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The mathematical modelling of bio-catalytically active chemically modified electrodes, including redox 

enzymes, is discussed. This model is created on a system of nonlinear reaction-diffusion equations with 

the Michaelis-Menten kinetics of an enzyme reaction. The present report uses the effective analytical 

methods known as the latest Akbari-Ganji method and Taylor's series with Ancient Chinese algorithms 

to solve the nonlinear system. Various parameters and their effects on current density are explored. The 

concentration and fluxes for steady-state conditions were numerically simulated (Matlab) and compared 

to the analytical data. It is mentioned that an acceptable agreement was reached. 
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1. INTRODUCTION 

 

Nanoelectrochemistry is a new multidisciplinary discipline of electrochemistry that studies the 

electrical and electrochemical properties of materials up to the nanoscale. Nanoelectrochemistry is also 

used to make a variety of bisensors and bioelectronics devices that can detect chemicals at deficient 

concentrations. 

Carbon nanotubes (CNTs) have drawn attention in electrochemistry because of their size and 
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excellent electrochemical properties. There are many different types of carbon nanotubes, including 

single-walled, multi-walled and nitrogen-doped carbon nanotubes. Many industries use carbon 

nanotubes, including solar cells [1], electrochemical devices [2], hydrogen storage materials [3], field 

emission devices [4], carbon nanotube transistors [6], sensors and probes [7], pharmaceuticals [8], 

catalyst carriers [9], carbon-based electronics [10], and engineering materials [11]. 

The DFT was utilized by Fangfang et al. [12]  to explore the physical assemblies and 

electrochemical properties of CNT's various components. Mirkin and Amemiya[13] discuss new 

obstacles and opportunities arising from nano electrochemical techniques. Gooding [14] discussed 

carbon nanotube nanostructuring electrodes. Baronas et al. [15] describe the mediator amperometric 

biosensors mathematical model. Lyons [16] proposed a unified model for describing substrate and redox 

mediator reaction kinetics and diffusion inside a scattered enzyme-loaded carbon nanotube film with a 

finite thickness. When the film is conducting and when the film is less conducting, approximate 

analytical expressions for the reaction flux are determined.  Baronas et al. [17] solved a steady-state 

problem in a two-compartment domain. A mediated biosensor containing a carbon nanotube electrode 

was presented by Baronas et al. [17]. 

The mathematical solutions are numerical or approximate analytical, depending on the situation. 

This form of analysis has been detailed [18–20]. Albery and coworkers [21], Bartlett et al.   [22], and 

others [23] contributed significant theoretical approaches on transport and kinetics in immobilized 

enzyme processes. Saveant and coworkers [24–26], Gooding et al. [30], Kulys and Baronas [29] and 

Lyons [16,27,28] have recently published comprehensive theoretical papers. Recently Kirthiga et al. [31] 

applied the new homotopy perturbation approach to solve the nonlinear system in amperometric 

biosensors. In the present communication, the new and straightforward closed-form of analytical 

expression is obtained using the Akbari-Ganji method and Taylor's series with ancient Chinese 

algorithm. 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Electrochemical carbon nanotube (CNT) electrodes were made from single and double-walled 

carbon nanotubes. Figure 1 depicts a schematic illustration of substrate and mediator reaction and 

diffusion within an immobilised nanotube mesh. For the reduced form of substrate and redox mediator, 

the one-dimensional steady-state mass balance equations represented in normalized forms as follows 

(refer supplementary information)[31]:  
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Figure 1. Schematic illustration of reaction and diffusion within an immobilised nanotube mesh [31] 

 

𝑑2𝑢(𝜒)

𝑑𝜒2
−

 𝛾𝑆 𝑢(𝜒)

1 + (𝛼 + 𝑘)𝑢(𝜒)
= 0  (1) 

𝑑2𝑣(𝜒)

𝑑𝜒2
+

𝛾𝑀 𝑢(𝜒)

1 + (𝛼 + 𝑘)𝑢(𝜒)
= 0  (2) 

The respective boundary conditions are 

𝑑𝑢

𝑑𝜒
= 0, 𝑣 = 𝑣0 = 𝜁

−1
𝑑𝑣(𝜒)

𝑑𝜒
|
𝜒=0

𝑎𝑡 𝜒 = 0  (3) 

𝑢 = 1, 𝑣 = 0  𝑎𝑡 𝜒 = 1  (4) 

 

where 𝑢(𝜒)  and  𝑣(𝜒)  are the substrate and redox mediator concentrations, respectively. 

Saturation and kinetic competition parameters are denoted by α, and κ, while reaction diffusion 

parameters for substrate and redox mediator are denoted by 𝛾𝑆  and 𝛾𝑀   respectively. Nonlinear 

equations of these type can also be found in various fields of physical, chemical and biosensors [32]. 

Normalized substrate flux and net flux is given by [30]  . 

𝜓𝑆 =
𝑓𝑆
𝑓𝑆𝐷

=
𝑓𝑆

𝑘𝑆𝐷𝑆𝑆∞/𝐿
= (
𝑑𝑢

𝑑𝜒
)
𝜒=1

  (5) 

𝜓𝛴 = (
𝑑𝑣

𝑑𝜒
)
𝜒=0

  (6) 

 

3. APPROIXIMATE ANALYTICAL EXPRESSION OF SUBSTRATE AND REDOX  

MEDIATOR CONCENTRATION USING AKBARI GANJI METHOD 

There are variety of asymptotic approaches are available for solving nonlinear differential 

equations. Such methods are Green’s function method [33–35], Homotopy perturbation method  [36,37], 
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Variational iteration method [38–41], Akbari Ganji’s method [42], Pade approximant method  [43], 

Adomain decomposition method (ADM) [44–47], Taylor’s series method [48–51], analytical methods 

[33,52,53] .  

This communication uses Akbari-Ganji's method which will acquire a solution with precision. 

Moreover, this method will be simple and convenient compared to the other methods. Solving the 

nonlinear equations (1-2) using the Akbari-Ganji method (Appendix A), the concentration of substrate 

and redox mediator are obtained as follows: 

𝑢(𝜒) =
cosh(𝑚𝜒)

cosh𝑚
,  

(7) 

𝑣(𝜒) =
𝜇

𝑚2
[𝑐𝑜𝑠ℎ𝑚 − 𝑐𝑜𝑠ℎ𝑚𝜒 +

𝜁(1 − 𝑐𝑜𝑠ℎ𝑚)

𝜁 + 1
(1 − 𝜒)]  

(8) 

where    𝑚 = √
𝛾𝑆

1+𝛼+𝜅
, 𝜇 =

𝛾𝑀

(1+𝛼+𝜅) 𝑐𝑜𝑠ℎ𝑚
  

(9) 

Concentration of mediator related to substrate concentration is given as (Appendix B)  

𝑣(𝜒) ≈ 𝑣0𝜁(𝜒 − 1) +
𝛾𝑀 
𝛾𝑆 
[1 − 𝑢(𝜒)] (10) 

Here 𝑣0 is obtained from eq. (9) and (10) 

𝑣0 =
𝜇

𝑚2
𝑐𝑜𝑠ℎ𝑚 − 1

(𝜁 + 1)
 (11) 

We get normalized substrate flux using Eq.(7) as follows: 

𝜓𝑆 = 𝑚 𝑡𝑎𝑛ℎ𝑚  

(12) 

Using Eq.(8), normalized mediator flux can be obtained as 

 

 

4. ANALYTICAL SOLUTION OF SUBSTRATE AND REDOX MEDIATOR USING  

TAYLOR’S SERIES AND YING BUZU CHINESE ALGORITHM. 

There are no accurate solutions to the nonlinear systems (Eqns.(1)-(2)). In terms of the features 

of the controlling system, it was also suggested that approximate analytical approaches, rather than 

numerical ones, are more valuable. Using a new Taylor's series approach coupled with the ancient Ying 

Buzu Chinese algorithm, we achieve highly accurate and reliable approximation analytical results in this 

part. 

In this study, an ancient Chinese algorithm [54] is used with Taylor's series method to solve 

boundary value problems ( Eqs. (1-4)). Taylor’s series approach is also used for solving linear problems 

in two and three independent variables for partial differential equations with constant coefficients and 

analytic initial conditions [48–51]. Nonlinear oscillators and fractal vibration systems [55–57] are now 

commonly solved using the Ying Buzu algorithm. The approximate solution for the concentration of the 

substrate and mediator using the Taylor’s series method is as follows [Appendix A]: 

𝜓Σ =
𝑑𝑣(𝜒)

𝑑𝜒
|
𝜒=0

= 𝑣0𝜁 =
𝜇

𝑚2
[
𝑐𝑜𝑠ℎ𝑚 − 1

(1 + 𝜁−1)
] (13) 
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𝑢(𝜒) ≈ 𝑢(0) {1 + 𝛾𝑆 [
1

1+(𝛼+𝑘)𝑢(0)

𝜒2

2!
+

 𝛾𝑆 

(1+(𝛼+𝑘)𝑢(0))
3

𝜒4

4!
−
 𝛾𝑆
2(6(𝛼+𝑘)𝑢(0)−1)

(1+(𝛼+𝑘)𝑢(0))5
𝜒6

6!
]}

      
   

(14) 

𝑣(𝜒) ≈
𝛾𝑀 

𝛾𝑆 
[1 − 𝑢(𝜒)] + 𝑣0𝜁(𝜒 − 1)    

(15) 

The dimensionless current is given by 

𝜓𝑆 =
𝑑𝑢(𝜒)

𝑑𝜒
|
𝜒=1

 = 𝑢(0) {𝛾𝑆 [
1

1+(𝛼+𝑘)𝑢(0)
+

 𝛾𝑆 

(1+(𝛼+𝑘)𝑢(0))3
1

6
−

 
  𝛾𝑆
2(6(𝛼+𝑘)𝑢(0)−1)

(1+(𝛼+𝑘)𝑢(0))5
1

120
]}  

(16) 

𝜓Σ =
𝑑𝑣(𝜒)

𝑑𝜒
|
𝜒=0

= 𝑣0𝜁 (17) 

Using the boundary condition  𝜒 = 1, 𝑢 = 1(eqn(4) ), and the eqn.(14) we get 

𝑢(0) {1 + 𝛾𝑆 [
1

1+(𝛼+𝑘)𝑢(0)

1

2!
+

 𝛾𝑆 

(1+(𝛼+𝑘)𝑢(0))
3

1

4!
−
𝛾𝑆
2(6(𝛼+𝑘)𝑢(0)−1)

(1+(𝛼+𝑘)𝑢(0))
5

1

6!
]} − 1 = 0

  
  

(18) 

The unknown parameter 𝑢(0) in the above equation (18) for the given values of 𝛾𝑆, 𝛼 𝑎𝑛𝑑  𝜅 can 

obtained  using the following Ying Buzu Chinese algorithm.  

 

4.1 Basic Idea of Ying Buzu Chinese algorithm. 

A brief introduction to the Ying Buzu algorithm is referred to Ref. [54], and it is now widely 

applied to solve nonlinear oscillators and fractal vibration systems [55–57]. Take the following algebraic 

equation. 

 

𝑓 ( 𝑥)  =  0   
                

 (19) 

Let 𝑥1 𝑎𝑛𝑑 𝑥2 be approximate solutions to the equation that yields in the remainders. 

 𝑓(𝑥1) 𝑎𝑛𝑑 𝑓(𝑥2) respectively such that   𝑓(𝑥1) 𝑎𝑛𝑑 𝑓(𝑥2) have opposite signs. The enhanced 

approximate solution is  

𝑥3 =
𝑥2𝑓(𝑥1)−𝑥1𝑓(𝑥2)

𝑓(𝑥1)−𝑓(𝑥2)
 .  

            
   

(20) 

This iteration can be repeated to improve the accuracy of the solution. 

 

4.2 Solution using Ying Buzu chinese algorithm 

The eqn.(14) can be reduced as 

𝑓(𝑥) = 𝑥 {1 + 𝛾𝑆 [
1

1+(𝛼+𝑘)𝑥

1

2!
+

 𝛾𝑆 

(1+(𝛼+𝑘)𝑥)3
1

4!
−
𝛾𝑆
2(6(𝛼+𝑘)𝑥−1)

(1+(𝛼+𝑘)𝑥)5
1

6!
]} − 1 = 0

               
   

(21) 

For the particular experimental values of the given parameter 𝛼 = 0.1, 𝑘 = 10 and   𝛾𝑆 = 5 the 

above equation becomes 

𝑓(𝑥) = 𝑥 {1 +  5 [
1

1+10.1 𝑥

1

2!
+

 5

(1+10.1 𝑥)3
1

4!
−
25(60.6 𝑥−1)

(1+10.1 𝑥)5
1

6!
]} − 1 = 0 

                
   

(22) 
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Now assume that 𝑥1 =  0.15 𝑎𝑛𝑑 𝑥2 = 0.18 be the approximation of above equation. Using 

these initial guesses with Eq. (23) leads to  

𝑓(𝑥1 =  0.7) = −0.0819,  𝑓(𝑥2 = 0.8) = 0.0212 

Using Ying Buzu chinese algorithm, the improved approximate solution is 

𝑥3 =
𝑥2𝑓(𝑥1) − 𝑥1𝑓(𝑥2)

𝑓(𝑥1) − 𝑓(𝑥2)
=
0.8 (−0.0819) − 0.7 (0.0212)

(−0.0819) − (0.0212)
= 0.779 

The solution of the equation (18) becomes 

  

(23) 

 

𝑢(0) ≈ 0.7794 
 
   

(24) 

Now the substrate and product using eqn (14)  and (15) becomes as follows:  

𝑢(𝜒) ≈ 0.7794 {1 +  5 [
1

8.8719

𝜒2

2!
+

5

(8.8719)3
𝜒4

4!
−
 25(46.2316)

(8.8719)5
𝜒6

6!
]}  

  

                          = 0.7794 + 0.2192𝜒2 + 0.0011𝜒4 − 0.0001𝜒6  
                

 

(25) 

𝑣(𝜒) ≈
𝛾𝑀 

𝛾𝑆 
[1 − 0.7794 + 0.2192𝜒2 + 0.0011𝜒4 − 0.0001𝜒6] + 𝑣0𝜁(𝜒 − 1)

 
                

 
(26) 

 

 

5. PREVIOUS ANALYTICAL EXPRESION OF CONCENTRAYION SUBSTRATE 

Lyons et al. [58] has found analytical expression of the concertation of  substrate for the limiting 

cases ( Zero-order and First-order kinetics) as follows : 

𝑢(𝜒) = cosh(√𝛾𝑆𝜒) /cosh (√𝛾𝑆)                          

 (27) 

when  𝛼 + 𝑘 ≪ 1 . 

𝑢(𝜒) = 1 +
𝛾𝑆

2𝛼
(𝜒2 − 1)                    

(28) 

when 𝛼 + 𝑘 ≫ 1. This expression is valid for 
𝛾𝑆

2𝛼
< 1. 

 

 

6. NUMERICAL SIMULATION 

The function pdex4 in SCILAB software, which solves the boundary value problems for 

differential equations, is used to solve equations (1) and (2). Upon comparison in the figures 2-4, it is 

evident that both the results give satisfactory agreement. The comparison between numerical results and 

the analytical result of the substrate obtained in this work and previous work by Lyons et al. [58] was 

shown in Tables 1 and 2. And the relative error percentage compared with numerical simulation is 

comparatively less for our result than the Albery result. 
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Table 1. Comparison of numerical solution of concentrartion 𝑢(𝜒) with the analytical solution of this 

work and Lyons et al. [58] work for limiting case 𝛼 + 𝑘 ≪ 1. 

 

𝜒 

𝜅 = 0.1, 𝛼 = 0.1, 𝛾𝑆 = 1 𝜅 = 0.01, 𝛼 = 0.01, 𝛾𝑆 = 1 

NUM 

This 

work 

Eq. (7) 

Lyons et 

al. [58] 

Eq. (27) 

This 

work 

error % 

Lyons et 

al. [58]  

error % 

NUM 

This 

work 

Eq. (7) 

Lyons et 

al. [58] 

Eq. (27) 

This 

work 

error % 

Lyons et 

al. [58]  

error % 

0.2 0.6929 0.7029 0.6611 1.4458 4.5954 0.6644 0.6658 0.6611 0.2056 0.5029 

0.4 0.7294 0.7380 0.7006 1.1747 3.9493 0.7037 0.7048 0.7006 0.1569 0.4414 

0.6 0.7913 0.7977 0.7682 0.8071 2.9135 0.7707 0.7716 0.7682 0.1132 0.3184 

0.8 0.8806 0.8841 0.8667 0.3938 1.5750 0.8682 0.8687 0.8667 0.0573 0.1693 

1.0 1.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 

 Average Error % 0.7643 2.6066 Average Error % 0.1066 0.2864 

 

Table 2. Comparison of numerical solution of concentrartion 𝑢(𝜒) with the analytical solution of this 

work and Lyons et al. [58]work for limiting case 𝛼 + 𝑘 ≫ 1. 

 

𝜒 

𝜅 = 1, 𝛼 = 5, 𝛾𝑆 = 1 𝜅 = 5, 𝛼 = 10, 𝛾𝑆 = 1 

NUM 

This 

work 

Eq. (7) 

Lyons et 

al. [58] 

Eq. (28) 

This work 

error % 

Lyons et 

al. [58] 

error % 

NUM 

This 

work 

Eq. (7) 

Lyons et 

al. [58] 

Eq. (28) 

This work 

error % 

Lyons et 

al. [58] 

error % 

0.2 0.9320 0.9353 0.9040 0.3493 3.0043 0.9700 0.9708 0.9520 0.0779 1.8557 

0.4 0.9405 0.9433 0.9160 0.2943 2.6050 0.9738 0.9744 0.9580 0.0611 1.6225 

0.6 0.9547 0.9567 0.9360 0.2067 1.9587 0.9800 0.9805 0.9680 0.0481 1.2245 

0.8 0.9745 0.9755 0.9640 0.1076 1.0775 0.9888 0.9890 0.9820 0.0201 0.6877 

1.0 1.0000 1.0000 1.0000 0.2395 2.1614 1.0000 1.0000 1.0000 0.0000 0.0000 

 Average Error % 0.2395 2.1614 Average Error % 0.0414 1.0781 
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7. DISCUSSION 

Eqs. (8)–(9) are the new-form of analytical expression  of concentration substrate and redox 

mediator for diverse values of constraints such as 𝜅, 𝛼, 𝛾𝑆  𝑎𝑛𝑑 𝛾𝑀. Graphical representation of 

concentration versus distance illustrated in Figures 2-3 for the prescribed parameters. The influence of 

reaction-diffusion parameters for the dimensionless concentration 𝑢(𝜒) is shown in Fig. 2a.  It is detected 

that the concentration 𝑢(𝜒) decreases when substrate reaction/diffusion parameter  (𝛾𝑆) increases from 

these figures. 

 

 

 

Figure 2. Dimensionless concentration of substrate versus dimensionless distance for various values 𝜅. 
The spotted line represents simulation solution and solid line obtained using Eq.(7). 

 

The effect of saturation parameter (𝛼), kinetic competition parameter (𝜅) on substrate 

concentration is shown in Fig. 2b and Fig.2c, and the result depicted that the substrate𝑢(𝜒) decreases for 

the decreasing values of 𝛼 and 𝜅. The increasing values of 𝛾𝑆, 𝛼, 𝜅 𝑎𝑛𝑑 𝜁 results on decreases in the 

mediator concentration, which is observed from Figs. 3a,3c,3d and 3e. Fig.3b shows that the mediator 

concentration increases when mediator reaction/diffusion parameters 𝛾𝑀 decrease. 
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Figure 3. Dimensionless concentration of mediator versus dimensionless distance for various values 

𝛾𝑆, 𝛾𝑀, 𝛼, 𝜅 𝑎𝑛𝑑 𝜁 .The spotted line represents simulation solution and solid line obtained using 

Eq.(8). 
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The graphical model of flux 𝜓Σ versus electrode potential is given in Figure 4 which shows that 

the mediator flux rises as the potential rises. Flux progressively grows from zero and grasps the extreme 

value when 𝜁 ≈ 20. The highest range of the flux rises when 𝛾𝑆, 𝜅 and 𝛼 declines or 𝛾𝑀 rises . 

 

 

           

Figure 4. Normalized mediator flux against potential. Spotted line represents simulation solution and 

the solid line represent analytical solution. The values used are 𝐷𝑀 = 10
−3, 𝐿 = 1, 𝑘0 = 0.1, 𝛽 =

0.5. 

 

Figure 5. Plot of normalized substrate flux 𝜓𝑆versus substrate diffusion parameter S using Eq. (12) 
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Fig. 5 is the graphical representation of normalized substrate flux against versus substrate 

diffusion parameter for the various values of 𝛼, 𝜅. Substrate flux increases as the diffusion parameter 

increases. However, as the saturation and kinetic parameter decreases, the total current increases.  

 

 

8. CONCLUSIONS 

A one-dimensional theoretical model is used to analyse the reaction and transport of substrate 

and redox mediator in carbon nanotubes is discussed using a one-dimensional theoretical model. The 

Akbari-Ganji approach and Taylor’s series with Chinese algorithms were applied to unravel time-

independent equation system. The derived analytical solutions were compared to numerical results, and 

there was a good agreement. The influence of several fundamental kinetic parameters on substrate, 

mediator concentration and current are discussed. 

 

Appendix A. Analytical solution of equations (1) using Akbari-Ganji method 

 

Consider the equation (1) as follows: 

𝑑2𝑢(𝜒)

𝑑𝜒2
−

 𝛾𝑆 𝑢(𝜒)

1 + (𝛼 + 𝑘)𝑢(𝜒)
= 0 (A. 1) 

The  boundary conditions are 

At 𝜒 = 0,
𝑑𝑢

𝑑𝜒
= 0;    At 𝜒 = 1, 𝑢 = 1 (A. 2) 

Let the following hyperbolic function be the approximate trial solution of 𝑢(𝜒) 

𝑢(𝜒) = 𝐴 cosh(𝑚𝜒) + 𝐵 sinh(𝑚𝜒), (A. 3) 

where 𝐴, 𝐵, and b are constants.  From boundary condition (A.2), we find that  

𝐴 =
1

cosh𝑚
 and 𝐵 = 0. (A. 4) 

Therefore Eq. (A.3) becomes  

𝑢(𝜒) =
cosh(𝑚𝜒)

cosh𝑚
, (A. 5) 

Substituting Eq. (A.5) into (A.1) gives 

𝑚2
cosh(𝑚𝜒)

cosh𝑚
−

 𝛾𝑆 cosh(𝑚𝜒)

cosh𝑚 + (𝛼 + 𝑘) cosh(𝑚𝜒)
= 0. (A. 6) 

By substituting 𝜒 = 1 into (A.6) we get  

𝑚 = √
 𝛾𝑆 

1 + 𝛼 + 𝑘
 (A. 7) 

Equation (A.7) can be used  to find m for any given numerical values of 𝛾𝑆 , 𝛼 and 𝑘.  

 

Appendix B. Analytical solution of nonlinear equations using Taylor’s series method   

 

The Maclaurin series (Taylor’s series at χ = 0) expansion for 𝑢(𝜒) is 

𝑢(𝜒) = ∑(
𝑑𝑞𝑢

𝑑𝜒𝑞
|
𝜒=0

)
𝜒𝑞

𝑞!
.

𝑟

𝑞=0

  
(B. 1) 
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 Assume that  
𝑑𝑞𝑢

𝑑𝜒𝑞
|
𝜉=0

= 𝐴𝑞 and 
𝑑𝑞𝑣

𝑑𝜒𝑞
|
𝜉=0

= 𝐵𝑞.   

Now eqn. (B.1) can be written as  

𝑢(𝜒) = ∑ 𝐴𝑞
𝑟
𝑞=0

𝜒𝑞

𝑞!
.                                                                                    (B. 2) 

As consequence of Eq. (B.1), we obtain  

𝐴0 = 𝑢(0), 𝐴1 = 0, 𝐴2 =
𝛾𝑆 𝑢(0)

1+(𝛼+𝑘)𝑢(0)
, 𝐴3 = 0, 𝐴4 =

 𝛾𝑆 
2𝑢(0)

(1+(𝛼+𝑘)𝑢(0))
3 , 𝐴5 = 0, 𝐴6 =

−
 𝛾𝑆
3𝑢(0)(6(𝛼+𝑘)𝑢(0)−1)

(1+(𝛼+𝑘)𝑢(0))
5    

(B. 3) 

Using Eqs. (B.3) in Eq. (B.2) leads to the analytical expression 

𝑢(𝜒) ≈ 𝑢(0) {1 + 𝛾𝑆 [
1

1+(𝛼+𝑘)𝑢(0)

𝜒2

2!
+

 𝛾𝑆 

(1+(𝛼+𝑘)𝑢(0))
3

𝜒4

4!
−
 𝛾𝑆
2(6(𝛼+𝑘)𝑢(0)−1)

(1+(𝛼+𝑘)𝑢(0))5
𝜒6

6!
]} 

          

(B. 4) 
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Supplementary Information 
 

Appendix C: Mathematical formulation of the problem: 

The reaction sequences in term of the ping-pong mechanism is described as [16] 

𝐴(𝑀𝑜)  +  𝐸𝑅  
𝐾
→𝐵(𝑀𝑅) + 𝐸𝑜  (C.1) 

𝑆 + 𝐸𝑜  
𝐾𝑀
→ 𝐸𝑜𝑆 → 𝐸𝑅 𝑃 

𝑘𝑐
→ 𝐸𝑅  + 𝑃 (C.2) 

𝐵
𝑘′

→𝐴  (C.3) 

𝐵
𝑘′

→𝐶  (C.4) 

where 𝑆, 𝑃 represent the substrate and product species respectively. 𝐸𝑜 , 𝐸𝑅 denote the oxidizd and 

reduced forms of the redox enzyme and 𝐴, 𝐵 denote the oxidized (MO) and reduced (MR) forms of the 

redox mediator respectively. 

The nonlinear reaction diffusion equation for concentration of substrate and reduced mediator are given 

as 

𝐷𝑠
𝑑2𝑠

𝑑𝑥2
− 

𝑘𝑎𝑘𝑐 𝑒Σ𝑠

 𝑘𝑎(𝑠+𝐾𝑚)+𝑘𝑐𝑠
  = 0  (C.5) 

𝐷𝐵
𝑑2𝑏

𝑑𝑥2
+ 

𝑘𝑎𝑘𝑐 𝑒Σ𝑠

 𝑘𝑎(𝑠+𝐾𝑚)+𝑘𝑐𝑠
  = 0  (C.6) 

where 𝑠(𝑥) and 𝑏(𝑥) denote the concentration of substrate and oxidised mediator, 𝐷𝑠 and 𝐷𝑏, are the 

diffusion coefficient of substrate and mediator respectively. 𝑘𝑎 , 𝑘𝑐 and 𝐾𝑚 denote catalytic constants 

and Michaelis constant for the immobilized redox enzyme 𝑒Σ is the total enzyme concentration. This 

equation must be solved subject to the following boundary conditions. 

At 𝑥 = 0,
𝑑𝑠

𝑑𝑥
=  0;  𝑏 = 𝑏0  =  𝑓Σ /𝜅 where 𝑓Σ

′   =  𝑓𝑠  = 𝐷𝐵 (
𝑑𝑠

𝑑𝑥
)
𝑥=0

 (C.7) 

At 𝑥 = 𝐿, 𝑠 =  𝐾𝑠𝑠
∞;  𝑏 = 0 (C.8) 

Units of the parameters are given in (Nomenclature) [31]. By defining the following dimensionless 

parameter 

𝜒 =
𝑥

𝐿
, 𝑢 =

𝑠

𝐾𝑠𝑠∞
, 𝑣 =

𝑏

𝐾𝑠𝑠∞
, 𝛾𝑠 =

(
𝑘𝑐
𝐾𝑚
)𝑒Σ𝐿𝐾𝑠𝑠

∞

𝐷𝑆𝐾𝑠𝑠
∞

𝐿

, 𝛾𝑀 =
(
𝑘𝑐
𝐾𝑚
)𝑒Σ𝐿𝐾𝑠𝑠

∞

𝐷𝑀𝐾𝐴𝑠
∞

𝐿

,  

𝑘 =
(
𝑘𝑐
𝐾𝑚
)𝑒Σ𝐿𝐾𝑠𝑠

∞

𝜅𝑒Σ𝐿𝑘𝑎𝑎∞
, 𝛼 =

𝐾𝑠𝑠
∞

𝐾𝑚
, 𝜁 =

(exp(
𝛽𝐹

𝑅𝑇
(𝐸−𝐸0)))𝐿

𝐷𝑀
 (C.9) 

we get the dimensionless Eq.(1) and Eq.(2) in the text. 

Appendix D: General relation between concentration of substrate and mediator. 

By count Eq.1 and Eq.2 we get 
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𝑑2𝑣

𝑑𝜒2
= −

𝛾𝑀

𝛾𝑆
(
𝑑2𝑢

𝑑𝜒2
)   (D. 1) 

Integrating on both sides we get 

𝑑𝑣

𝑑𝜒
= −

𝛾𝑀

𝛾𝑆
(
𝑑𝑢

𝑑𝜒
) + 𝐶1   (D. 2) 

Using the boundary conditions Eq.3 we get 

𝑑𝑣

𝑑𝜒
= −

𝛾𝑀

𝛾𝑆
(
𝑑𝑢

𝑑𝜒
) + 𝑣0𝜁   (D. 3) 

Again integrating the above equation we obtain 

𝑣(𝜒) = −
𝛾𝑀

𝛾𝑆
𝑢(𝜒) + 𝑣0𝜁𝜒 + 𝐶2   (D. 4) 

Using the boundary condition Eq.4 we find 

𝑣(𝜒) ≈ 𝑣0𝜁(𝜒 − 1) +
𝛾𝑀 

𝛾𝑆 
[1 − 𝑢(𝜒)]   (D. 5) 

Another way of finding the relationship is as follows 

Now the Eq. (2) can be written as 

𝑑2𝑣(𝜒)

𝑑𝜒2
+

𝛾𝑆𝑢(𝜒)

1 + (𝛼 + 𝑘)𝑢(𝜒)
= 0 (D. 6) 

𝑑2𝑣(𝜒)

𝑑𝜒2
+

𝛾𝑆𝑢(𝜒)

1 + (𝛼 + 𝑘)𝑢(𝜒 = 1)
= 0 (D. 7) 

Substituting the value of 𝑢(𝜒) (obtained in Appendix A)  (A.5) in (D.7) 

𝑑2𝑣(𝜒)

𝑑𝜒2
+

𝛾𝑀
1 + (𝛼 + 𝑘)

(
𝑐𝑜𝑠ℎ𝑚 𝜒

𝑐𝑜𝑠ℎ𝑚
) = 0 (D. 8) 

Boundary conditions are 

when 𝜒 = 0, 𝑣 = 𝑣0 = 𝜁
−1 𝑑𝑣

𝑑𝑥
|
𝑥=0

 (D. 9) 

when  𝜒 = 1, 𝑣 = 0 (D. 10) 
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Solving Eq. (D.6) we get  

𝑣(𝜒) = −
𝜇

𝑚2
𝑐𝑜𝑠ℎ𝑚𝜒 + 𝜒𝑐2 + 𝑐1 (D. 11) 

𝑣(𝜒)|𝜒=0 = −
𝜇

𝑚2
+ 𝑐1 = 𝑣0 (D. 12) 

𝑑𝑣(𝜒)

𝑑𝜒
= −

𝜇

𝑚
𝑠𝑖𝑛ℎ𝑚𝜒 + 𝑐2 (D. 13) 

𝑑𝑣(𝜒)

𝑑𝜒
|
𝜒=0

= 𝑐2 = 𝑣0𝜁  (D. 14) 

When 𝜒 = 1, using equation (D.10) in (D.11) we get 

𝑐2 + 𝑐1 =
𝜇

𝑚2
𝑐𝑜𝑠ℎ𝑚 (D. 15) 

From equations (D.12) and (D.14) we get 

𝑐1 − 𝜁
−1𝑐2 =

𝜇

𝑚2
 (D. 16) 

Solving (D.15) and (D.16) we get  

𝑐1 =
𝜇

𝑚2
[𝑐𝑜𝑠ℎ𝑚 −

𝑐𝑜𝑠ℎ𝑚−1

(1+𝜁−1)
], 𝑐2 =

𝜇

𝑚2
𝑐𝑜𝑠ℎ𝑚−1

(1+𝜁−1)
,𝑣0 =

𝜇

𝑚2
𝑐𝑜𝑠ℎ𝑚−1

(1+𝜁)
 (D. 17) 

Substituting above values in (D.11), we obtain Eq.(8) 

𝑣(𝜒) =
𝜇

𝑚2
[𝑐𝑜𝑠ℎ𝑚 − 𝑐𝑜𝑠ℎ𝑚𝜒 +

𝜁(1 − 𝑐𝑜𝑠ℎ𝑚)

𝜁 + 1
(1 − 𝜒)] (D. 18) 

here 𝑚 = √
𝛾𝑆

1+𝛼+𝜅
, 𝜇 =

𝛾𝑀

(1+𝛼+𝜅) 𝑐𝑜𝑠ℎ𝑚
 (D. 19) 

 

 

 


