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The research aims to find a way to solve the nonlinear problem in unsteady isothermal gas flow through 

a semi-infinite medium using a simple and effective method. This nonlinear equation is solved using a 

novel analytical technique called new approach of homotopy perturbation (NHPM) and Akbari-Ganji 

methods (AGM) to obtain the analytical expression of unsteady gas flow of the liquid through a porous 

medium. Comparing our results with other numerical and analytical methods validates our method's 

efficiency and accuracy. This method is very effective and concise, and this simple and closed-form of 

theoretical expression contain only one or two terms. 

 

 

Keywords: Mathematical modeling, Nonlinear equation, New approach of homotopy perturbation 
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1. INTRODUCTION 

 

Fluid (liquid or gas) flow through porous media frequently occurs in various engineering 

applications, including electrochemical systems, composites manufacturing, oil production, geothermal 

engineering, nuclear thermal disposal, soil pollution, and so on. Electrochemical reactors, batteries, 

supercapacitors, fuel cells, and other electrochemical devices are widely used in modern society. The 

electrochemical systems generally involve a common and fundamental process in which the electrolyte 

fluid flows through the porous electrode. Newman has done outstanding work on the porous electrode 

model during the last few decades [1-3]. 

Unsteady gas flow in a porous medium resembles unsteady heat conduction in solids [4–10] .  

The gas flow modelling through porous media is quite valuable because of its importance in investigating 
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the gas-solid processes. Although porous media have many applications in various areas of applied 

sciences and engineering, the detailed mathematical analysis to obtain an accurate analytical solution 

describing  gas flow through a porous medium is lacking. 

On the other hand, some researchers [6,11] examined the unsteady flow of gas through a porous 

material using numerical methods. A quasi-uniform grid and standard finite difference algorithms have 

been used by Fazio et al. [11] to find an accurate solution for unsteady gas flow in a semi-infinite porous 

medium.  

A summary of previously available analytical and numerical techniques suitable for the analysis of 

this problem is provided in Table-1. However, all the presented analytical results were only moderately 

accurate. Furthermore, the calculations become increasingly more difficult as the order of terms 

increases, particularly beyond the second-order term [12-30]. As a consequence, this communication is 

focused on establishing a simple and closed-form analytical expression for unsteady gas flow through a 

porous medium which will be of general validity. These analytical results are useful to understand and 

optimize of the reaction diffusion processes in unsteady gas flow through a porous material. 

 

 

2. MATHEMATICAL FORMULATION OF THE UNSTEADY FLOW OF GAS THROUGH A  

POROUS MEDIUM 

The first  study was conducted on the unsteady gas flow through a semi-infinite porous medium 

when the gas is initially injected at a uniform pressure of P0. The pressure at the outflow face is abruptly 

reduced from P0 to P1 for the case of diffusion into a vacuum and, after that, maintained at this lower 

pressure.We focused on the flow of a liquid sample of wastewater obtained from a standard/conventional 

dyeing procedure to develop a numerical solution of the unsteady gas flow through a nanoporous 

material. An ideal porous pipe comprised of nanoparticles bound together and constituting a porous 

matrix has been proposed [28] based on the idea of fluid movement within a porous medium. To describe 

the flow of gas through a semi-infinite (x= 0 to x=∞) porous medium, a nonlinear partial differential 

equation has been formulated [31]: 
𝜕

𝜕𝑥
(𝑃

𝜕𝑃

𝜕𝑥
) = 𝐴

𝜕𝑃

𝜕𝑡
         

(1)
 

The boundary conditions are represented by: 

𝑃(𝑥, 0) = 𝑃0,            0 < 𝑥 < ∞       (2) 

𝑃(0, 𝑡) = 𝑃1,           0 ≤ 𝑡 < ∞.
       

(3) 

To acquire alike solution, Waltman [32] have introduced the new independent variable: 

𝑧 =
𝑥

√𝑡
(

𝐴

4𝑃0
)

1 2⁄

,

         

(4) 

whereas the dimension-free dependent variable 𝑢 is given by: 

𝑢(𝑧) = 𝐴−1 (1 −
𝑃2(𝑧)

𝑃0
2 ),

        

(5) 

where 𝐴 is the real parameter defined as: 

𝐴 = 1 −
𝑃1

2

𝑃0
2.

          

(6) 

According to previous work [31], the actual parameter A should exhibit values in the range (0;1).  

 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220619 

 

3 

This problem can be expressed in terms of the following non-linear differential equation : 

 
𝑑2𝑢(𝑧)

𝑑𝑧2 +
2𝑧

√1−𝐴𝑢(𝑧)

𝑑𝑢(𝑧)

𝑑𝑧
= 0

        

(7) 

The following boundary conditions must be obeyed : 

𝑢 = 1 at 𝑧 = 0         (8) 

𝑢 = 0 at 𝑧 = ∞         (9) 

 

 The Homotopy Preturbation Method is now applied to derive a closed form analytical solution 

to the boundary value problem presented in eq.(7)-(9). 

 

3. APPLYING THE NHPM METHOD FOR SOLVING UNSTEADY GAS PROBLEM 

Nonlinear differential equations are useful in physics, chemistry, biology, and economics, among 

other subjects. Because the analytical methods used to solve these equations are constrained and can 

only be applied in specific situations, they can't be used to solve equations in a wide range of realistic 

situations. 

He [33-35] proposed the homotopy perturbation method in 1998. This technique has been applied 

to a variety of linear and nonlinear problems. This method is used to solve nonlinear boundary value 

problems [36-38].In physical and chemical sciences, this author used the homotopy perturbation 

approach to solve nonlinear equations [39-45] 

The new homotopy perturbation method is used to give the approximate solutions of the non-

linear eq.(7).  To find the solution of eq.(7),we construct the homotopy as follows: 

(1 − 𝑝) [
𝑑2𝑢

𝑑𝑧2 +
2𝑧

√1−𝐴𝑢(𝑧=0)

𝑑𝑢

𝑑𝑧
] + 𝑝 [

𝑑2𝑢

𝑑𝑧2 +
2𝑧

√1−𝐴𝑢(𝑧)

𝑑𝑢

𝑑𝑧
] = 0    (10)  

The analytical solution of eq.(10)is 

𝑢 = 𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2+. ..        (11) 

Substituting eqs.(11) into eq.(10) we get 

(1 − 𝑝) [
𝑑2

𝑑𝑧2
(𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2+. . . ) +

2𝑧

√1 − 𝐴

𝑑

𝑑𝑧
(𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2+. . . )] 

+𝑝 [
𝑑2

𝑑𝑧2
(𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2+. . . ) +

2𝑧
𝑑

𝑑𝑧
(𝑢0+𝑝𝑢1+𝑝2𝑢2+...)

√1−𝐴(𝑢0+𝑝𝑢1+𝑝2𝑢2+...)
] = 0    (12) 

Comparing the coefficients of like powers of p in eq.(12)we get 

𝑝0:
𝑑2𝑢0

𝑑𝑧2
+

2𝑧

√1−𝐴

𝑑𝑢0

𝑑𝑧
= 0        (13) 

The initial and boundary approximations is as follows 

𝑢0(0) = 1, 𝑢0(∞) = 0         (14) 

Solving the eq. (13) and using the boundary conditions eq. (14), we obtain the following results 

for the first iteration: 

𝑢0(𝑧) = 1 − 𝑒𝑟𝑓 (
𝑧

(1−𝐴)1 4⁄ ) = 𝑒𝑟𝑓𝑐 (
𝑧

(1−𝐴)1 4⁄ )      

Therefore, we have 
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𝑢(𝑧) ≈ 𝑢0(𝑧) = 𝑒𝑟𝑓𝑐 (
𝑧

(1−𝐴)1 4⁄ )       (16) 

A higher number of iterations makes 𝑢(𝑧) converge to the exact solution. 

 

4. APPLYING THE AKBARI -GANJI METHOD (AGM) FOR SOLVING UNSTEADY GAS  

PROBLEM 

Based on the mass balance equations (11-16), Akbari-Ganji's method [46,47] is used to solve the 

boundary value problem. This method has a minimum number of unknowns as compared to other 

methods.It is an appropriate and simple method to the nonlinear differential equations [48-51]. It is a 

particular case of exponential function method which is proposed by He [52].We can obtainthe analytical 

solution of unsteady flow of the liquid through the nano-porous mediumby using this method.Assume 

that the approximate trial solution of equations (7) in the following form: 

𝒖(𝒛) = 𝒂 + 𝒃 𝒆𝒓𝒇(𝒎𝒛)        (17) 

where 𝑎, 𝑏  𝑎𝑛𝑑   𝑚  𝑎𝑟𝑒 constant. Using the boundary condition (14) the value of the constants are given 

by 

𝑎 = 1 and  𝑏 = −1.  

Now the eq. (17) becomes 

𝑢(𝑧) = 1 −  𝑒𝑟𝑓(𝑚𝑧)         (18) 

Now to find the value of 𝑏, rewrite the eq. (18) as follows, 

𝑓(𝑧) =
𝑑2𝑢(𝑧)

𝑑𝑧2 +
2𝑧

√1−𝐴𝑢(𝑧)

𝑑𝑢(𝑧)

𝑑𝑧
= 0       (19) 

From the eq. (19) we get 
𝑑𝑢(𝑧)

𝑑𝑧
=

−2𝑚

√𝜋
exp (−𝑚2𝑧2)   and     

𝑑2𝑢(𝑧)

𝑑𝑧2 =
4𝑧𝑚3

√𝜋
exp (−𝑚2𝑧2)   (20) 

Substituting this value in the eq. (19) we obtain 

𝑓(𝑧) =
4𝑧𝑚3

√𝜋
exp(−𝑚2𝑧2) −

4𝑧𝑚

√𝜋
exp (−𝑚2𝑧2) = 0     (21) 

Now, substituting 𝑧 = 1,we get 

𝑓(𝑧 = 1) = 𝑚2 −
1

√1−𝐴
= 0        (22) 

𝑚 =
1

(1−𝐴)1 4⁄           (23) 

Now note that  eq. (23) becomes 

𝑢0(𝑧) = 1 −  𝑒𝑟𝑓 (
𝑧

(1−𝐴)1 4⁄ ) = 𝑒𝑟𝑓𝑐 (
𝑧

(1−𝐴)1 4⁄ )                                                           (24) 

 

We can choose the function which satisfies the boundary condition 𝑢0(0) = 0, 𝑢0(∞) = 0  for the 

differential equation 
𝑑2𝑢(𝑧)

𝑑𝑧2 +
2𝑧

√1−𝐴𝑢(𝑧=0)

𝑑𝑢(𝑧)

𝑑𝑧
= 0 as follows: 

 

𝑢1(𝑧) =
𝑧

2𝜋
exp(−2𝑧2)        (25) 

Using eq.(24)  and  (25)  we get 

𝑢(𝑧) = 𝑢0(𝑧) + 𝑢1(𝑧) = 𝑒𝑟𝑓𝑐 (
𝑧

(1−𝐴)1 4⁄ ) +
𝑧

2𝜋
exp(−2𝑧2)                                       (26) 

Also from the equation we get at z=0, 
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𝑑𝑢(𝑧)

𝑑𝑧
=

−2𝑚

√𝜋
+

1

2𝜋
=

−2

√𝜋
(

1

(1−𝐴)1 4⁄ ) +
1

2𝜋
      (27) 

 

These expressions are in closed analytical form which are very suitable for computation and indeed 

convey physical insight.  

Previous existing analytical and numerical techniques for this problem are summarized in Table-

1. Furthermore, Table 2 presents  a variety of  previously derived analytical expressions for u(z). In 

Table-3, u(z) values derived using the expressions presented in the present work are compared with 

numerical and previous analytical results when A=0.5. Our closed form expressions are seen to generate 

reasonable results in good agreement with numerical analysis, although the error increases as z  1. All 

of the previous analytical results which involve complicated multi-term series,  were only moderately 

accurate. Also when the order of terms increases, the computations get more complicated, especially 

beyond the second-order term [12–29]. 

 

Table 1. Various analytical and numerical methods in the literature with numerical values of u’(0)  when 

. 

 

S

S. 

No 

Authors, Ref and Year Methods ( Analytical / 

Numerical) 

Obtained 

value of  u’(0) 

1

1 

Wazwaz [10], 2001 Pade approximation 

(Numerical) 

−1.025529

704 

2

2 

Parand et al. [13], 2009 Laguerre polynomials 

(Numerical) 

−1.282134

83 

3

3 

Taghavi et al. [14], 2009 Laguerre polynomials 

(Numerical) 

−1.373173

52 

4

4 

Noor and Mohyud-Din [15], 

2009 

Pade approximate 

(Analytical) 

−1.025529

704 

5

5 

Parand et al. [16], 2010 Chebyshev func 

(Numerical) 

−1.382134

83 

6

6 

Taghavi et al. [17], 2010 Lagrangian method 

(Numerical) 

−1.372593

57 

7

7 

Khan et al. [18], 2010 Laplace decomposition and 

Pade 

approximation(Analytical) 

−1.373178

096 

8

8 

Mohyud-Din et al. [19], 2010 He’s polynomials and 

variational iteration  (Analytical) 

−1.025529

704 

9

9 

Rezaei et al. [20], 2011 Sinc and Legendre function 

(Numerical) 

−1.188692

320 

1

10 

Rad et al. [21], 2011 Homotopy analysis 

(Analytical) 

−1.188976

708 
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1

11 

Rad et al. [21], 2011 Hermite function 

(Numerical) 

−1.183811

27860 

1

12 

Abbasbandy [22], 2012 Finite-difference and 

shooting method (Numerical) 

−1.191790

771959 

1

13 

Kazem et al. [23], 2012 Radial Basis Function 

(Numerical) 

−1.191498 

1

14 

Kazem et al. [23], 2012 Radial Basis Function 

(Numerical) 

−1.191243 

1

15 

Parand and Nikarya [24], 

2014 

Bessel function (Numerical) −1.191718

932 

1

16 

Upadhyay and Rai [25], 2014 Legendre wavelet 

(Numerical) 

−1.199258

245 

1

17 

Wazwaz [26], 2014 Variational iteration Method 

(Analytical) 

−1.025529

704 

1

18 

Iacono and Boyd [27], 2015 Chebyshev functions and 

Pade approximate 

(Numerical) 

−1.192705

5 

1

19 

Parand and Hemami [28], 

2015 

Radial Basis Function 

(Numerical) 

−1.191796 

2

20 

Kourosh Parand et al. [29], 

2017 

Rational Jacobi function 

(Numerical) 

−1.191790

64 

2

21 

This work ,2021 New homotopy perturbation 

method,  

-

1.182716897 

2

22 

This work,2021 Agbari-Ganji method -

1.182736685 

 

 

Table 2. Previous analytical results 

 
s.no Methods Analytical expression of u(z) 

1 

ADM   

((Wazwaz 

[10]) 

𝑢(𝑧) = 1 + 𝐵𝑧 −
𝐵𝑧3

3√1−𝛼
−

𝛼𝐵2𝑧4

12(1−𝛼)3 2⁄ + (
𝐵

10(1−𝛼)
−

3𝛼2𝐵3

80(1−𝛼)5 2⁄ ) 𝑧5 + (
𝛼𝐵2

15(1−𝛼)2 −
𝛼3𝐵4

48(1−𝛼)7 2⁄ ) 𝑧6, Where  𝐵 =

−
2(1−𝛼)1 4⁄

√3𝛼
 

2 

HPM 

(Jamal 

Amani 

Rad, 

Kourosh 

Parand  

[30]) 









































































22

222

2

2

23232232

3224

2
32

232

223

23

4

15
3216

4

15
3216)(

4

15
3216

)(
4

15
3216

16

5

8

3

2
)865(2

64

1

16

)685(
)(1)(

xx

xxx

x

x

eezerf

zezerfexe

e

e

z
zerfzu













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3 

Perturbatio

n Series 

(Kidder[4]) 

𝑢(𝑧) = 𝑢(0)(𝑧) −
𝛼

2𝜋
{𝑢(0)(𝑧)[1 + √𝜋𝑧𝑒−𝑧2

] − 𝑒−2𝑧2
} −

𝛼2𝑢(1)(𝑧)

𝜋
+ (

1

8𝜋3 2⁄
) 𝑧𝑒−3𝑧2

−
𝛼2𝑢(0)(𝑧)

2𝜋

− (
1

16√𝜋
) 𝑧𝛼2(5 − 2𝑧2)𝑒−𝑧2

(𝑢(0)(𝑧))
2

+ (
1

4𝜋
) (2 − 𝑧2)𝛼2𝑒−2𝑧2

𝑢(0)(𝑧)

+ (
𝛼233 2⁄

16𝜋
) [𝑒𝑟𝑓(√3𝑧) − 𝑒𝑟𝑓(𝑧)] 

Where 𝑢(0)(𝑧) = 1 − 𝑒𝑟𝑓(𝑧),𝑢(1)(𝑧) = −
1

2𝜋
{𝑢(0)(𝑧)[1 + √𝜋𝑧𝑒−𝑧2

] − 𝑒−2𝑧2
} 

4 
NHPM 

(This work) 
𝑢(𝑧) = 𝑒𝑟𝑓𝑐 (

𝑧

(1 − 𝐴)1 4⁄
) 

5 
AGM (This 

work) 
𝑢(𝑧) = 𝑒𝑟𝑓𝑐 (

𝑧

(1 − 𝐴)1 4⁄
) +

𝑧

2𝜋
exp(−2𝑧2) 

 

 

 

5. DISCUSSION 

We developed analytical solutions for unsteady gas flow through porous media by utilizing both 

the homotopy perturbation method and the Akbari-Ganji method depending on all possible experimental 

values of parameter A. The derived analytical results were compared to numerical results generated by 

the highly accurate and reliable MATLAB’s function pdex4. Tables 1-3 and Figures1&2 show that both 

methods produced a satisfactory analytical solution for the unsteady flow of gas through a porous 

medium. Furthermore our new analytical results  exhibit less deviation (Average error percentage is 8% 

in NHPM and 2% in AGM) from the numerical results when compared to previously published results. 

 

 

Table 3. Comparison of the values of u (z) with numerical and previous analytical results when . 

 

z Numerical 
AGM 

eq.(26) 

Error 

AGM 

NHPM 

eq.(16) 

Error 

NHPM 

KIDDER 

[4] 

Error 

KIDDER 

HPM 

[29] 

Error 

HPM 

PADE[3,3]  

[15] 

Error 

PADE 

GLP 

[16] 

Error 

GLP 

0.1 0.8802 0.8820 0.21 0.8825 0.26 0.8817 0.17 0.8881 0.90 0.8979 1.97 0.9004 2.24 

0.2 0.7635 0.7660 0.33 0.7499 1.78 0.7663 0.37 0.7792 2.06 0.7985 4.39 0.8002 4.59 

0.3 0.6528 0.6538 0.15 0.6387 2.16 0.6565 0.57 0.6760 3.55 0.7041 7.29 0.7081 7.81 

0.4 0.5500 0.5474 0.48 0.5234 4.84 0.5544 0.79 0.5803 5.50 0.6165 10.79 0.6179 10.99 

0.5 0.4565 0.4487 1.71 0.4351 4.69 0.4614 1.05 0.4933 8.07 0.5371 15.00 0.5339 14.50 

0.6 0.3733 0.3594 3.72 0.3399 8.95 0.3783 1.32 0.4157 11.36 0.4666 19.99 0.4570 18.31 

0.7 0.3006 0.2879 4.22 0.2730 9.18 0.3056 1.64 0.3475 15.59 0.4062 26.00 0.4074 26.22 

0.8 0.2384 0.2273 4.64 0.2097 12.04 0.2431 1.95 0.2882 17.28 0.3561 33.05 0.3254 26.73 

0.9 0.1860 0.1775 4.58 0.1542 17.10 0.1905 2.34 0.2372 21.60 0.3180 41.51 0.2707 31.29 

1 0.1429 0.1296 9.29 0.1126 21.20 0.1588 10.00 0.1938 26.26 0.2900 50.73 0.2231 35.94 

Error percentage  2.93  8.22  2.02  11.22  21.07  17.86 

 

 

 

 

 

 

 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220619 

 

8 

Table 4. Comparison of the values of u’(0) with numerical and previous analytical results  for various 

values of . 

 

A 

𝑑𝑢(𝑧)

𝑑𝑧
𝑎𝑡 𝑧 = 0 

Quasi-uniform grid Rational Jacobi Function 
NHPM/AGM 

eq. (16 & 26 ) 

0.0 -1.128379137175471 --- -1.12837916709551 

0.1 -1.139007180276811 -1.139007206178301 -1.15849571538969 

0.2 -1.150475464757216 -1.150475486216286 -1.19311560505467 

0.3 -1.162941442801447 -1.162941458295912 -1.23361740060298 

0.4 -1.176615655957026 -1.176615666683335 -1.28208626184487 

0.5 -1.191790644594857 -1.191790649719421 -1.34187653392775 

0.6 -1.208894181745888 -1.208894174540914 -1.41886168642145 

0.7 -1.228598484558365 -1.228598473695921 -1.52466610547822 

0.8 -1.252083822445984 -1.252083790143917 -1.68732041202207 

0.9 -1.281881374379111 -1.281881322203357 -2.006573439518899 

1.0 -1.328230894324459 ----- -2.121693093492263 

 

 

6. CONCLUSION 

Unsteady isothermal gas equations play an important role in studying solid gases, and they are 

also a crucial element in the chemical process industries. The primary goal of this report is to provide a 

simple analytical and numerical algorithm for solving the unsteady gas flow equation in a semi-infinite 

porous media. The system of nonlinear differential equations was solved analytically and compared to 

the previous solution. 

We have compared the value of 𝑢′(0) with other numerical results because its value is significant 

in this problem.This method produces valid and accurate results for this type of problem.HPM and AGM 

are the powerful mathematical tool that can solve a high class of nonlinear differential systems, 

especially systems of nonlinear equations used in science and engineering. 

 

 
 

Figure1. Numerical and analytical solutions for the eq. (7) for increasing valuesof  
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Figure 2.Comparison of concentration with numerical results for various values of parameterA. 

 

 

 

APPENDIX A. NUMERICAL PROGRAM FOR THE SOLUTION OF NONLINEAR EQS. (7) - (9) 

 

function sol=ex2 

ex2init=bvpinit(linspace(0,1),[1 0]); 

sol = bvp4c(@ex2ode,@ex2bc,ex2init) 

end 

functiondydx=ex2ode(x,y) 

dydx=[y(2) 

-y(2)*((2*x)/sqrt(1-(0.5)*y(1)))]; 

end 

function res=ex2bc(ya,yb) 

res=[ya(1)-1 

yb(1)-0]; 

end 
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