8<br>59.02 | 1857.3<br>71.43 | 1115.3<br>82.84 | 414.8<br>93.62 |
| Surface coverage (θ)                         |                      | 0.807           | 0.838          | 0.928          | 0.964          | 0.786          | 0.836           | 0.917          | 0.970          | 0.590           | 0.714           | 0.828           | 0.936          |

# **Table 3.** Polarization parameters of MS in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media in absent and existence of various MCP, CPZ and MEB concentrations after 2 h immersion times.

|                                             |           |       |        |          |       | 1.0   | M HCl                           |          |       |       |        |          |       |
|---------------------------------------------|-----------|-------|--------|----------|-------|-------|---------------------------------|----------|-------|-------|--------|----------|-------|
| Polarization                                | Without   |       |        |          |       |       | With I                          | nhibitor |       |       |        |          |       |
| Parameter                                   | Inhibitor | 1     | MCP Co | nc. (ppm | l)    |       | CPZ Co                          | nc. (ppm | l)    | I     | MEB Co | nc. (ppm | ı)    |
|                                             |           | 50    | 200    | 500      | 700   | 50    | 200                             | 500      | 700   | 50    | 200    | 500      | 700   |
| $\mathbf{R}_{\mathrm{P}}\left(\Omega ight)$ | 79        | 100   | 140    | 253      | 260   | 251   | 325                             | 340      | 360   | 96    | 118    | 127      | 153   |
| E <sub>corr</sub> (mV)                      | -465      | -455  | -470   | -484     | -482  | -495  | -487                            | -487     | -455  | -476  | -462   | -490     | -479  |
| $I_{corr}$ ( $\mu A/Cm^2$ )                 | 209.0     | 177.0 | 144.1  | 119.0    | 100.0 | 178.0 | 117.0                           | 100.0    | 88.05 | 181.0 | 161.0  | 131.0    | 110.1 |
| C.R (mpy)                                   | 190.9     | 161.7 | 131.6  | 108.7    | 91.30 | 162.6 | 106.9                           | 91.92    | 80.41 | 165.3 | 147.0  | 119.7    | 100.5 |
| I.E (%)                                     |           | 15.30 | 31.06  | 43.10    | 52.20 | 14.82 | 44.00                           | 52.20    | 57.90 | 13.41 | 23.00  | 37.30    | 47.35 |
| Surface coverage (θ)                        |           | 0.153 | 0.311  | 0.431    | 0.522 | 0.148 | 0.440                           | 0.522    | 0.579 | 0.134 | 0.230  | 0.373    | 0.474 |
|                                             |           |       |        |          |       | 1.0 N | IH <sub>2</sub> SO <sub>4</sub> |          |       |       |        |          |       |

|                                             |                      |       |        |          |       |       | With I | nhibitor |        |       |        |          |       |
|---------------------------------------------|----------------------|-------|--------|----------|-------|-------|--------|----------|--------|-------|--------|----------|-------|
| Polarization<br>Parameter                   | Without<br>Inhibitor | 1     | MCP Co | nc. (ppm | )     |       | CPZ Co | nc. (ppn | ı)     | I     | MEB Co | nc. (ppm | l)    |
|                                             |                      | 50    | 200    | 500      | 700   | 50    | 200    | 500      | 700    | 50    | 200    | 500      | 700   |
| $\mathbf{R}_{\mathbf{P}}\left(\Omega ight)$ | 10                   | 12    | 17     | 26       | 32    | 21    | 29     | 36       | 62     | 5     | 14     | 15       | 24    |
| E <sub>corr</sub> (mV)                      | -449                 | -440  | -448   | -427     | -406  | -448  | -425   | -416     | -415   | -445  | -432   | -420     | -413  |
| Icorr (µA/Cm <sup>2</sup> )                 | 1620                 | 1294  | 407.7  | 376.0    | 316.0 | 691.0 | 301.0  | 248.0    | 214.0  | 1290  | 909.0  | 670.0    | 525.0 |
| C.R (mpy)                                   | 1480                 | 1182  | 372.3  | 343.5    | 288.6 | 631.0 | 275.0  | 226.5    | 195.51 | 1178  | 830.1  | 611.9    | 479.4 |
| I.E (%)                                     |                      | 20.14 | 74.84  | 76.79    | 80.50 | 57.36 | 81.40  | 84.70    | 87.79  | 20.41 | 43.91  | 58.66    | 67.61 |
| Surface coverage (θ)                        |                      | 0.201 | 0.748  | 0.768    | 0.805 | 0.574 | 0.814  | 0.847    | 0.878  | 0.204 | 0.439  | 0.587    | 0.676 |

# **Table 4.** Polarization parameters of MS in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media in absent and existence of various MCP, CPZ and MEB concentrations after 1-day immersion times.

|                                              |           |       |        |          |       | 1.0 N | M HCl   |           |      |     |         |           |       |
|----------------------------------------------|-----------|-------|--------|----------|-------|-------|---------|-----------|------|-----|---------|-----------|-------|
| Delastation                                  | XX/2414   |       |        |          |       |       | With In | nhibitor  |      |     |         |           |       |
| Parameter                                    | Inhibitor | 1     | MCP Co | nc. (ppm | l)    |       | CPZ Cor | ıc. (ppm) | )    |     | MEB C   | onc. (ppn | 1)    |
|                                              | minutor   | 50    | 200    | 500      | 700   | 50    | 200     | 500       | 700  | 50  | 200     | 500       | 700   |
| $\mathbf{R}_{\mathbf{P}}\left( \Omega ight)$ | 41        | 226   | 247    | 250      | 270   | 134   | 293     | 360       | 390  | 53  | 77      | 100       | 173   |
| E <sub>corr</sub> (mV)                       | -476      | -477  | -492   | -494     | -501  | -294  | -478    | -465      | -456 | -48 | 1 -490  | -457      | -458  |
| I <sub>corr</sub> (µA/Cm <sup>2</sup> )      | 257.0     | 205.0 | 180.0  | 138.0    | 106.0 | 223.1 | 138.8   | 110.0     | 90.0 | 227 | 7 187.0 | 151.0     | 126.0 |

| C.R (mpy)                                   | 234.7                | 187.2 | 164.9  | 126.0    | 96.82 | 203.7 | 126.8                          | 100.5    | 82.19 | 207.9 | 170.8  | 137.9    | 115.1 |
|---------------------------------------------|----------------------|-------|--------|----------|-------|-------|--------------------------------|----------|-------|-------|--------|----------|-------|
| I.E (%)                                     |                      | 20.24 | 30.00  | 46.30    | 58.80 | 13.21 | 45.97                          | 57.20    | 65.00 | 11.42 | 27.23  | 41.20    | 51.00 |
| Surface coverage (θ)                        |                      | 0.202 | 0.300  | 0.463    | 0.588 | 0.132 | 0.460                          | 0.572    | 0.650 | 0.114 | 0.272  | 0.412    | 0.510 |
|                                             |                      |       |        |          |       | 1.0 M | H <sub>2</sub> SO <sub>4</sub> |          |       |       |        |          |       |
|                                             |                      |       |        |          |       |       | With Ir                        | nhibitor |       |       |        |          |       |
| Polarization<br>Parameter                   | Without<br>Inhibitor | I     | MCP Co | nc. (ppm | )     |       | CPZ Cor                        | nc. (ppm | )     | 1     | MEB Co | nc. (ppm | )     |
|                                             |                      | 50    | 200    | 500      | 700   | 50    | 200                            | 500      | 700   | 50    | 200    | 500      | 700   |
| $\mathbf{R}_{\mathbf{P}}\left(\Omega ight)$ | 6                    | 11    | 30     | 56       | 80    | 26    | 31                             | 62       | 91    | 6     | 14     | 26       | 38    |
| E <sub>corr</sub> (mV)                      | -438                 | -433  | -426   | -416     | -401  | -428  | -417                           | -407     | -385  | -447  | -432   | -422     | -415  |
| Icorr (µA/Cm <sup>2</sup> )                 | 2279.0               | 710.0 | 422.0  | 354.0    | 300.2 | 694.0 | 473.0                          | 365.0    | 212.0 | 1749  | 1425   | 920.0    | 505.9 |
| C.R (mpy)                                   | 2082.0               | 648.3 | 385.4  | 323.3    | 274.3 | 633.8 | 432.0                          | 333.3    | 193.7 | 1597  | 1301   | 847.9    | 466.3 |
| I.E (%)                                     |                      | 68.86 | 81.49  | 84.47    | 86.83 | 69.56 | 79.25                          | 83.99    | 90.70 | 23.30 | 37.51  | 59.27    | 77.60 |
| Surface coverage (θ)                        |                      | 0.689 | 0.815  | 0.845    | 0.868 | 0.696 | 0.793                          | 0.840    | 0.907 | 0.233 | 0.375  | 0.593    | 0.776 |

# **Table 5.** Polarization parameters of MS in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media in absent and existence of various MCP, CPZ and MEB concentrations after 2 days' immersion times.

|                                             |                      |        |         |           |       | 1.0   | M HCl              |           |       |        |        |           |        |
|---------------------------------------------|----------------------|--------|---------|-----------|-------|-------|--------------------|-----------|-------|--------|--------|-----------|--------|
| Delesiention                                | XX/2414              |        |         |           |       |       | With               | Inhibito  | r     |        |        |           |        |
| Polarization                                | Without<br>Inhibitor | Ν      | ICP Cor | ic. (ppm) | )     |       | CPZ Cor            | ıc. (ppm) | )     |        | MEB Co | nc. (ppm) |        |
| rarameter                                   | minipitor            | 50     | 200     | 500       | 700   | 50    | 200                | 500       | 700   | 50     | 200    | 500       | 700    |
| $\mathbf{R}_{\mathbf{P}}\left(\Omega ight)$ | 31                   | 83     | 180     | 230       | 275   | 330   | 345                | 425       | 443   | 60     | 96     | 134       | 182    |
| E <sub>corr</sub> (mV)                      | -470                 | -464   | -467    | -474      | -495  | -492  | -455               | -436      | -483  | -474   | -465   | -477      | -468   |
| I <sub>corr</sub> (µA/Cm <sup>2</sup> )     | 337.0                | 271.0  | 215.1   | 133.0     | 105.0 | 245.1 | 201.0              | 112.0     | 88.05 | 287.0  | 233.0  | 162.0     | 118.0  |
| C.R (mpy)                                   | 307.7                | 247.4  | 196.5   | 121.4     | 95.87 | 223.8 | 183.6              | 102.3     | 80.41 | 262.1  | 212.7  | 147.9     | 107.7  |
| I.E (%)                                     |                      | 19.60  | 36.20   | 60.50     | 68.80 | 27.27 | 40.40              | 66.80     | 73.90 | 14.82  | 30.87  | 51.90     | 65.00  |
| Surface coverage (θ)                        |                      | 0.196  | 0.362   | 0.605     | 0.688 | 0.273 | 0.404              | 0.668     | 0.739 | 0.148  | 0.309  | 0.519     | 0.650  |
|                                             |                      |        |         |           |       | 1.0   | MH <sub>2</sub> SO | 4         |       |        |        |           |        |
| Delemization                                | Without              |        |         |           |       |       | With               | Inhibito  | r     |        |        |           |        |
| Parameter                                   | Inhibitor            | N      | ICP Cor | ic. (ppm) | )     |       | CPZ Cor            | ıc. (ppm) | )     |        | MEB Co | nc. (ppm) |        |
| Taranteter                                  | minontor             | 50     | 200     | 500       | 700   | 50    | 200                | 500       | 700   | 50     | 200    | 500       | 700    |
| $\mathbf{R}_{\mathbf{P}}\left(\Omega ight)$ | 5                    | 20     | 35      | 77        | 98    | 24    | 67                 | 96        | 118   | 7      | 22     | 32        | 49     |
| E <sub>corr</sub> (mV)                      | -489                 | -424   | -428    | -404      | -390  | -403  | -419               | -416      | -387  | -478   | -480   | -460      | -466   |
| I <sub>corr</sub> (μA/Cm <sup>2</sup> )     | 5060.0               | 1700.0 | 579.0   | 309.0     | 279.0 | 774.6 | 598.0              | 497.0     | 208.0 | 3010.0 | 1434.0 | 901.0     | 473.0  |
| C.R (mpy)                                   | 4620                 | 1552   | 528.7   | 282.2     | 254.8 | 707.4 | 546.1              | 453.0     | 189.9 | 2774.4 | 1321.8 | 830.48    | 435.98 |
| I.E (%)                                     |                      | 66.41  | 88.56   | 93.89     | 94.48 | 84.69 | 88.18              | 90.18     | 95.88 | 39.95  | 71.39  | 82.02     | 90.56  |
| Surface coverage (θ)                        |                      | 0.664  | 0.886   | 0.939     | 0.945 | 0.847 | 0.882              | 0.902     | 0.957 | 0.400  | 0.714  | 0.820     | 0.906  |

Our finding is consistent with the notion that organic inhibitors comprising nitrogen and sulfur (such as CPZ in this work) exhibit stronger inhibition than those having only one of these elements (MCP and MEB) [53-55].

The adsorption of organic corrosion inhibitors in aggressive acidic media is generally assumed to be the 1<sup>st</sup> stage in their own action mechanism, which is impacted by the metal's properties and surface change, inhibitor chemical formula, change in molecule arrangement, aggressive electrolyte type, and manner of contact among both inhibitor molecules and metallic surface [56]. It was concluded from the additives' molecules intervene with metallic surface, that corroded metal surface was changed and the mechanism of the electrochemical process at the metal solution boundary is influenced. From obtained data shown in Tables 2-5, for different exposure times, that studied expired pharmaceutical compounds; MCP, CPZ and MEB, can be used as good inhibitors for MS corrosion in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic medium. Adhesion, inhibitor molecule adsorption on metal surfaces, and the creation of a stable extract complex on metal surfaces are all aspects that impact the inhibitor's mechanism.

# 3.3. Adsorption isotherm

The practical results were examined utilizing numerous adsorption isotherms, including Langmuir, Frumkin, Freundlich, and Temkin isotherms, in order to obtain further data regarding adsorption mechanism of studied expired pharmaceuticals on MS surface. However, the best compatibility was provided utilizing Langmuir isotherm. The relationship among both surface coverage ( $\theta$ ) defined by (*I.E.*%/100) and inhibitor concentration (*C*) can be elucidated by the Langmuir adsorption isotherm which is expressed by *Eq. 1* [57]:

$$\frac{C}{\theta} = \frac{1}{K_{abs}} + C \tag{1}$$

Where *K* is the adsorption constant, *C* is the inhibitor concentration and  $\theta$  is the surface coverage values which acquired from the potentiodynamic data of numerous inhibitor concentrations. To establish the isotherm that best suited the practical data, the correlation coefficient ( $\mathbb{R}^2$ ) was utilized. The highest  $\mathbb{R}^2$  values ( $\mathbb{R}^2 > 0.999$ ) indicates that inhibitor adsorption on MS surface pursued this isotherm. The Langmuir adsorption isotherm was followed by (MCP, CPZ, and MEB) adsorption on MS surfaces. Adsorbed molecules fill only one site and interact with no further adsorbed species, according to this isotherm. The adsorption equilibrium constant is correlated to the free energy of adsorption ( $\Delta G_{ads}$ ) and is expressed using following Eq. 2 [58]:

$$K_{ads} = \frac{1}{55.5} \exp\left(-\frac{\Delta G_{ads}}{RT}\right) \tag{2}$$

Where 55.5 is molar concentration of water in the solution expressed in M (molL<sup>-1</sup>), *T* is absolute temperature (*K*) and *R* is gas constant (8.314 J K<sup>-1</sup> mol<sup>-1</sup>). *Eq.* 2 is modified into *Eq.* 3 for calculating  $\Delta G_{ads}$  as follow:

$$\Delta G_{ads} = -2.303 \, RT \log \left(55.5 \, K\right) \tag{3}$$

 $\Delta G_{ads}$  of MCP, CPZ and MEB for MS in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media at different exposure times (2 h, 1 day, 2 days and 4 days) were computed using the slope and the ordinate axis intercept of the straight lines. The calculated values were outlined in Table 6. Negative  $\Delta G_{ads}$  values imply that the adsorption process occurs spontaneously and with great efficiency.

**Table 6.** Calculated values of Langmuir adsorption parameters of MS exposed to expired<br/>pharmaceuticals as green inhibitors in 1.0 M HCl or  $H_2SO_4$  acidic media.

| <b>.</b> . | Langmuir                        |       | 1.0 M HCl |       | 1     | 1.0 M H <sub>2</sub> SO | 4     |
|------------|---------------------------------|-------|-----------|-------|-------|-------------------------|-------|
| Immersion  | Adsorption                      |       | Inhibitor |       |       | Inhibitor               |       |
| Time       | Parameters                      | МСР   | CPZ       | MEB   | MCP   | CPZ                     | MEB   |
| 2 h        | Slope                           | 1.580 | 1.405     | 1.656 | 1.020 | 1.102                   | 1.230 |
|            | Log K <sub>ads.</sub>           | 0.530 | 0.640     | 0.360 | 0.860 | 1.510                   | 0.700 |
|            | $\mathbb{R}^2$                  | 0.981 | 0.990     | 0.934 | 0.966 | 1.000                   | 0.994 |
|            | $-\Delta G_{ads.} (kJmol^{-1})$ | 12.97 | 13.58     | 12.13 | 14.83 | 18.56                   | 13.92 |
| 1 Day      | Slope                           | 1.420 | 1.147     | 1.455 | 1.132 | 1.086                   | 1.194 |
|            | Log Kads.                       | 0.550 | 0.560     | 0.390 | 1.730 | 1.540                   | 0.620 |
|            | $\mathbb{R}^2$                  | 0.934 | 0.978     | 0.979 | 1.000 | 0.997                   | 0.906 |
|            | $-\Delta G_{ads.} (kJmol^{-1})$ | 13.09 | 13.14     | 12.15 | 19.84 | 18.73                   | 13.50 |
| 2 Days     | Slope                           | 1.118 | 1.109     | 1.112 | 1.024 | 1.040                   | 0.900 |
|            | Log K <sub>ads.</sub>           | 0.590 | 0.720     | 0.450 | 1.650 | 1.810                   | 0.430 |
|            | $\mathbb{R}^2$                  | 0.972 | 0.966     | 0.951 | 1.000 | 0.998                   | 0.950 |
|            | $-\Delta G_{ads.} (kJmol^{-1})$ | 13.31 | 14.04     | 12.53 | 19.36 | 20.28                   | 12.40 |

Int. J. Electrochem. Sci., 17 (2022) Article Number: 220532

| 4 Days | Slope                           | 1.135 | 1.111 | 1.157 | 1.016 | 1.011 | 1.235 |
|--------|---------------------------------|-------|-------|-------|-------|-------|-------|
|        | Log Kads.                       | 1.310 | 1.300 | 1.300 | 1.640 | 1.590 | 1.100 |
|        | $\mathbf{R}^2$                  | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.982 |
|        | $-\Delta G_{ads.} (kJmol^{-1})$ | 17.43 | 17.38 | 17.38 | 19.29 | 19.02 | 16.22 |

In general,  $\Delta G_{ads}$  values of -20 kJmol<sup>-1</sup> or less suggest electrostatic contact among both charged organic molecules and the charged metal, whereas values of -40 kJmol<sup>-1</sup> suggest charge distribution or relocation from inhibitor molecules to metal surface via a co-ordination bond (chemisorption) [59]. The computed  $\Delta G_{ads}$  values showed in Table 6 were ranged from -12.13 to -20.28 kJmol<sup>-1</sup>. In other words, these values indicating that studied pharmaceutical compounds; MCP, CPZ and MEB are physically adsorbed on MS surface.

# 3.4. Quantum chemical calculations

Actually, DFT has emerged as special theoretical calculation for to illustrate the process that takes place at the metal-inhibitor particle interaction [60].



**Figure 9.** Optimization structures, HOMO and LUMO representation utilizing DFT method, B3LYP, 6-311 (d,p) base set: (A) CPZ, (B) MCP and (C) MEB

Structures with optimal geometry of HOMO and LUMO of the presented drugs (CPZ, MCB and MEB) are showed in Figure 9. Understanding the reactive sites of pharmaceutical compounds requires a thorough examination of the LUMO and HOMO. Also, energy gap ( $\Delta E = E_{LUMO}-E_{HOMO}$ ), ionization potential (I), global hardness ( $\eta$ ), global softness ( $\sigma$ ), and  $\Delta N$  (number of transported electrons) may all be utilized to investigate the reactivity of the molecules given.

According to Koopmans' theorem [61], The quantum chemical parameters were computed utilizing the  $E_{LUMO}$  and  $E_{HOMO}$  energies utilizing *Eqs.* (4-8):

$$I = -E_{HOMO} \tag{4}$$

$$\Delta E = E_{LUMO} - E_{HOMO} \tag{5}$$

$$\eta = (I - A)/2 \tag{6}$$

$$\sigma = 1/\eta \tag{7}$$

$$\Delta N = \mu / \eta \tag{8}$$

Where,  $\mu$  and  $\eta$  are chemical potential and global hardness, respectively.

The efficiency of preventing MS corrosion using H<sub>2</sub>SO<sub>4</sub> and HCl acidic media containing CPZ molecule was determined to be 97.19 % and 85.10 %, respectively, predicated on computed DFT variables.  $E_{HOMO}$  is correlated to the CPZ molecule capability to provide the available pair of electrons whereas  $E_{LUMO}$  is refers to its propensity to gain electrons from MS [62]. The reality that  $E_{HOMO}$  has a negative sign indicates that the corrosion inhibition might follows the physical adsorption isotherm [63].  $\Delta E$  is essential DFT-based calculations to discuss the interrelations occurring for both the MS surface and CPZ molecules. A lower  $\Delta E$  value is correlated with high chemical activity and inhibition capability through the short distances among both HOMO and LUMO orbitals. The qualities of global hardness ( $\eta$ ) and softness ( $\sigma$ ) are essential variables in determining molecular activity & selectivity.  $E_{LUMO}$ ,  $E_{HOMO}$ ,  $\eta$  and  $\sigma$  values are determined and summarized in Table 7 for expired pharmaceuticals utilized in current work. The preferential adsorption performance of CPZ as ideal corrosion inhibitor molecules on MS surface may be demonstrated using the computed low values of  $\eta$  or high values of  $\sigma$  (which promotes higher adsorption) [64]. As corrosion inhibitor, CPZ has a quite high values of global softness ( $\sigma$ ) (33.58 eV), indicating that soft molecules are more responsive than hard ones due to they can quickly transfer electrons to acceptors [65].

**Table 7.** Quantum calculation descriptors for the data of tested compounds by DFT, B3LYP, 6-311 (d,p) base set

| Drug | -Еномо  | -Elumo  | $\Delta \mathbf{E}$ | $\mathbf{I} = -\mathbf{E}_{HOMO}$ | η=(Elumo -Еномо)/2 | σ=1/η  | $\Delta N = -\mu/\eta$ |
|------|---------|---------|---------------------|-----------------------------------|--------------------|--------|------------------------|
| CPZ  | 0.27181 | 0.21225 | 0.060               | 0.272                             | 0.030              | 33.580 | 8.127                  |
| MCP  | 0.29171 | 0.18227 | 0.109               | 0.292                             | 0.055              | 18.275 | 4.331                  |
| MEB  | 0.32105 | 0.19198 | 0.129               | 0.321                             | 0.065              | 15.495 | 3.975                  |

Because of its low  $\Delta E$  value, high softness, low hardness and strong chemical activity, the inhibitor molecule has a high inhibitory effectiveness [66, 67]. As a corrosion inhibitor must have low values of  $\Delta E$  and  $\eta$  as well as a high value of  $\sigma$ . The number of transported electrons, denoted by  $\Delta N$ , is thought to signify excellent inhibitory efficiency. The presence of electron transport from CPZ to MS

surface is shown by the favorably high values of  $\Delta N$  for CPZ as corrosion inhibitor (8.127 eV) [68]. Another calculation takes placed to emphasized the electronegativity of the tested compounds of drugs which belong to studying the surface by molecular electrostatic potential (MEP) and contour plots which show in Figure 10 indicated the electronegativity for the tested compounds (CPZ, MCB and MEB) which appearance in CPZ compound than MCP and MEB. Figure 11 show Mullikan diagram that show the red charge which represent the electronegativity of tested compounds and blue color for the positivity charge presented in the same compounds, CPZ represented more negative charge than MCP and MEB that emphasized the calculated value of  $\Delta E = 0.060 \ ev$  approve the experimental data for the same tested compound CPZ (97.13 % and 85.10 %) for tested media of H<sub>2</sub>SO<sub>4</sub> and HCl, respectively.



**Figure 10.** Represented MEP map and contour plots of studied drugs using DFT, B3LYP, 6-311 (d,p) base set: (A) CPZ, (B) MCP and (C) MEB



Figure 11. Represented Mulliken charges diagram of studied drugs using DFT, B3LYP, 6-311 (d,p) base set: (A) CPZ, (B) MCP and (C) MEB

### 3.5. Scanning electron microscope (SEM)

Figure 12 (A) reveals the polished MS electrode's smoothed surface before it is immersed in corrosive fluids. Images shown in Figure 12 (B and D) shows polished specimen which was immersed in blank solutions (1.0 M HCl or H<sub>2</sub>SO<sub>4</sub>), respectively, for 24 h which is associated with polishing scratches. From these figures the surface of MS electrode was damaged and destroyed. The corroded areas are appeared on MS surfaces as black grooves with white & gray regions, probably belongs to FeO flakes. It suggested that the exposed surface of a metal electrode had been corroded multiple times, and when desiccated without surface protection, the highly oxidized phase may have developed under atmospheric air. Figure 12 (C and E) illustrates the removal of such black grooves in the specimen surfaces after 24 h. of immersion in 1.0 M HCl or H<sub>2</sub>SO<sub>4</sub> acidic media containing 700 ppm CPZ as an organic corrosion inhibitor, compared to being exposed to simply blank acidic solution. It is well known that the calculated I.E. % values is dependent on the applied inhibitor concentration [69]. This might be used to explain why an organic corrosion inhibitor is adsorbed on the MS surface, considerably slowing the rate of metal corrosion.



Figure 12. Scanning electron micrographs of: (A) polished MS surface, (B) polished MS + 1.0 M HCl after 24 *h* immersion time at room temperature, (C) polished MS + 1.0 M HCl + 700 ppm CPZ, (D) polished MS + 1.0 M H<sub>2</sub>SO<sub>4</sub> after 24 h immersion time at room temperature, (E) polished MS + 1.0 M H<sub>2</sub>SO<sub>4</sub> + 700 ppm of CPZ compound.

# 4. CONCLUSIONS

Potentiodynamic polarization observations shows that on addition of expired pharmaceuticals as examples for organic inhibitors leads to increases both anodic and cathodic overvoltage, and an inhibition effectiveness increases as raising inhibitor concentrations. Between the studied expired pharmaceuticals in current study; metoclopramide hydrochloride (MCP), chlorpromazine hydrochloride (CPZ) and mebeverine hydrochloride (MEB), CPZ shows a good inhibition behavior for MS in 1.0 M acidic media (whether HCl or H<sub>2</sub>SO<sub>4</sub>). The inhibition effectiveness increased with raising CPZ concentration to 700 ppm and achieve its maximum values after 4 days' contact time (85.10 % and 97.13 % for HCl and H<sub>2</sub>SO<sub>4</sub>, respectively). The adsorption of some environmental substances on metal surface is physical adsorption comply with Langmuir adsorption isotherm. The calculated quantum chemical descriptors utilizing DFT, B3LYP, 6-311 (d,p) base set shows a great accordance with recorded experimental data. SEM images reveal a visual idea about the creation of an insulating layer on MS surface, and so retards the corrosion rate.

# ACKNOWLEDGEMENTS

The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through Research Grant No. (DSR-2021-03-0127).

# References

- 1. G. Trabanelli, in: F. Mansfeld (Ed.), Corrosion Inhibitors, Corrosion Mechanisms; *Marcel Dekker, Inc., New York* (1986) p. 119.
- 2. I.L. Rozenfeld, in: Corrosion Inhibitors; McGraw-Hill Inc. (1981) pp. 97-138.
- J.S. Puelles, M. Ghorbani, R. Yunis, L.L. Machuca, H. Terryn, M. Forsyth and A.E. Somers, ACS Omega, 6 (2021) 1941.
- 4. R.B. Vignesh, T.N.J.I. Edison and M.G. Sethuraman, J. Mater. Sci. Technol., 30 (2014) 814.
- 5. N. Karthik, T.N.J.I. Edison, Y.R. Lee and M.G. Sethuraman, J. Taiwan Inst. Chem. E., 77 (2017) 302.
- 6. J. Balaji, S.H. Roh, T.N.J.I. Edison, H.Y. Jung and M.G. Sethuraman, J. Mol. Liq., 302 (2020) 112551.
- 7. M.G. Sethuraman, V. Aishwarya, C. Kamal and T.N.J.I. Edison, Arab. J, Chem., 10 (2017) S522.
- 8. A. Chetouani, B. Hammouti, T. Benhadda and M. Daoudi, Appl. Surf. Sci., 249 (2005) 375.
- 9. P.C. Okafor and Y. Zheng, Corros. Sci., 51 (2009) 850.
- 10. X. Hua, K. Alzawaia, A. Gnanavelua, A. Nevillea, C. Wang, A. Crossland and J. Martin, *Wear*, 271 (2011) 1432.
- 11. P. Morales-Gil, G. Negrón-Silva, M. Romero-Romo, C.A. Ángeles-Chàvez and M. Palomar-Pardavé, *Electrochim. Acta.*, 49 (2004) 4733-4741.
- 12. F.F. Eliyan, E. Mahdi and A. Alfantazi, Corros. Sci., 58 (2012) 181.
- 13. J.G.N. Thomas, in: Proc. 5th Eur. Symp. on Corrosion Inhibitors, Ann. Univ. Ferrara, 1980, p. 453.
- 14. A.H. Ahmed, E.M. Sherif, H.S. Abdo and E.S. Gad, ACS Omega, 6 (2021) 14525.
- 15. M.A. Abbas, M.A. Bedair, O.E. El-Azabawy and E.S. Gad, ACS Omega, 6 (2021) 15089.
- 16. M.H.O. Ahmed, A.A. Al-Amiery, Y.K. Al-Majedy, A.A.H. Kadhum, A.B. Mohamad and T.S. Gaaz, *Results Phys.*, 8 (2018) 728-733.
- 17. A.S. Fouda, S. Rashwan, A. Emam and F.E. El-Morsy, Int. J. Electrochem. Sci., 13 (2018) 3719.
- 18. E.E. El-Katori and Y.M. Al Angari, Int. J. Electrochem. Sci., 13 (2018) 4319.
- 19. H. Lgaz, Sh. Masroor, M. Chafiq, M. Damej, A. Brahmia, R. Salghi, M. Benmessaoud, I.H. Ali, M.M. Alghamdi, A. Chaouiki and I.M. Chung, *Metals*, 10 (2020) 357.
- 20. H. Ashassi-Sorkhabi, B. Shaabani and D. Seifzadeh, Electrochim. Acta, 50 (2005) 3446.
- B.E. Brycki, I.H. Kowalczyk, A. Szulc, O. Kaczerewska and M. Pakiet, Organic Corrosion Inhibitors in: Corrosion Inhibitors, Principles and Recent Applications, Mahmood Aliofkhazraei (Ed.), *Intech Open Limited* (2018) p. 1-33.
- 22. I.B. Obot, N.O. Obi-Egbedi and S.A. Umoren, Corros. Sci., 51 (2009) 1868.
- 23. F.O. Edoziuno, A.A. Adediran, B.U. Odoni, M. Oki, P.P. Ikubanni and O. Omodara, *Sci. World J.*, (2020) Article ID 2756734.
- 24. N.O. Eddy and S.A. Odoemelam, J. Mater. Sci., 4 (2008) 87.
- 25. A.S. Mahdi, Int. J. Adv. Res. Eng. Techno., 5 (2014) 99.
- 26. M. Abdallaha, I. Zaafarany, S.O. Al-Karanee and A.A. Abd El-Fattah, *Arab. J. Chem.*, 5 (2012) 225.
- 27. P.B. Matad, P.B. Mokshanatha, N. Hebbar, V.T. Venkatesha and H.C. Tandon, *Ind. Eng. Chem. Res.*, 53 (2014) 8436.
- 28. A.S. Fouda, K. Shalabi and A. E-Hossiany, J. of Bio- and Tribo-Corros., 2 (2016) 18.
- 29. S. Dahiya, N. Saini, N. Dahiya, H. Lgaz, R. Salghi, S. Jodeh and S. Lata, *Port. Electrochim. Acta.*, 36 (2018) 213.

- 30. P. Singh, D.S. Chauhan, K. Srivastava, V. Srivastava and M.A. Quraishi, *Int. J. Ind. Chem.*, 8 (2017) 363.
- 31. A.K. Singh, B. Chugh, S.Kr. Saha, P. Banerjee, E.E. Ebenso, S. Thakur and B. Pan, *Results in Physics*, 17 (2019) 102383.
- 32. M. Alfakeer, M. Abdallah and M. Fawzy, Int. J. Electrochem. Sci., 15 (2020) 3283.
- 33. I.B. Onyeachu, S. Abdel-Azeim, D.S. Chauhan and M.A. Quraishi, ACS Omega, 6 (2021) 65.
- 34. S. Eid, Int. J. Electrochem. Sci. 16 (2021) 150852.
- 35. K.F. Khaled, Corr. Sci. 53 (2011) 3457-3465.
- A. Zarrouk, B. Hammouti, T. Lakhlifi, M. Traisnel, H. Vezin and F. Bentiss, *Corr. Sci.*, 90 (2015) 572–584.
- 37. I.B. Obot, D.D. Macdonald and Z.M. Gasem, Corr. Sci., 99 (2015) 1.
- 38. R.R. Parr and R.G. Yang, Density functional theory of atoms and molecules, Oxford University Press: New York, 1989
- 39. S. Kaya, P. Banerjee, S.K. Saha, B. Tüzün and C. Kaya, RSC Adv., 6 (2016) 6.
- 40. T.N.J.I. Edison, R. Atchudan, P. Arivalagan, Y. R. Lee and M.G. Sethuraman, J. Mol. Liq., 264 (2018) 483.
- 41. M.H. Mahross, *Elixir Corr.* 75 (2014) 27849.
- 42. M.H. Mahross, M.A. Taher and M.A. Mostafa, Int. J. Adv. Pharm. Bio. Chem., 4 (2015) 1.
- 43. M.M.B. El-Sabbah, H.F.Y. Khalil, M.H. Mahross, B.N.A. Mahran and A.Z. Gomaa, *Int. J. Sci. Eng. Res.*, 6 (2015) 1502.
- 44. M.M.B. El-Sabbah, A.Z. Gomaa, M.H. Mahross, H.F.Y. Khalil and B.N.A. Mahran, *Elixir Appl. Chem.*, 92 (2016) 38764.
- 45. A.M. Nagiub, H.F.Y. Khalil, M.H. Mahross, B.N.A. Mahran and M.M.B. El-Sabbah, *Int. J. Sci. Eng. Res.*, 7 (2016) 656
- 46. A.M. Nagiub, M.H. Mahross, H.F.Y. Khalil, B.N.A. Mahran, M.M. Yehia and M.M.B. El-Sabbah, *Port. Electrochim. Acta.*, 31 (2013) 119.
- 47. K.I. Aly, O. Younis, M.H. Mahross, O. Tsutsumi, M.G. Mohamed and M.M. Sayed, *Polym. J.* 51 (2019) 77.
- 48. M.H. Mahross, K. Efil, T.A. Seaf El-Nasr and O.A. Abbas, Z. Phys. Chem., 233 (2019) 949.
- 49. M.H. Mahross, K. Efil, T.A. Seif El-Nasr and O.A. Abbas, J. Electrochem. Sci. Technol., 8 (2017) 222.
- 50. M.K. Awad, M.R. Mustafa and M.M. Abo Elnga, J. Mol. Struct. (THEOCHEM), 959 (2010) 66.
- 51. S.G. Zhang, W. Lei, M.Z. Xia and F.Y. Wang, J. Mol. Struct. (THEOCHEM), 732 (2005) 173.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta Jr., F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford (CT), 2013.
- 53. M.M. Khowdiary, N.A. Taha, N.M. Saleh and A.A. Elhenawy, Materials, 15 (2022) 1146
- 54. M.M. El-Hendawy, A.M. Kamel, M.M.A. Mohamed, R. Boukherroub, J. Ryl and M.A. Amin, *Molecules*, 26 (2021) 6312.
- 55. H. Jafari and K. Sayin, Trans. Indian Inst. Met., 69 (2016) 805.
- 56. J. Uehara and K. Aramaki, J. Electrochem. Soc., 138 (1991) 3245.
- 57. S.A. Umoren, I.B. Obot and N.O. Obi-Egbedi, J. Mater. Sci., 44 (2009) 274.

- 58. O. Olivares, N.V. Likhanava, B. Gómez, J. Navarrete, M.E. Lianos-Serrano, E. Arce and J.M. Hallen, *Appl. Surf. Sci.*, 252 (2006) 2894.
- 59. L. Touafri, A. Kadri, A. Khalifa, N. Aimeur and N. Benbrahim, J. Eng. Appl. Sci., 3 (2008) 688.
- 60. L. Guo, X. Ren, Y. Zhou, S. Xu, Y. Gong and S. Zhang, Arab. J. Chem., 10 (2017) 121.
- 61. T. Koopmans, Physica., 1 (1934) 104.
- 62. M. Pakiet, J. Tedim, I. Kowalczyk and B. Brycki, Colloids Surf. A., 580 (2019) 123699.
- 63. B. Tüzün and J. Bhawsar, Arab. J. Chem., 14 (2021) 102927.
- 64. M. Mobin, R. Aslam and J. Aslam, Mater. Chem. Phys., 191 (2017) 151.
- 65. N. Zulfareen, K. Kannan, T. Venugopal and S. Gnanavel, Arab. J. Sci. Eng., 42 (2017) 125.
- 66. L. Guo, Z. S. Safi, S. Kaya, W. Shi, B. Tuzun, N. Altunay and C. Kaya, *Front. Chem.*, 6 (2018) Article 155.
- 67. O. Dagdag, A. El Harfi, O. Cherkaoui, Z. Safi, N. Wazzan, L. Guo, E.D. Akpan, C. Verma, E.E. Ebenso and R.T.T. Jalgham, *RSC Adv.*, 9 (2019) 4454.
- 68. S. Erdogan, Z.S. Safi, S. Kaya, D.O. Isin, L. Guo and C. Kaya, J. Mol. Struct., 1134 (2017) 751.
- 69. B.F. Giannetti, P.T.A. Sumodjo, T. Rabockai, A.M. Soza and J. Barboza, *Electrochim. Acta.*, 37 (1992) 143.

© 2022 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).