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Open-circuit voltage (OCV) estimation is an essential challenge for battery management systems 

(BMSs). Accurate OCV estimation can benefit the state estimation of lithium-ion batteries (LiBs), 

including state of charge (SoC) and state of health (SoH) estimations. When obtaining a SoC-OCV curve, 

a battery test method based on low current discharge cannot overcome the effect of battery polarization, 

and the discharge time usually takes several hours. Hence, an ε-support vector regression (ε-SVR) model 

for battery OCV estimation was proposed in this research. In accordance with the voltage relaxation 

behaviour of LiBs, the sample data were collected by hybrid pulse power current (HPPC) experiments 

on LiBs under different ageing degrees. The features were selected from the data samples using grey 

association analysis (GRA), and the hyperparameters of the ε-SVR model were obtained by K-folding 

cross-validation (CV). To validate this approach, the proposed model was trained and tested over the 

dataset acquired from the LiBs with varying degrees of ageing. Based on the experimental results, the 

model only needs some short-term battery characteristic data to achieve high-precision OCV estimation. 
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1. INTRODUCTION 

With their excellent performance, LiBs are widely applicate in various industrial applications such 

as EVs, portable devices, and smart grids [1]. The OCV is associated with the natural properties of an LiB, 

which depend on the Gibbs energy from the battery’s electrochemical reactions. Precise estimation of the 

battery OCV is necessary for the BMS to monitor battery status, which includes SoC estimation [2], SoH 

estimation [3], and state of power (SoP) estimation [4]. When estimating the battery SoC, the SoC 
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initialization and recalibration of estimated results always depend on the Coulomb counting-based 

estimation together with an OCV-based method. The voltage curve of the SoC-OCV can be adopted to 

acquire the battery ageing degree for battery SoH estimation through differential voltage analysis [5, 6]. In 

addition, the correlation between the battery SoC-OCV is also an essential characteristic parameter to 

obtain the peak current for battery SoP estimation [7]. Hence, OCV is related to many aspects of battery 

technology and plays a key role. 

 

1.1. Review of OCV Estimation Approaches 

Direct measurement is one of the standard methods for battery OCV estimation. The polarization 

voltage of a battery usually decreases slowly during an experimental test and even disappears after enough 

relaxation time. As a result, the battery OCV can be measured directly from the cell terminal voltage. The 

method for measuring a battery OCV with a low rate current uses a tiny minimal constant current to test 

the [8] discharge of the battery. The battery SoC changes continuously during the test, and then the battery 

SoC-OCV curve can be obtained. However, although the current is tiny and minimal, the polarization 

effect of the battery still exists due to the prolonged continuous current excitation. Significantly, in the 

battery SoC end range, the accuracy of the OCV is greatly affected [9]. During an incremental OCV 

characteristic test, the battery is discharged incrementally, and then a timed relaxation process is carried 

out [10-11]. According to previous conclusions in the literature [8], the reliability of the SoC-OCV 

correlation obtained by the incremental OCV characterization test is higher than that obtained by the low-

rate current OCV characterization test. The main reason is that in the incremental OCV characterization 

test, the polarization effect of the battery is almost eliminated after a long relaxation process. Obviously, 

due to the long relaxation process time of the battery, it takes a while to use the incremental OCV 

characterization test method to obtain the SoC-OCV curve in the whole range. 

For more accurate estimation, the model-based method provides a new method for battery OCV 

estimation. Generally, this method uses the voltage relaxation model to fit the cell terminal voltage after 

the interruption current and can use the voltage relaxation model to predict the OCV of the cell. Wladislaw 

Waag et al. proposed a new method [12] estimating the electromotive force (EMF) by using the OCV 

relaxation process within only a few minutes after the current interruption. After online fitting of the OCV 

relaxation model and measured OCV relaxation curve, the method is verified by LiPB SoC and SoH 

estimation. Lei Pei et al. developed a new model based on an improved linear resistor–capacitor (RC) 

model and proposed a fast battery OCV prediction method [13]. The final battery static OCV was predicted 

within a few minutes by a linear regression technique. Kun Qian et al. used a second-order equivalent 

circuit model to describe the voltage relaxation process [14] and obtained, in Ohms, characteristic 

parameters of electrochemical and concentration depolarization. These parameters are alive to 

electrochemical states and can provide the basis for battery SoH estimation. Although the method can 

quickly obtain the OCV, model parameter recognition is needed, and the expansibility is not good. 

Based on modern control theory, various observers or filters, such as the extended Kalman filter 

(EKF), H-infinity filters and adaptive observers, can be used to implement battery OCV estimation. To 

solve the problem of straightness in the middle of the OCV-SoC curve, Chang Zhang et al. proposed two 
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model-based real-time SoC estimation methods [15]. A weighted recursive least square (WRLS) method 

was proposed to achieve real-time battery OCV estimation, and another approach used the EKF to achieve 

state estimation. To solve the effect of truncation error and further improve the accuracy of battery SoC 

estimation, Pan Haihong and others addressed the state prediction problem according to the grey prediction 

model [16], presenting a new OCV model based on cubic Hermite interpolation. In reference [17], the 

authors used H-infinity filters to extract OCV-SoC relationships from existing current–voltage 

measurements and validated the method under constant current and dynamic conditions. According to the 

Lyapunov stability criterion, Yi-Hsien Chiang et al. developed an adaptive control algorithm to achieve 

accurate estimation of battery OCV and battery internal resistance [18]. Moreover, the proposed method 

was not limited by the input signal and enhanced the applicability in an onboard power supply system. By 

obtaining a battery online OCV, these methods avoid the effect of voltage polarization caused by a long 

relaxation process. However, the accuracy of the obtained OCV depends on the model adopted. Because 

of the limited computing power and storage of onboard microcontrollers, the models have difficulty 

ensuring the accuracy of OCV estimation. In addition, the design of an observer or filter and its parameter 

tuning are tedious and time-consuming processes. 

In the literature, there are other types of battery OCV estimation methods. Fangdan Zheng and 

others studied the relationship between battery OCV-SoC, which depends on temperature, and its effect 

on SoC estimation results [19]. Alexander Farmann et al. studied the various factors affecting battery OCV 

estimation in detail [20]. It turns out that ambient temperature and the degree of battery ageing can seriously 

affect the relaxation behaviour of a battery. There is a linear relationship between the cell relaxation time 

and ambient temperature. To actively reduce the polarization voltage, Jufeng Yang et al. proposed an 

improved OCV test method [21]. Based on third-order ECM, two sets of current pulses are used to 

accelerate the convergence of the battery terminal voltage. Compared with the incremental OCV testing 

method, the test time is effectively shortened. 

The direct measurement method is suitable for engineering testing [8-11]. Because of the existence 

of the battery relaxation process, it takes a great deal of time to measure. The method, based on OCV 

modelling, can estimate the battery OCV quickly [12-14], but it does not have good expansibility. A 

method based on the observer or filter can estimate OCV online [15-18]. However, the complex design 

and parameter adjustments present challenges to engineers. For battery testing through current excitation, 

the battery terminal voltage obtained involves not only OCV but also overvoltage and is related to a series 

of polarization effects. Due to the effect of battery polarization, it is difficult to achieve accurate direct 

OCV measurements. Moreover, battery relaxation may even last for several hours after the current is 

interrupted. As a result, the end voltage of a cell can be approximately equal to the OCV [22]. After an equal length of 

battery relaxation, the polarization effect almost disappears. It is difficult to achieve high-precision and 

high-efficiency OCV measurements in the complete battery SoC range. Furthermore, with the rapid 

development of EVs, the problem of recycling and ladder utilization of retired power batteries needs to be 

solved. 

To conquer these challenges, an approach implemented by ε-SVR is proposed for LiB OCV 

estimation. The main contributions of the OCV estimation of this research are as follows. 
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A new method for LiB OCV estimation is proposed. The ε-SVR model just needs some short-

term sample data and is able to work efficiently for accurate measurement, and it does not rely on 

complex mathematical calculations, the battery ECM, or inconvenient parameter tuning. 

Based on the relaxation process of the LiB, the samples in the battery degradation process are 

measured by a set of current pulses that take only a few minutes. This non-destructive and non-invasive 

method for short-term feature acquisition is simple to realize in engineering applications. 

 

 

2. MODELLING AND METHODOLOGY 

2.1. Battery OCV and Voltage Relaxation Behaviour 

Generally, battery OCVs can be classified into three categories: battery static balance voltage 

(OCV), battery dynamic equilibrium voltage (DEV), and battery quasi-equilibrium voltage (QEV). The 

static balance voltage of the battery reflects the inherent balance between the chemical potential and the 

potential between the positive and negative electrodes in the battery [23]. The dynamic equilibrium voltage 

of the battery, which is added to the phase formation process of the counter-electrode particles and the 

phase exchange process between different particles, is a relatively stable part of the dynamic operating 

voltage of the battery [24]. The quasi-balance voltage of the battery is an approximation of the static 

equilibrium voltage of the battery. 

Generally, the distribution of ions and electrons in an electrode is unbalanced during an 

experimental test of battery charging and discharging. This is named battery polarization [25]. Because of 

the phenomenon of battery polarization, the electrode potential deviates from the equilibrium potential. As 

a result, there are server main manifestations of the battery [26]: the first is ohmic polarization, which leads 

to a decrease in battery voltage due to the resistance of the electrode, electrolyte and diaphragm. The second 

is the electrochemical polarization formed by the charge transfer of the battery, which is related to the 

lithium ions in the battery. The third is the concentration polarization, which is determined by the lithium 

ions in the solid phase diffusion of the battery. When the battery test process stops, the battery voltage still 

does not reach a stable state during the relaxation time, as shown in Fig. 1.a, which can be understood as 

the depolarization process of the battery. 

 

 

CC-CV charge
CC-CV discharge

Relaxation

 

 

Figure 1.a. Constant-current and constant-voltage (CC-CV) discharge/charge test of lithium-ion battery 
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Fig. 1 (b) shows a typical voltage relaxation curve of an LiB, in which the battery voltage is 

discharged to 3.3 at a rate of 0.1 C according to the polarization phenomenon of the battery. Then, the 

discharge current is terminated, and the battery voltage enters the relaxation process. The battery voltage 

rises sharply from the cut-off voltage V0 to V1 at the last moment of battery discharge, which is caused 

by the rapid response of ohmic depolarization and the redistribution of electrons. The process from V1 to 

V2 is the activation and concentration depolarization process of the cell. Due to the kinematic differences 

in the diffusion of lithium ions at the electrode–electrolyte interface and the active materials, the voltage 

relaxation process will be affected by the depolarization process of the battery. Because the voltage 

relaxation phenomena include direct information about lithium-ion and electron transport, they can also be 

applied to battery SoH estimation. 

 

2V

1V

0V

 

 

Figure 1.b. A typical voltage relaxation curve 

 

2.2. Problem Formulation of OCV 

As normal, the dynamic behaviour of the battery is able to be described by an equivalent circuit 

model (ECM) realized by several RC combinations, as shown in Fig. 2, which is a second-order RC cell 

ECM model. 

 

 

+
-

1R
2R

0R

1C 2C

1U 2U

tU
( )ocvU soc ( )I t

 
 

 

Figure 2. The second-order battery ECM 

 

The battery ECM model consists of three parts: the ohmic resistance ( 0R ), ocvU , and the polarization 

part, which includes two RC-equivalent circuits. The parameters 0U , 1U , and 2U  are the ohmic 

overpotential, diffusion overpotential, and charge transfer overpotential, respectively. Thus, in the process 

of battery relaxation, the battery voltage can be defined as a relaxation voltage: 

𝑈𝑡 = 𝑈𝑜𝑐𝑣 + 𝑈1 + 𝑈2 + 𝑈0                                                                                                         (1) 
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The ohmic overpotential 
0U  release rate is extremely fast, and it can be considered that the ohmic 

overpotential disappears after the external battery circuit is disconnected. The release speed of 
1U  and 

2U  

is relatively slow, and it will gradually decrease as the OCV time increases. Thus, Eq. (1) can be rewritten 

as follows: 

1, 2,

, 1,

, 0

,

,

   


   
 

ocv k k k ct

rlx k ocv k ct k d

ocv d k

U U U t T

U U U T t T

U T t
                                                                                                            (2) 

where 
kt , 

dT , and 
ctT  are the battery open-circuit, diffusion polarization, and transfer polarization times, 

respectively. 

 

2.3. Feature Construction 

During the charging and discharging process of the battery test, the distribution of ions and 

electrons in the electrode is unbalanced, resulting in battery polarization. According to the polarization 

phenomena, a typical voltage relaxation curve for an LiB is easy to obtain in battery test processes. Thus, 

the battery voltage response under a mixed-pulse current test, containing discharging and charging, is used 

for feature construction. A test schematic is shown in Fig. 3, which includes the current pulse in Fig.3 (a), 

the voltage response in Fig. 3 (b), and voltage relaxation curve in Fig. 3 (c). 

The mixed-pulse current is charged at a current rate of 1 C and discharged at a current ratio of 1 C, 

and then charged and discharged at 2 C and 3 C, respectively. In Fig. 3 (a), the duration of the battery 

current pulse is 10 s, the pulse relaxation time is 30 s, and the amplitudes are 1C, 2C, and 3C. Furthermore, 

a relaxation time occurs after each pulse discharge and charge. Under the current pulse test, the battery 

voltage response can be acquired. Then, the voltage relaxation curve, as shown in Fig. 3 (c), is able to 

acquire from the discharge and charge response voltages. Finally, the mean, maximum, summation, and 

time of the gradient from the voltage relaxation curve reduced to zero are analysed as features. Through 

short-term current testing, these characteristics can be conveniently extract in practical engineering 

applications. 

(1) When discharging at 1C, F11–F14 represent the mean, maximum, summation, and the time of 

the gradient from the voltage relaxation curve reduced to zero; when charging at 1C, F15–F18 represent 

the mean, maximum, summation, and the time of the gradient from the voltage relaxation curve reduced 

to zero. 

(2) In the same way, F21–F28 and F31–F38 features can be obtained. According to this feature 

construction method, a total of 24 sample features are obtained. 

 

 

Discharge

Charge
Relaxation

I

t

(a)  Current pulse
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Figure 3. The schematic of the current pulse test 

 

2.4. Feature Extraction 

Sample feature selection is a vital part of modelling based on machine learning (ML). However, 

with the increasing number of data features, the comprehensive performance of the model may not be 

improved accordingly. Moreover, the final performance of the model rely mostly on the way the sample 

features are constructed and the number of features. Thus, to research the relation between the sample 

features and OCV, the GRA method [27] is applied for data sample feature selection. Based on grey system 

theory (GST), the relational grade is measured on the basis of the similarity between each factor. Hence, 

the GRA method implements a quantitative measure of system evolution and provides an analytical 

method for dynamic process analysis. 

(1) A sequence for reference { ( ) | 1,2,..., } Y y k k n , where ( ) ( )y k OCV k . The comparative sequence is { ( )}i iX x k , 

here i iX F ; 

(2) Data normalization process; 

(3) Compute the relational coefficients: 
min max | ( ) ( ) | max max | ( ) ( ) |

( )
| ( ) ( ) | max max | ( ) ( ) |






  


  

i i
i k i k

i

i i
i k

y k x k y k x k
k

y k x k y k x k                                                                            (3) 

where   is the identification coefficient, and (0,1)  

(4) Compute the relational grade r : 

1
( ( ))


 

n

i ii
r mean k                                                                                                                       (4) 

The correlation between the sample features and the battery OCV can be obtained under the above 

calculation process of the GRA method, as shown in Table 1. The closer the correlation grade is to 1, 

the greater the correlation is. The results in the table show that the correlation grade of the selected 

sample features is close to 1. Thus, there is a high correlation grade between the data features chosen 

and the battery OCV, which shows that it provides a useful sample feature for constructing the model to 

realize the battery OCV estimation. There may be redundant items in the selected data sample features, 

but the features calculated by the GRA method will not affect the final battery OCV estimation. 
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Table 1. The GRA between features and OCV 

 

Fij 1 2 3 4 5 6 7 8 

F1 0.723 0.722 0.723 0.727 0.753 0.744 0.753 0.705 

F2 0.72 0.738 0.72 0.73 0.766 0.719 0.766 0.707 

F3 0.719 0.727 0.719 0.726 0.768 0.734 0.768 0.724 

 

2.5. The Battery OCV Estimation Model 

To establish the model, the battery OCV is taken as the state variable in the estimation model, and 

the mean, maximum, summation, and time of the gradient from the voltage relaxation curve reduced to 

zero are used as the input variables. Then, the core problem of battery OCV modelling is to establish the 

relationship between these variables and battery OCV estimation, which can be expressed as follows: 

1 2 3( ) ( , , ) , 1,2,...,8  i i iOCV n f F F F w i                                                                                         (5) 

The function 
1 2 3( , , )i i if F F F  is adopted to describe the battery OCV estimation model, and w  represents 

the model error. The SVR model is very good at solving problems related to small sample size and 

nonlinear and high-dimensional pattern recognition [28]; it has been widely used in practical applications, 

so the SVR algorithm is employed to approximate the complex electrochemical reaction process. A well-

trained SVM regression model can be used to predict physical parameters. The following is a given training 

dataset. 

1 1 2 2{( , ), ,( , ), ( , )}

, ,( 1,2, , )




    

n n

m

i i

T x y x y x y

x X R y Y R i n                                                                                             (6) 

With the inner product of the kernel function, an SVR can quickly achieve nonlinear transformation 

from the space of inputs to a higher dimensional feature space. Thus, the nonlinear regression problem can 

be achieved through this method to attain high-dimensional feature space mapping and then be converted 

into a linear regression problem, which can be expressed as follows. 

( ) ( )  f x w x b                                                                                                                         (7)
 In the above formula, ( )f x  is the approximation for OCV estimation, and x , w , b  and ( ) x  are the 

input data, weight, offset item and feature space, respectively. SVR must obtain a function that can 

maximize the deviation of ( )f x  with a dataset, where all the deviations are less than a given parameter ε. 

Therefore, the problem can be converted to the following formula: 

2

1

1
min ( , , ) ( ( ))

2

0 ( )
( ( ))

( )














  




       


N

i i

i

R w C w C L y f x

if y f x
L y f x

y f x otherwise

                                                                                        (8) 

L  represents the ε-insensitive loss function. When the deviation is less than ε, no penalty will be 

imposed. When the deviation is greater than ε, the corresponding penalty will be imposed. 
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Figure 4. The schematic diagram of ε-SVR 

 

 

The parameter C  is a penalty factor. Its role is to weigh the flatness of the model and empirical 

risk. To facilitate the calculation of the   insensitive loss function, i
 and *i

 slack variables are needed, 

as shown in Fig. 4. Then, the solving problem for model parameters can be transformed into the following 

convex optimization problem: 

2 *

1

*

*

1
min ( )

2

( )

. . ( )

, 0

 

  

  

 



 

    


    
 


N

i i

i

i i

i i

i i

w C

y w x b

s t w x b y
                                                                                                       (9) 

According to Karush Kuhn Tucker’s conditions, the Lagrange function is introduced. The 

following dual constrained function can be obtained: 

* *

, 1

* *

1 1

*

1

*

1
min ( )( )[ ( ) ( )]

2

( ) ( )

( ) 0
. .

, [0, ], 1,2,...
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i i j j i j

i j

N N

i i i i i

i i

N

i i

i

i i

x x

y

s t

C i n

                                                                                           (10) 

When the Lagrange multipliers are obtained, the above model can be transformed into the 

following expression: 

*

1

( ) ( ) ( , ) 


  
N

i i i

i

f x K x x b                                                                                                     (11) 

Here, ( , )iK x x  is the kernel function; as calculated by Eq. (12), introducing a kernel function can 

avoid the complex calculation of the ( )x  transformation. 

( , ) ( ) ( )  T

i iK x x x x                                                                                                            (12) 

The kernel functions of SVR are linear, polynomial, radial basis and sigmoid kernel functions. In 

this paper, we chose the most commonly used kernel function, the radial kernel function (RBF). 
2

( , ) exp( )   i k iK x x x x                                                                                                     (13) 

Parameter gama  is the variance of the kernel function. Using the above analysis, the battery OCV 

estimation model can be expressed as Eq. (14). 

2*

,

1

( )exp( )  


     
N

n estimation i i n i

i

OCV x x b                                                                                 (14) 
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The OCV estimation model based on ε-SVR is established by Eq. (14), and its structure diagram 

is shown below. 

 

1k

nk

1w

2w

nw b

2k 

1iF

2iF
nOCV

3iF
 

 

Figure 5. ε-SVR model for battery OCV estimation 

 

2.6. Hyperparametric Optimization for the SVR Model 

For better estimation accuracy of the battery OCV, optimal kernel parameters and penalty factors 

ought to be selected before SVR model training and testing. Therefore, parameters C, gamma and ε are 

selected by K-fold CV [29]. Depending on the parameters, in model training, the K datasets are chosen as 

the validation set, and then the remaining K-1 datasets form the training set. Therefore, the trained model 

can obtain K possible estimators and K corresponding validation errors, and the average value of the K 

validation error is the final validation error of the model. By combining grid search (GS) methods, the last 

error of the training model is minimized to select the best model hyperparameters. Five CV processes are 

shown in Fig. 6. The yellow part of the data represents the validation set of the model, and the data in the 

purple section represent the training set of the model. 

 

 

1 1 2 2 15 15[ , ] {[ , ],[ , ],...[ , ]}X Y X Y X Y X Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Test Data Training Data

Group 1

Group 2

Group 3

Group 4

Group 5
All Data

 

 

Figure 6. A schematic of K-fold CV 

 

 

 

3. RESULTS AND DISCUSSION 

This section mainly introduces the experimental analysis results, including data collection and 

description, the process of model training and verification, and experimental results. 
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3.1. Data Acquisition 

The platform for battery testing is shown in Fig. 7 and is employed to perform task configuration 

and battery testing. The test bench is composed of a lithium-ion battery, an electronic load test system 

and a computer for user testing. The battery is connected to the electronic load system and the DC power 

test system, and the test data are acquired by the computer to carry through the battery test process. In 

the experiment, 18650 lithium-ion batteries were tested, and their cycle life was between 1000 and 1500 

cycles. Other battery parameters are listed in Table 2. 

 

 

 

 

Figure 7. The experimental setup of the test platform 

 

 

The CC-CV charge/discharge method is used for the battery ageing test. The charging and 

discharging currents are 5C (A), and the battery can be quickly aged with a large multiplier for the charging 

and discharging tests, while a specific ageing result can be obtained after multiple cycles. 

 

 

Table 2. Cell parameters 

 

Brand 
name 

Battery 
weight 

Nominal 
capacity 

Nominal 
voltage 

Charge/discharge 
cut-off voltage 

Sanyo 45 g 2.4 Ah 3.7 V 4.2 V/3.0 V 

 

 

After 100, 350, 500, 750, and 900 cycle battery ageing tests, battery sample data are collected by 

the mixed-pulse current test. The batteries are discharged at a current rate of 1 C, charged at a current rate 

of 1 C and then discharged and charged at 2 C and 3 C, respectively. The duration of pulse charging and 

discharging is 10 s. Each pulse has a relaxation time of 30 s after charging and discharging. Moreover, the 

depth of discharge (DoD) is 5%, 10%, 15%, 20%, and 25%. A total of 12 batteries were tested in the 

experiment, and the sampling time was set to 1 s. According to the CC-CV test method, the battery is 

quickly aged, and the aged battery is charged and discharged according to 5 different discharge depths. A 

sum of 60 data samples are gathered for model training, and 3 test sets (20 samples) are randomly selected 

for model verification. 
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3.2. Model Training 

The experiment for OCV estimation model was conducted in Windows 8.0, with the MATLAB 

2017 [30] and LibSVM Toolbox [31] platforms. The toolbox is implemented in the C/MATLAB 

development language and can be applied to ε-SVR simulation. The sequence sample data in which the 

datasets are sent to the estimation model is modified based on random functions. 

To prevent the various dimensions of the original data from influencing the ε-SVR model training, 

data normalization have to be performed. Data normalization is implemented to clarify this effect and 

increase the convergence rate in the process of model training. The approach of min-max normalization is 

used to scale the data between 0 and 1 by the following equation: 

' ( min ) / (max min )  x x xx x                                                                                                           (15) 

where x  is the raw data value, 'x  is the scaled data value, and 
xmax  and 

xmin  are the maximum and 

minimum data values, respectively. 

Adaptability evaluation plays a significant role. Generally, the model of ε-SVR is selected as the 

evolutionary standard, and the CV mean square error (MSE) is used to evaluate the ε-SVR performance. 

Specifically, the CV MSE is defined as follows: 

* 2

1

1
( )


 

n

i ii
MSE OCV OCV

n
                                                                                                                  (16) 

where 
iOCV  is the measured value, *

iOCV  is the estimated value, and n  is the number of samples. 

To select a suitable kernel function, the ε-SVR model is configured with a linear kernel (LK), 

polynomial function kernel (PNK), and radial basis function (RBF) kernel. A 5-fold CV is performed to 

optimize the model parameters. Table 3 provides the CV results, showing the best ε-SVR parameters and 

CV MSE errors of the models. The model configured with the LK produces a large CV error, which shows 

that this model has poor comprehensive performance on the validation set. The CV error of the model with 

the PNK is 5.35%, which is a little larger than that of the model with the LK. This shows that the ε-SVR 

model with LK or PNK cannot achieve the desired result. However, because of the introduction of the 

Gaussian function (GF), the structure of the RBF model is more sophisticated than that of the other models. 

Therefore, the CV error of the model configured with RBF is only 0.49%. The model with RBF has the 

best generalization performance. Then, the RBF kernel may be the best choice for the ε-SVR model. 

 

 

Table 3. The CV results of the ε-SVR model training 

 

Kernel 

function 
Model parameters 

MSE 

errors 

LK null 5.22% 

PNK c=3.5, gama=0.3, d=3 5.35% 

RBF 
c=3.5, gama=0.3, 

e=0.005 
0.49% 

 

 

 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 22059 

  

13 

3.3. Performance Metrics 

For a comprehensive evaluation of ε-SVR performance of the estimation model, five performance 

indicators are introduced to evaluate model performance, including determination of coefficients (R2), root 

mean square error (RMSE), average absolute error (MAE), average absolute percentage error (MAPE), 

and OCV estimation errors (Error). R2 denotes the degree of interpretation of the input variable to the 

output variable. When the value is 1, the fitting effect of the model is the best. RMSE represents the sample 

standard deviation of the difference between the OCV estimated value and the OCV actual value. MAE, 

MAPE, and the error range error used to determine the OCV estimated results. The closer the values of 

RMSE, MAE, MAPE, and Error are to 0, the better the performance of the model. Each performance 

metric is defined as follows. 
* 2

2 1

2

1

( )
1

( )






 







n

k kk

n

k ocvk

OCV OCV
R

OCV M
                                                                                                       (17) 
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k
k

OCV OCV
MAPE

n OCV
                                                                                                          (20) 

*
 k k

k

OCV OCV
Error

OCV
                                                                                                                         (21) 

where kOCV  denotes the actual value, *

kOCV  denotes the estimated value, ocvM  is the mean OCV , and n  is the 

number of test samples. 

 

3.4. Performance Validation of the ε-SVR Model 

To verify the performance of the ε-SVR model, the model configured with the RBF kernel is 

trained and tested by the training dataset and the test dataset. The test results are shown below. The test set 

used in the test process is different from the training set. The measured value is considered the actual 

battery OCV. 

 

 

 
 

Figure 8. The test results of OCV estimation when SoH equals 0.45 
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Figure 9. The test results of OCV estimation when SoH equals 0.75 

 

 

 
 

Figure 10. The test results of OCV estimation when SoH equals 0.9 

 

 

Figs. 8–10 show the OCV estimation results of the trained model tested on the three test sets in the 

case of multiple SoH values. When SoH is equal to 0.45, the test results of randomly selecting test data 

three times are shown in Fig. 8 (a, b, c). According to Fig. 8, the OCV increases monotonically with battery 

SoC. When the SoH is equal to 0.75, the estimation results are well fitted, as shown in Fig. 9, and the OCV 

and SoC curves show some nonlinear characteristics. When the SoH is equal to 0.9, the estimation results 

are also well fitted. Through the above analysis, the ε-SVR model has achieved satisfactory OCV 

estimation. 

The statistics of the experimental test results are shown in Table 4. The ε-SVR model obtained the 

worst estimation results on the No. 3 test set, and the obtained RMSE, MAE, and R2 values were 0.5%, 

0.5%, and 98.94%, respectively. However, the ε-SVR model obtained better estimation results on the No. 

2 test set, and its RMSE, MAE, and R2 values were 0.49%, 0.49%, and 99.39%, respectively. These results 

exceed the estimated results obtained by the ε-SVR model on the No. 3 test set. Moreover, the ε-SVR 

model obtained the best estimation results on the No. 1 test set, and the corresponding RMSE, MAE and 

R2 values were 0.47%, 0.46% and 98.76%, respectively. 

 

 

Table 4. Statistical results of OCV estimation 

 

Kernel 
Test 

case 
RMSE MAE R2 (%) Error (%) 

Radial  

Basis  

Function 

No.1 0.47 0.46 98.76 [-0.14 0.14] 

No.2 0.49 0.49 99.39 [-0.14 0.15] 

No.3 0.5 0.5 98.94 [-0.14 0.14] 
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As shown in Table 4, the ε-SVR model obtained the best test results on the first test set, and the 

corresponding performance metrics reached satisfactory results. In contrast, the model obtained the 

worst estimation results on test set No. 3. Although the estimation results of the model on the three test 

sets are different, the overall performance is still excellent; in particular, the error range of battery OCV 

estimation is very small, which is always between -0.14% and 0.15%. Therefore, the above test results 

fully show that the ε-SVR model configured with RBF kernel can overcome the nonlinear relationship 

between feature variables and battery OCV and realize the accurate estimation of battery OCV. 

 

3.5. The Influence of the Kernel on the ε-SVR Model 

To verify the rationality of the model's kernel function selection, two other ε-SVR models with LK 

and PNK functions were trained and tested. The test results are shown in Table 5. 

 

 

Table 5. The statistical results of OCV estimation  

 

Kernel 
Test 

case 
RMSE MAE R2 (%) Error (%) 

Linear 

kernel 

No.1 4.86 3.88 31.19 [-2.35 1.28] 

No.2 5.5 4.62 22.87 [-2.43 2.74] 

No.3 5.29 4.47 16.6 [-2.57 2.05] 

Polynom

ial 

 kernel 

No.1 4.95 3.94 36.42 [-2.43 0.94] 

No.2 5.65 4.71 18.86 [-2.55 2.76] 

No.3 5.46 4.68 24.3 [-2.43 1.72] 

 

 

As shown in the above table, the ε-SVR model equipped with LK has the worst OCV estimation 

result on test set No. 3, with RMSE, MAE, and R2 values of 5.29%, 4.47%, and 16.6%, respectively. The 

ε-SVR model equipped with PNK has the best OCV estimation result on the first test set. Its RMSE, MAE 

and R2 values are 4.95%, 3.94% and 36.42%, respectively. In particular, the range of its estimation error 

is reduced to between -2.43% and 0.94%. From the overall test results, compared with the estimation result 

of the ε-SVR model equipped with LK, the estimation result of the ε-SVR model equipped with PNK has 

no obvious advantage. However, compared with the estimation result of the model configured with RBF, 

as shown in Table 4, the OCV estimation result of the model with RBF has obvious advantages. 

From the above statistical results, it is clear that these two models cannot obtain ideal OCV 

estimation results. In contrast, the model using RBF achieves an accurate estimation of OCV. Because the 

RBF introduces the Gaussian kernel function, it can effectively overcome the nonlinear characteristics of 

the OCV. The ε-SVR model with RBF has achieved satisfactory estimation results, so it is the best choice 

for OCV estimation. 
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3.6. The Influence of Sample Features on the ε-SVR Model 

To illustrate the rationality of sample feature selection, one sample feature is randomly reduced for 

each training sample, and then six ε-SVR models configured with the RBF kernel are trained by this 

training sample. The results of the experimental tests are shown in Table 6. When F19 is deleted, the test 

result of the model on T3 is the worst, the RMSE and MAE values reach 0.52%, the R2 value is also less 

than 99%, and the range of estimation error reaches [-0.14 0.15]. When F23 is deleted, the test result of the 

model on T1, T2, and T3 is the best, and the range of RMSE and MAE are between [0.45 0.51], and the 

value of R2 is also satisfactory. In particular, range of estimation error is reduced to between -0.13 and 

0.14. In Table 6, the comprehensive range of R2 is between [98.67 99.39], and the range of error estimation 

error is between [-0.14 0.15]. 

 

 

Table 6. The statistical results of battery OCV estimation 

 

Minus 

feature   

Test 

case 
RMSE MAE R2 Error 

F1 

No.1 0.49 0.48 98.67 [-0.13 0.14] 

No.2 0.5 0.5 99.36 [-0.14 0.14] 

No.3 0.51 0.51 98.9 [-0.14 0.15] 

F3 

No.1 0.49 0.48 98.67 [-0.13 0.14] 

No.2 0.5 0.5 99.36 [-0.14 0.14] 

No.3 0.51 0.51 98.9 [-0.14 0.15] 

F8 

No.1 0.48 0.46 98.73 [-0.14 0.15] 

No.2 0.5 0.5 99.35 [-0.14 0.14] 

No.3 0.51 0.51 98.9 [-0.14 0.14] 

F10 

No.1 0.46 0.42 98.84 [-0.14 0.14] 

No.2 0.5 0.5 99.36 [-0.14 0.15] 

No.3 0.51 0.51 98.91 [-0.14 0.15] 

F19 

No.1 0.48 0.47 98.72 [-0.14 0.14] 

No.2 0.49 0.49 99.38 [-0.14 0.14] 

No.3 0.52 0.52 98.87 [-0.14 0.15] 

F23 

No.1 0.47 0.45 98.77 [-0.13 0.14] 

No.2 0.49 0.49 99.39 [-0.14 0.13] 

No.3 0.51 0.51 98.92 [-0.14 0.14] 

 

 

Compared with the results in Table 4, the value of R2 and error change little. This shows that 

deleting any of these features has little effect on R2 and error in the model estimation results. Moreover, 

compared with the results in Table 4, if a feature variable is deleted in the training dataset, the impacts on 

R2 and error in the model estimation results are minimal, and the impacts on RMSE and MAE are slightly 

larger. This is precisely because the correlation coefficient between each feature and OCV is between [0.7 

0.77], as shown in Table 1. Moreover, among the test results, the result of test 1 is the best, and the result 

of test 3 is the worst. Therefore, no matter which features are deleted from the data sample, the accuracy 
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of the OCV estimation result of the ε-SVR model will be reduced accordingly. Therefore, as shown in 

Table 1 above, the selected features are essential for the ε-SVR model to achieve battery OCV estimation. 

 

3.7. The Influence of Hyperparametric on the ε-SVR Model 

The ε-SVR regression is very easy to use with only three parameters to tune: the cost parameter C, 

the gamma in the kernel function, and the epsilon in the loss function. The parameter C is the penalty 

coefficient, indicating the tolerance for estimation errors. A larger C indicates that the error cannot be 

tolerated and is easy to overfit. The smaller the value of C is, the easier the model is to under fit. If the 

parameter C is too large or too small, the model generalization ability will be poor. As shown in Fig. 11, 

when C is greater than 3.5, both RMSE and MAE tend to be minimum, while the value of R2 reaches the 

maximum value of 100%.  

 

 

     
 

Figure 11. The relationship between parameter C and performance metrics 

 

 

     
 

Figure 12. The relationship between parameter gama and performance metrics 

 

 

     
 

Figure 13. The relationship between parameter ε and performance metrics 

 

The parameter gamma is a parameter in the RBF kernel. Based on this parameter, the data 

distribution can be implicitly determined after the data are mapped to the new feature space. Therefore, the 

larger the value of the parameter gamma is, the smaller the support vector of the ε-SVR model, and vice 
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versa. As shown in Fig. 12, when gamma is greater than 0.2, both RMSE and MAE tend to 1%, while the 

value of R2 reaches 100%. Epsilon is a sensitive parameter in the loss function; when the deviation is less 

than epsilon, no penalty will be imposed. When the deviation is greater than epsilon, the corresponding 

penalty will be imposed. As shown in Fig. 13, epsilon and RMSE show a linear correlation and 

monotonically increase, and the same is true for epsilon and MAE. There is a piecewise linear relationship 

between ε and R2. When ε is less than 0.03, the value of R2 decreases with increasing ε, and when ε is 

greater than 0.03, the value of R2 decreases rapidly. After epsilon is less than 0.01, the value of R2 is close 

to the optimal value. To summarize, by analysing the impact of the three parameters on the performance 

metrics RMSE, MAE, and R2, the parameter of the ε-SVR model can be easily determined. 

 

3.8 Performance comparison 

In the literature [13], based on the improved model of the second-order resistance and capacitance, 

the author proposes a fast OCV prediction method. Using the linear regression technique, the static OVC 

estimation can be completed within 20 minutes, and the error is less than 1mV. However, the second-order 

resistance-capacitance model does not consider the environmental temperature factor, and this factor has 

a great influence on the battery charging and discharging process and the use efficiency. Therefore, the 

OCV estimation method established using this method is severely affected by temperature. In [5], the 

author proposed a novel OCV-SOC model for lithium batteries based on fractional calculus. Compared 

with ordinary models, fractional-order modelling methods can effectively improve the accuracy of OCV 

estimation. However, the fractional-order modelling process is complex, and parameter identification is 

also difficult. Therefore, using this kind of method to establish battery OCV estimation, although it can 

improve the accuracy of the model, it will also increase some challenges. In [17], the author designed an 

H-infinity filter that can extract the battery OCV-SoC relation table in seconds. Experimental results show 

that the OCV estimated using this method can achieve accurate battery SoC estimation with a maximum 

error of 1%. Considering the effect of modelling error and parameter uncertainty on OCV estimation, an 

H-infinity filter is used to identify the ensemble parameter set. The observer parameter tuning process is 

cumbersome and the parameter adjustment process is difficult. The dependency on the model is high and 

it is difficult to apply to different objects. This paper proposes an SVM-based OCV estimation model that 

uses only voltage response curves as sample features extracted from HPPC tests. Not only can high-

accuracy OCV estimates be obtained, but also battery modelling and complex parameter tuning procedures 

can be avoided. 

 

 

4. CONCLUSIONS 

In this article, we focus on model design and feature construction based on machine learning 

technology to establish a battery OCV estimation method. On the one hand, the ε-SVR model is good at 

solving classification and regression problems and has excellent performance in processing high-

dimensional, nonlinear and small samples datasets. Therefore, we choose this model to set up a battery 

OCV estimation model. On the other hand, the battery voltage response under the mixed-pulse current test 
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is employed for feature construction. This non-destructive and non-invasive short-term feature acquisition 

method is convenience to implement in engineering applications. 

Through this study, the conclusions are as follows. First, the best battery OCV estimation results 

can be obtained by the ε-SVR model with the RBF kernel. Therefore, considering the generalization 

performance of the model, the RBF kernel is the best choice for battery OCV estimation by the ε-SVR 

model. Second, based on the voltage relaxation behaviour of lithium-ion batteries, only 4 minutes are 

demanded to acquire the voltage response in the mixed-pulse current test for sample feature construction. 

This method used for short-term feature acquisition is fit well for rapid on-site measurements in 

engineering applications. Third, a new OCV estimation method for a LiB is proposed. The ε-SVR model 

only requires some short-term sample data, which can effectively be apply to realize rapid measurements 

without relying on complex mathematical calculations or cumbersome parameter adjustments. Finally, 

through an analysis and discussion of the experimental results, it is shown that the method has high battery 

OCV estimation accuracy, and the construction method of sample features is convenient, which shows that 

the technique has superior performance. 
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