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The effects of thermal dispersion on forced convection inside a porous-saturated pipe were studied. The 

pipe wall is considered to maintain a constant and balanced heat flux. This model is based on a nonlinear 

equation containing a nonlinear term related to viscous dissipation, heat source terms and axial 

conduction. The steady-state thermal energy equation is solved using Taylor's series method coupled 

with the Ying Buzu algorithm. A numerical solution is also provided that is valid for the wide range of 

thermal dispersion conductivity. Furthermore, the outcome results based on present investigation are in 

good agreement with the literature. 

 

 

Keywords: nonlinear equations, forced convection, porous-saturated duct, Taylor’s series method, 

Ying Buzu algorithm. 

 

1. INTRODUCTION 

 

Convection in solid matrix porous media with an interrelated voids is a well-developed topic for 

researchers due to its significance to various engineering applications such as geothermal systems, sub-

surface fire control, coal and grain storage, and energy recovery in high-temperature furnaces [1–3]. 

Porous heat exchangers have been identified for prospective applications in solar thermal plants [4], 

cooling towers [5], electronic cooling [6], diesel engines [7], and thermal storage systems [8]. The effects 

of thermal dispersion on convection in porous media have been investigated [9]. Also, the effects of 

thermal dispersion on forced/free convection occur in thermogalvanic cells and electrochemical sensors 
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[10], cooling of a lithium-ion battery[11 ], electrochemical cells and its application to redox flow 

batteries[12  ]and  continuous electrochemical heat engines[13 ]. 

Convective diffusion processes are very important in electrochemistry, especially when these 

processes occur in porous media. Hence in the present paper, we examine the situation of forced 

convection in the absence of diffusive mass transport in a porous medium to obtain further insight into 

this complex problem. However, no analytical solution with inertia and convective term effects 

incorporated in the fully developed momentum transfer equation in porous media has been described in 

the literature. 

However, an analytical solution to the temperature distribution can be obtained using functions 

of the log, hyperbolic, polylogarithms, and elliptic with imaginary arguments [9, 14], which are however 

too complicated in engineering applications. For non-Darcy flow issues, numerical simulations using 

Matlab have been employed primarily in the literature [15-18]. Hunt et al. [19 ] and Lemos et al.  20] 

investigated non-Darcian forced convection flow and heat transfer in  high-porosity fibrous media and 

compared their results with experimental data.. The influence of thermal dispersion in periodic porous 

media consisting of an inline array of rectangular rods was computationally studied by Ozgumus and 

Mobedi [ 21,22].  

Very recently, Abbasbandy et al. [ 23] obtained  an exact analytical solution of some nonlinear 

equations arising from heat transfer problems which were expressed in complicated implicit form. 

Hooman  et al, [ 24] presented an asymptotic solution of this problem for limiting cases. In this paper 

we have obtained an analytical expression for velocity filtration using the Taylors series method. The 

analytical results are compared with numerical results and satisfactory agreement is observed. 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

A unidirectional flow exists in the x*- direction inside a channel with impermeable walls at y*= 

H for the fully developed parallel flow across a horizontal channel, as shown in Fig. 1. The heat flux at 

the tube wall remains constant at q". The momentum equation of Brinkman–Forchheimer is 

𝜇𝑒𝑓𝑓 (
𝑑2𝑢∗(𝑟∗)

𝑑𝑟∗
2 +

𝑛

𝑟∗
𝑑𝑢∗(𝑟∗)

𝑑𝑟∗
) −

𝜇

𝑘
𝑢∗(𝑟) −

𝐶𝐹𝜌𝑢
∗(𝑟∗)2

√𝑘
+ 𝐺 = 0 (1) 

: 

where 𝜇𝑒𝑓𝑓 is an effective viscosity,  𝜇 represents fluid viscosity, 𝑘 denotes permeability, 𝜌 

stands for  fluid density, 𝐶𝐹 represents the inertial coefficient, and 𝐺 denotes the negative of the applied 

pressure gradient. For planar, cylindrical, and spherical tubes, n=0,1,2 is also valid. The dimensionless 

variables are defined as follows: 

𝑥 =
𝑥∗

𝑃𝑒𝑅
, 𝑟 =

𝑟∗

𝑅
, 𝑢 =

𝜇𝑢∗

𝐺𝑅2
     (2) 

where 𝑃𝑒 =
𝜌𝑐𝑝𝑅 𝑈

𝑘
 is Peclet number. Now, the Eqn. (1) can be written in dimensionless form as 

follows: 

𝑀(
𝑑2𝑢(𝑟)

𝑑𝑟2
+
𝑛

𝑟

𝑑𝑢(𝑟)

𝑑𝑟
) −

𝑢(𝑟)

𝐷𝑎
−
𝑀𝐹𝑢(𝑟)2

√𝐷𝑎
+ 1 = 0   (3) 

where the viscosity ratio (𝑀), the Darcy number (𝐷𝑎), and Forchheimer number (F) are defined 

by  

𝑀 =
𝜇𝑒𝑓𝑓

𝜇
,         𝐷𝑎 =

𝑘

𝑅2
,        𝐹 =

𝐶𝐹𝜌𝐺𝑅
3

𝜇𝑒𝑓𝑓𝜇
   (4) 
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The Eqn. (3) can be described as 
𝑑2𝑢(𝑟)

𝑑𝑟2
+
𝑛

𝑟

𝑑𝑢(𝑟)

𝑑𝑟
− 𝑠2𝑢(𝑟) − 𝐹𝑠𝑢(𝑟)2 +

1

𝑀
= 0  (5) 

where porous media shape parameter s is defined as 

𝑠 =
1

√𝑀𝐷𝑎
      (6) 

 
 

Figure 1. Systematic diagram of unidirectional flow in porous-saturated pipe. 

 

Non-slip and symmetry boundary condition for the Eqn. (5) are given by 

𝑢′(0) = 0, 𝑢(1) = 0      (7) 

 

3. ANALYTICAL SOLUTION OF NONLINEAR PROBLEM 

3.1 Taylor’s series method  

This section describes the solution of the nonlinear boundary value problem (5) using the Taylors 

series and Ying Buzu algorithm. Taylor's series method (TSM) [ 25-33] produces a semi-analytical 

solution in the form of a fast converging series that does not involve linearization. The analytical 

expression of velocity in the porous saturated duct's overall shape is provided by 

𝑢(𝑟) = ∑
𝑑𝑖𝑢

𝑑𝑟𝑖

(𝑟)𝑖

𝑖!

6
𝑖=0 |

𝑦=0
= 𝑢(0) +

(𝑟)

1!

𝑑𝑢

𝑑𝑟
|
𝑟=0

+
(𝑟)2

2!

𝑑2𝑢

𝑑𝑟2
|
𝑟=0

+
(𝑟)3

3!

𝑑3𝑢

𝑑𝑟3
|
𝑟=0

…                   

   = 𝑢(0) + 𝑢1(0)
𝑟2

2!
+ 𝑢2(0)

𝑟4

4!
+ 𝑢3(0)

𝑟6

6!
  (8) 

The unknown parameter 𝑢(0) can be obtained from the following equation. 

𝑢(0) + 𝑢1(0)
12

2!
+ 𝑢2(0)

14

4!
+ 𝑢3(0)

16

6!
= 0     (9) 

where 

𝑢1(0) =  
𝑠2 𝑢(0)+𝐹 𝑠 𝑢(0)2−(1 𝑀⁄ )

(𝑛+1)
       

𝑢2(0) =  
3 𝑠 (2 𝐹 𝑢(0)+𝑠)(𝑠2 𝑢(0)+𝐹 𝑠 𝑢(0)2−(1 𝑀⁄ ))

(𝑛+1)(𝑛+3)
   (10) 

𝑢3(0) =  

{
15𝑠 (2 𝐹 𝑢(0)+𝑠)(𝑠2 𝑢(0)+𝐹 𝑠 𝑢(0)2−(1 𝑀⁄ ))

[(3𝑛+5)(2𝐹𝑠 𝑢(0))(𝐹𝑢(0)+𝑠)+𝑠3(𝑛+1)−
2𝐹

𝑀
(𝑛+3)]

}

(𝑛+1)2(𝑛+3)(𝑛+5)
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The boundary condition u(1)=0 can be used to generate equation (9). The Ying Buzu algorithm, 

detailed in the following section, can be used to find the unknown parameter u(0). The regular false 

method ( Appendix A ) and the secant algorithm (Appendix B) were also used to determine this 

parameter. Ying Buzu algorithm method presented in this paper offer an extremely fast convergent 

result.   

 

 

3.2. The Ying Buzu algorithm 

A brief introduction to the Ying Buzu algorithm is given in Ref [ 34], and this algorithm is applied 

to solve nonlinear oscillators [35-41] and fractal vibration systems [ 42,43]. Recently He used an ancient 

Chinese algorithm [ 44-46] to solve the nonlinear equations. The basic concept of this algorithm is given 

below. Considering the nonlinear differential equation: 

𝑢′′(𝑟) + 𝐹(𝑢(𝑟)) = 0      (11) 

The boundary conditions are  

𝑢′(𝑎) = 𝛼      (12) 

𝑢(𝑏) = 𝛽      (13) 

where a, b are the terminal points of the boundary [a, b] and  𝛼, 𝛽 are the given real numbers. 

 Here 𝑢(𝑎) (This is equal u(0) in the Eqn. (9) ) is unknown parameter. We can obtain this parameter 

using Ying Buzu algorithm as follows: We can assume the initial guess of 𝑢(𝑎) as 

𝑢1(𝑎) = 𝑎1, 𝑢2(𝑎) = 𝑎2     (14) 

where 𝑎1 and 𝑎2 are taken as the positive values and less than b. Using the initial conditions given 

in Eqn. (12) and Eqn. (13), we can obtain the terminal values: 

𝑢1(𝑏) = 𝛽1, 𝑢2(𝑏) = 𝛽2     (15) 

According to the Ying Buzu algorithm [ 36-41] and fractal vibration systems [ 42,43]. Recently He 

used an ancient Chinese algorithm [ 44-46] and  [ 42,43] the initial guess can be updated as  

𝑢(𝑎)𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑎3 =
𝑢1(𝑎)(𝑢(𝑏) − 𝑢2(𝑏)) − 𝑢2(𝑎)(𝑢(𝑏) − 𝑢1(𝑏))

(𝑢(𝑏) − 𝑢2(𝑏)) − (𝑢(𝑏) − 𝑢1(𝑏))
 

               =
𝑎1(𝛽−𝛽2)−𝑎2(𝛽−𝛽1)

(𝛽−𝛽2)−(𝛽−𝛽1)
          (16) 

For these experimental value of parameter 𝑠 = 0.5, 𝐹 = 1  and 𝑀 = 1,  we assume the initial 

guess for the problem (Eqn. (5)) as follows: 

𝑢1(0) =  0.4, 𝑢2(0) =  0.5     (17) 

We get the following result from the Eqn.(8) 

𝑢1(𝑟) = 0.4 − 0.41𝑟
2 − 0.02221𝑟4 − 0.002320 𝑟6 + 0.0001895𝑟8+..  (18) 

𝑢2(𝑟) = 0.5 − 0.375𝑟
2 − 0.02344 𝑟4 − 0.001758𝑟6 + 0.0001805𝑟8+..  (19) 

From the above equation, we get 𝑢1(1) =  −0.02969 and 𝑢2(1) =  0.1035 respectively. Using 

Eqn. (17)  

𝑢3 (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒)(0) =
𝑢1(0)(𝑢(1) − 𝑢2(1)) − 𝑢2(0)(𝑢(1) − 𝑢1(1))

(𝑢(1) − 𝑢2(1)) − (𝑢(1) − 𝑢1(1))
 

=
0.4(0−0.1035)−0.5(0+0.02969)

(0−0.1035)−(0+0.02969)
= 0.4227    (20) 

Now using Eqn. (18), we get  
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𝑢3(1) = 0.0004     (21) 

This result is very close to  𝑢(1) = 0 with a relative error of 0.04%. Hence using the first iteration 

we get 

𝑢(𝑟) = 0.4227 − 0.4025 𝑟2 − 0.02256 𝑟4 − 0.002194 𝑟6 + 0.0001885 𝑟8…              (22) 

We can continue the iteration process to obtain a higher accuracy.   

 

3.3 Previous result for planar geometry 

Abbasbandy et al. [ 23] obtained the dimensionless filtration velocity for planar geometry in implicit 

form as follows:     

𝑟 = 𝐺(𝑢; 𝑠, 𝐹,𝑀, 𝑢(0)) = ∫
𝑑𝜃

√𝑠2𝑢2+
2

3
𝐹𝑠𝑢2−

2

𝑀
𝑢−𝑠2𝑢(0)2−

2

3
𝐹𝑠𝑢(0)3+

2

𝑀
𝑢(0)

𝑢(0)

𝑢
    (23) 

For instance 

𝐺(𝑢: 1,1,1, 𝑢(0)) =

√
(𝐴1)

2

3+6𝑢(0)+𝐴1

𝐴2𝐴3

(

 
 
 
 
 √

3+6𝑢(0)+𝐴1

𝐴1
−
−3−6𝑢(0)+𝐴1

𝐴1
𝐸𝑙𝑖𝑝𝑡𝑖𝑐 𝐹 [√

3+6𝑢(0)+𝐴1

2𝐴1
, √

2𝐴1

3+6𝑢(0)+𝐴1
] 𝐴2

3√
3+2𝑢(0)+𝐴1+4𝑢

𝐴1
√𝑢0 − 𝑢√

−3−2𝑢(0)+𝐴1+4𝑢

𝐴1
×

𝐸𝑙𝑖𝑝𝑡𝑖𝑐 𝐹 (√
3+2𝑢(0)+𝐴1+4𝑢

𝐴1
, √

2𝐴1

3+6𝑢(0)+𝐴1
)𝐴3 )

 
 
 
 
 

 (24) 

where 

𝐴1 = √57 − 12𝑢(0) − 12𝑢(0)2  

𝐴2 = √19𝑢2 − 18𝑢 + 6𝑢3 − 6 𝑢(0)3 + 18𝑢(0) − 9 𝑢(0)2, 𝐴3 = √−2𝑢(0) + 2 − 2 𝑢(0)2

  

And Elliptic F is the incomplete elliptic integral of the first kind defined as follows: 

𝐸𝑙𝑖𝑝𝑡𝑖𝑐 𝐹 (𝑧, 𝑘) = ∫
𝑑𝜏

√1−𝜏2√1−𝑘2𝜏2

1

0
     (25) 

 

4. DISCUSSION 

Eqn. (8) represent the new analytical expression for the velocity in porous media for all 

experimental values of parameters such as viscosity ratio (M), shape factor (s) and drag coefficient or 

Forchheimer number (F). Our obtained analytical result for the filtration velocity is very simple and 

easily computable compared to the previous result reported by Abbasbandy et al. [ 23] and presented in 

Eqn. (23). 

 

 

4.1 validation of analytical methods.       

Method validation is an essential part of developing reference methods. The value of  𝑢(0) , 

which is obtained from ancient Chinese algorithm used in the present paper, is compared with the 

previous result reported by Abbasbandy et al. [ 23]  and simulation results for various values of the 
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parameters F, M and s are outlined in Tables 1-2. A satisfactory agreement is noted between the present 

work and those presented previously by Abbasbandy et al [23]. 

 

Table 1. Comparison of simulations values of 𝑢(0) with previous result  [ 23]  and this work (Taylor’s 

series with ancient algorithms) for various values of Forchheimer number (F) when           𝑀 =
𝑠 = 1 

 

 

F 
𝑢(0)  

Error % 

TSM &ACA 

 

Error % 

Abbasbandy [23] 
Numerical 

 

TSM &ACA 

This work (8) 

Abbasbandy 

  [23]  using 

(24) 

0 0.3519 0.3519 0.3519 0.00 0.00 

1 0.3239 0.3239 0.3238 0.03 0.03 

2 0.3026 0.3026 0.3026 0.00 0.00 

3 0.2857 0.2857 0.2857 0.00 0.00 

4 0.2717 0.2717 0.2717 0.00 0.00 

5 0.2598 0.2598 0.2598 0.00 0.00 

6 0.2496 0.2497 0.2494 0.04 0.08 

7 0.2406 0.2407 0.2406 0.04 0.00 

8 0.2326 0.2327 0.2326 0.04 0.00 

9 0.2254 0.2255 0.2254 0.04 0.00 

10 0.2190 0.2191 0.2190 0.05 0.00 

 Average % error 0.02 0.01 

 

Table 2.  Comparison of simulation values of 𝑢(0) with previous result [19] and this wok (Taylor’s 

series with ancient Chinese algorithms) for various values of shaped parameter (s) when 𝑀 =
𝐹 = 1 

 

 

s 
𝑢(0)  

Error % 

TSM&ACA 

 

Error % 

Abbasbandy [23] 
Numerical 

 

TSM & ACA 

This work (8) 

Abbasbandy 

 [ 23]  using 

(24) 

0 0.5000 0.5000 0.5000 0.00 0.00 

0.5 0.4227 0.4227 0.4227 0.00 0.00 

1.0 0.3239 0.3239 0.3238 0.00 0.03 

1.5 0.2384 0.2384 0.2384 0.00 0.00 

2.0 0.1744 0.1745 0.1744 0.06 0.00 

2.5 0.1292 0.1292 0.1292 0.00 0.00 

3.0 0.0976 0.0976 0.0976 0.00 0.00 

3.5 0.0753 0.0753 0.0753 0.00 0.00 

4.0 0.0594 0.0594 0.0594 0.00 0.00 

4.5 0.0478 0.0478 0.0478 0.00 0.00 

5.0 0.0392 0.0392 0.0392 0.00 0.00 

                    Average % error 0.01 0.00 
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Table 3 shows a comparison of u(0) with simulation results and our results from the Ancient 

Chinese algorithm, the Regular- Falsi algorithm, and the Secant technique for various experimental 

values parameters. 

 

 

Table 3. Comparison of 𝑢(0)  with simulation results and our result obtained from Ancient Chinese 

algorithm, Regular- Falsi algorithm & Secant method for various experimental values 

parameters.  

 

 

F 
 

s 

 

 

M 

Taylor’ s series and Algorithm    

Numerical 

value u(0) 

 

 

Err % 
The initial guess of 

𝑢(0) 

Corresponding terminal values 

𝑢(1) 
*Estimated 

value of    

u(0) 
0 1 1  𝑢(0) = 0.3 and 0.4  𝑢(1) = −0.0802, 𝑢(1) = 0.0742  0.3519 0.3519 0.00 
1 1 1 𝑢(0) = 0.3 and  0.35  𝑢(1) = −0.0443, 𝑢(1) = 0.0494  0.3236 0.3236 0.09 
2 1 1  𝑢(0) = 0.29 and 0.31  𝑢(1) = −0.2073, 𝑢(1) = 0.0162  0.3026 0.3026 0.00 
3 1 1  𝑢(0) = 0.25 and 0.3  𝑢(1) = −0.0849, 𝑢(1) = 0.0359  0.2851 0.2851 0.21 
4 1 1  𝑢(0) = 0.25 and 0.3  𝑢(1) = −0.0581, 𝑢(1) = 0.0813  0.2708 0.2708 0.33 
5 1 1 𝑢(0) = 0.23 and  0.27 𝑢(1) = −0.0859, 𝑢(1) = 0.0313  0.2593 0.2593 0.19 

Average 0.14 

* Ancient Chinese algorithm, Regular- Falsi algorithm & Secant method 

 

4.2 Effect of the parameters on velocity field. 

The velocity gradient at the near-wall region depends upon the parameters F, M and s. The 

velocity field is often dominated by buoyancy forces when the forced flow is weak, but the acceleration 

generated by buoyancy forces deflects the main flow toward the heat source. Figures 2(a) to 2(c) 

illustrate the behaviour of the velocity profiles for different values of the F, M and s. The analytical 

results show that decreasing the values of F, M and s results in an increasing velocity. The velocity profile 

for 𝑠 ≤ 0.1 𝑜𝑟 𝑀 ≤ 1 is closer to that of clear flow and represents a parabola. In contrast, for 𝑠 ≥

10 𝑜𝑟 𝑀 ≥ 50 , the velocity profile is flattened and approaches the Darcy flow, as seen in Figures 2a 

and 2d. From Figure 2(d), it is observed that an increase in the value of n results in a decrease in velocity 

field. When F=0 and s is large the velocity tends to Darcy flow. 
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Figure 2. Plot of the analytical expression for u(r) when M = F = 1 for different porous media shaped 

parameter. 

 

 

5. CONCLUSIONS 

The effects of thermal dispersion on fully developed forced convection in a porous-saturated pipe 

were investigated. A nonlinear boundary value problem arising from forced convection in a porous-

saturated conduit is solved using the Taylors series and the Ying Buzu algorithm. The velocity profile is 

expressed in terms of a simple power series. The effects of the parameter on the velocity field are also 

discussed. The temperature and Nusselt number are calculated as a function of the critical factors, 

including the thermal dispersion coefficient, using this analytical expression of velocity. The velocity 

profile is investigated using numerical techniques (Matlab). Analytical results are compared to 

simulation results, and there is satisfactory agreement. 
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NOMENCLATURE: 

 

Symbols Meaning Units 

𝐶 Constant  None 

𝐶𝐹 Inertial coefficient None 

𝑐𝑝 Specific heat at constant pressure  𝐽 𝑘𝑔−1𝐾−1 

𝐷𝑎 Darcy number, 
𝐾

𝐻2
 None 

𝐹 Forchheimer number None 

𝐺 Negative of the applied pressure gradient 𝑃𝑎 𝑚−1 
𝑘 Effective thermal conductivity 𝑊 𝑚−1𝐾−1 
𝑘𝑓 Fluid thermal conductivity 𝑊 𝑚−1𝐾−1 

𝐾 permeability 𝑚2 

𝑀 
𝜇𝑒𝑓𝑓

𝜇
   Dimensionless parameter   None 

𝑁𝑢 Nusselt number None 

𝑂 Symbol for order of magnitude None 

𝑃𝑒 Peclet number None 

𝑃𝑟 Prandtl number None 

𝑃𝑟𝑓 Fluid Prandtl number None 

𝑞′′ Wall heat flux 𝑊 𝑚−2 
𝑅 Tube radius  𝑚 

𝑅𝑒 Pore- Reynolds number None 

𝑠 Porous media shape parameter, (𝑀𝐷𝑎)−
1

2 
None 

𝑇∗ Temperature 𝐾 

𝑇𝑚 Bulk mean temperature 𝐾 

𝑇𝑤 Downstream wall temperature 𝐾 

𝑢 Dimensionless filtration velocity 
𝜇𝑢∗

𝐺𝐻2
 None 

𝑢∗ Filtration velocity 𝑚 

𝑢̂ 𝑢∗/𝑈 None 

𝑈 Mean velocity 𝑚 𝑠−1 

𝑥∗ Longitudinal coordinate 𝑚 

𝑥 Dimensionless longitudinal coordinate, 

𝑥∗/𝑃𝑒𝐻 

None 

𝑟∗ Radial coordinate 𝑚 

𝑟 Dimensionless radial coordinate 

𝑟∗/𝑅 

None 

Greek Symbols 

𝜂 Stretched variable  None 
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𝛾 Dimensionless number (𝛾=0.025) None 

𝜃 Effective viscosity 𝑁𝑠 𝑚−2 

𝜇 Fluid viscosity 𝑁𝑠 𝑚−2 

𝜇𝑒𝑓𝑓 Effective viscosity 𝑁𝑠 𝑚−2 

𝜌 Fluid density 𝑘𝑔 𝑚−3 

Subscript 

Prime Differentiation with respect to y None 

 

 

APPENDIX-A: REGULAR-FALSI ALGORITHM 

 

This method is also known [47-50] as False position method. Consider the equation 𝑢(𝑟) = 0 

and assume that  𝑢(𝑎) and 𝑢(𝑏) have opposite signs. Also let 𝑎 < 𝑏 by taking the boundary [a,b] =[0,1]. 

The general formula in regular-falsi method is   

𝑟1 =
𝑎𝑢(𝑏)−𝑏𝑢(𝑎)

𝑢(𝑏)−𝑢(𝑎)
     (A1) 

For example, take 𝑎 = 0.2, 𝑏 = 0.3, and 𝑢(𝑎)𝑢(𝑏) < 0.When 𝑎 = 0.2   we get from Eqn. (2.1) 

𝑢(𝑟) = 0.2 − 0.2325𝑟2 − 0.006539𝑟4 − 0.0006690𝑟6 +⋯   (A2) 

When 𝑏 = 0.2   we get from Eqn. (8) 

𝑢(𝑟) = 0.3 − 0.2200𝑟2 − 0.007563 𝑟4 − 0.0005567𝑟6 +⋯  (A3) 

Also  𝑢(𝑎) = −0.03837  𝑎𝑛𝑑 𝑢(𝑏) = 0.07299 

𝑟1 =
𝑎𝑢(𝑏)−𝑏𝑢(𝑎)

𝑢(𝑏)−𝑢(𝑎)
=
0.2(0.07299)−0.3(−0.03837)

(0.07299)−(−0.03837)
= 0.2344  (A4)  

The regular- falsi process, using Eqn. (8) results in  

𝑢(1) = −0.0003     (A5)  

Which derivates the exact value of 𝑢(1) = 0 with a relative error of 0.03%. Now 𝑢(𝑟) becomes 

𝑢(𝑟) = 0.2324 − 0.1784 𝑟2 − 0.01633 𝑟4 − 0.0002195 𝑟6…  (A6) 

 

APPENDIX-B: SECANT METHOD 

 

The secant line is defined using two points on the graph of 𝑢(𝑟), as opposed to a tangent line that 

requires information at only one point on the graph, it is necessary to choose two initial iterates 𝑟0,  and 

𝑟1 [ 51-54]. Then the next iterate 𝑟2 is then obtained by computing the r-value at which the secant line 

passing through the points (𝑟0, 𝑢(𝑟0)) and (𝑟1, 𝑢(𝑟1)) has a r-coordinate of zero. However, in many other 

cases, it is expensive to compute the first derivative, and the above methods are still restricted in practical 

applications. The well-known secant method is given by 

𝑟𝑛+1 = 𝑟𝑛 −
𝑟𝑛−𝑟𝑛−1

𝑢(𝑟𝑛)−𝑢(𝑟𝑛−1)
𝑢(𝑟𝑛)     (B1) 

When n=0, this result becomes 

𝑟2 = 𝑟1 −
𝑢(𝑟1)(𝑟1−𝑟0)

𝑢(𝑟1)−𝑢(𝑟0)
      (B2) 
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For example, assume that   𝑟0 = 0.2, 𝑟1 = 0.3, and 𝑢(𝑟0)𝑢(𝑟1) < 0. When 𝑟0 = 0.2   we get from 

Eqn. (8) 

𝑢(𝑟) = 0.2 − 0.155𝑟2 − 0.003588𝑟4 − 0.0002486 𝑟6 +⋯  (B3) 

Consequently, we get from Eqn .(8) when u(0)=0.3 

𝑢(𝑟) = 0.3 − 0.14667𝑟2 − 0.004033 𝑟4 − 0.0002033 𝑟6 +⋯  (B4) 

We get  𝑢(𝑟1) = −0.06421  for  𝑢(0) = 0.2 , 𝑢(𝑟2) = 0.04176 for  𝑢(0) = 0.3   

Now the estimated value of r become 

𝑟2 = 𝑟1 −
𝑟1−𝑟0

𝑢(𝑟1)−𝑢(𝑟0)
𝑢(𝑟1) = 0.2 −

0.04176 (0.2−0.1)

0.04176−(−0.06421)
= 0.1606    (B5) 

The Secant process using Eqn. (B5) results in  

𝑢(1) = −0.0002     (B6) 

This value is very close the exact value of 𝑢(1) = 0 with a relative error of 0.02%. 

𝑢(𝑟) = 0.1606 − 0.1356 𝑟2 − 0.008958 𝑟4 − 0.0001560 𝑟6 +⋯ 
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