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As one of the key parameters of the battery management system (BMS), the accurate estimation of the 

state of charge (SOC) of lithium-ion batteries is of great significance to the development of electric 

vehicles. Aiming at the problem that the BP neural network is easy to fall into the local optimum, taking 

lithium-ion batteries as the research object, a lithium-ion battery SOC estimation method based on the 

Improved Sparrow Search Algorithm (ISSA) optimized BP neural network is proposed. In order to 

improve the estimation accuracy, the global optimal solution of the previous generation is introduced 

into the discoverer’s position update strategy, and the simulation experiment is carried out in MATLAB, 

combined with the test data for analysis. The experimental results show that the improved sparrow search 

algorithm can better optimize the BP neural network to estimate the state of charge of the lithium-ion 

battery, and the average error is controlled within 1%.  The ISSA-BP model is compared with other 

models to verify the rationality and accuracy of the model, and provide a reliable basis for monitoring 

the status of other important batteries. 
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1. INTRODUCTION 

 

With the rapid development of society, the energy crisis and environmental pollution have 

become two major problems facing every country in the world today[1]. As new energy has many 

advantages of sustainability and environmental protection, besides, serious environmental pollution and 

intense consumption of fossil fuels force people to place the research and development of new energy in 

an increasingly important position[2, 3]. As an emerging industry in recent years, new energy vehicles 
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have developed rapidly. Power battery technology is not only the core of current research in the electric 

vehicle industry but also the main factor restricting the performance of electric vehicles[4]. Considering 

performance and cost conditions, lithium-ion batteries have become the first choice for batteries of new 

energy vehicles by virtue of their high energy density, high cell voltage, long cycle life, and high output 

power[5, 6]. They are widely used in portable equipment and industrial applications. As a result, the 

health status and real-time monitoring accuracy of lithium-ion batteries have attracted more and more 

attention[7]. The Battery Management System is the core of the power battery. It is responsible for 

controlling the charging and discharging of the battery and realizing functions such as battery state 

estimation. It can timely and accurately monitor the battery to ensure the safe, efficient, and stable 

operation of the power battery[8]. As one of the main monitoring parameters in BMS, SOC is the 

prerequisite for accurately estimating the peak capacity of the battery, which can greatly improve the 

power distribution efficiency in the energy control strategy[9]. However, the SOC cannot be measured 

directly, and it can only be obtained indirectly through the external characteristics of the lithium-ion 

battery (working current, voltage, etc.)[10, 11]. In addition, the lithium-ion battery is a highly time-

varying nonlinear system. Due to differences in battery materials and processes, and different industrial 

conditions, its dynamic characteristics are unstable[12-14]. If the lithium-ion battery is overcharged or 

over-discharged, it will lead to inaccurate SOC estimation, which will affect the service life of the battery 

and reduce the power performance of the battery[15, 16]. Therefore, how to estimate the SOC efficiently 

and accurately has become an issue of general concern and research in the industry. 

So far, the estimation methods for lithium-ion battery SOC mainly include ampere-hour 

integration method, open-circuit voltage method, Kalman filter method, discharge test method, and 

neural network method[17]. The principle of the ampere-hour integration method is to detect the current 

of the battery during the charging and discharging process in real-time. Calculate the changed power 

consumption of the battery by calculating the integral of the current and the charge and discharge time 

during the monitoring period, and the difference between the initial SOC and the changed SOC is the 

remaining SOC[18]. However, the ampere-hour integration method only records the power in and out 

of the battery from the outside and ignores the internal state changes. If the measured current result is 

inaccurate, the SOC calculation error will continue to accumulate. In addition, this method needs to be 

calibrated regularly[19]. the principle of the open-circuit voltage method[20] is to leave the battery for 

a long time. Under this condition, the open-circuit voltage can be considered as the terminal voltage of 

the battery. The approximate function relationship between the open-circuit voltage and the SOC can be 

obtained, and the SOC can be estimated by measuring the open-circuit voltage in the resting state. 

However, the open-circuit voltage method requires the battery to be fully allowed to stand before the 

test, and the electric vehicle starts frequently, the open-circuit voltage is difficult to stabilize in a short 

time, and cannot meet the real-time estimation of SOC. The principle of the Kalman filtering method[21] 

is to estimate the SOC of the lithium-ion battery by collecting real-time voltage, current, temperature, 

and other variables, taking the SOC and polarization voltage as the state variables of the system, and 

measuring the terminal voltage as the observed variable of the system[22]. The core idea is to make the 

best estimate of the minimum variance of the variable. However, although the Kalman filtering method 

has high prediction accuracy and good applicability, the model is quite complex, computationally 

intensive, and time-consuming[23]. The principle of the discharge test method is to carry out constant 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220845 

  

3 

current discharge experiments on a lithium-ion battery[24]. The product of discharge current and 

discharge time is the residual power. However, the discharge test method has strict test conditions. It 

requires constant current and accurate measurement. Therefore, it is often carried out in a stable and 

reliable ideal environment, and is mostly limited to the data measured under laboratory conditions[25]. 

The neural network[26] is a mathematical algorithm for distributed parallel information processing. 

According to the complexity of the system, the neural network realizes the processing and exploration 

of data by adjusting the relationship between a large number of internal nodes. The neural network 

method can map out the internal laws between input and output well through the learning of training 

samples. Among them, BP neural network, as the most widely used artificial neural network model, has 

a non-linear data structure. In view of the non-linear characteristics of the battery model itself, the BP 

neural network can better deal with the problem of SOC estimation of lithium-ion batteries[27-29]. 

Although BP neural network has strong nonlinear mapping ability, it also has problems such as 

slow convergence speed and easy to fall into a local minimum[30, 31]. At present, genetic algorithm[32, 

33], particle swarm algorithm[34], and ant colony algorithm[35] are also used to optimize the initial 

weight and threshold of the BP neural network. Although the convergence speed has been improved, it 

is still easy to fall into the local optimal solution. Sparrow Search Algorithm is a novel population 

optimization algorithm. It is verified by 19 standard test functions that the SSA algorithm is superior to 

existing algorithms in terms of convergence accuracy, convergence speed, and avoiding local optimal 

solutions[36, 37]. 

Based on this, this paper uses the ISSA-BP neural network model to estimate the SOC of lithium-

ion batteries. The model introduces the optimal solution of the previous generation in the iterative 

process to adjust the position update strategy of the sparrow, which improves the global optimization 

and search capabilities. Comparing the model with BP and SSA-BP, the result shows the feasibility and 

rationality of the improvement. Comparing this model with other models, the results verify that the 

ISSA-BP model is more superior in estimating the SOC of lithium-ion batteries. 

 

 

 

2. MATHEMATICAL ANALYSIS 

2.1. BP neural network 

            The SOC estimation model of the lithium-ion batteries established in this paper is based on the 

BP neural network using the sparrow search algorithm to optimize the final estimation results. The 

structure of the BP neural network is set to 2-8-1. Before using BP neural network for estimation, the 

network must be trained first, so that the network has associative memory and prediction capabilities. In 

this model, the current and voltage of the lithium-ion battery are used as input, and the SOC is used as 

output. The BP neural network training process is shown in Figure 1. 
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Figure 1. BP neural network training implementation process diagram 

 

The training process shown in Figure 1 is: ①determine the basic structure of the BP neural 

network and initialize the hyperparameters of the network; ②import the experimental training data 

obtained in the two working conditions of DST and BBDST to train the network and calculate the output 

error; ③update the weight and threshold of the network to determine whether the termination conditions 

are met. If the termination conditions are met, the simulated network gets the output result. Otherwise, 

return to the previous step to recalculate the output error[38].  

 

2.2. Sparrow search algorithm 

The sparrow search algorithm is a kind of population intelligence optimization algorithm inspired 

by the foraging behavior and anti-predation behavior of sparrows. The sparrow search algorithm mainly 

simulates the foraging process of sparrows, which is a kind of discoverer-follower model, and also 

superimposes the detection and early warning mechanism. The core of the algorithm is to realize 

optimization by taking advantage of the sparrow's behavior of constantly adjusting and updating its 
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position when foraging and avoiding danger. In this algorithm, the discoverers with better fitness value 

will get food first in the search process. In addition, because the discoverers are responsible for finding 

food for the entire sparrow population and providing foraging directions for all followers, the discoverers 

can obtain a larger foraging search range than the followers. Besides, some followers will always monitor 

the discoverers during the foraging process, fight for food with the discoverers or forage around the 

discoverers. When the entire population is threatened by predators or is aware of the danger, it will 

exhibit anti-predation behavior. The sparrows in the periphery of the population need to constantly adjust 

their positions to obtain a better position. At the same time, the sparrows in the center of the population 

will approach their neighbors to reduce their danger zone. 

Each sparrow has one attribute and three possible behaviors. The attribute refers to the position, 

which represents the position of the food it finds. The three possible behaviors are: ①as a discoverer, 

continue to search for food; ②as a follower, following a discoverer for food; ③as a vigilant to watch 

out for reconnaissance, and give up food when in danger. 

 Assuming that the sparrow population X is composed of 𝑛 sparrows, the corresponding fitness 

function value is represented by 𝐹𝑥. Its mathematical expression is shown in Eq. (1). 

{
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(1) 

Among them, 𝑑  represents the dimension of the problem to be optimized. According to the 

sequence of the process, the sparrow population is divided into two parts: the discoverers and the 

followers. During each iteration, the position update description of each discoverer is shown in Eq. (2). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 ∙ exp (

−𝑖

𝛼 ∙ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)       𝑖𝑓 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄 ∙ 𝐿                            𝑖𝑓 𝑅2 ≥ 𝑆𝑇

(2) 

Among them, 𝑋𝑖,𝑗
𝑡  represents the position of the 𝑖𝑡ℎ  sparrow in the 𝑗𝑡ℎ  dimension of the t-

generation population. 𝛼 is a random number of [0,1], 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iterations, and 

Q is a random number that obeys normal distribution. 𝐿 (1 × 𝑑) is a matrix with all 1 element, 𝑅2 

represents the alarm value and 𝑅2 ∈ [0,1], 𝑆𝑇 stands for the alarm threshold, and 𝑆𝑇 ∈ [0.5,1]. When 

𝑅2 < 𝑆𝑇, the sparrow is temporarily in no danger, and the discoverers start to search for food. Otherwise, 

the population needs to be transferred to a safe area. Followers look for food by monitoring and following 

the discoverer with the highest adaptability. The position update method is shown in Eq. (3). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑄 ∙ exp (
𝑋𝑤𝑜𝑟𝑠𝑡
𝑡 − 𝑋𝑖,𝑗

𝑡

𝑖2
)                          𝑖𝑓 𝑖 >

𝑛

2

𝑋𝑝
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑝
𝑡+1| ∙ 𝐴+ ∙ 𝐿            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3) 

Where, 𝑋𝑝
𝑡+1  represents the best position of the discoverer at the time (t + 1) , and 𝑋𝑤𝑜𝑟𝑠𝑡

𝑡  

represents the worst position in the 𝑡𝑡ℎ generation population. 𝐴 is a (1 × 𝑑) matrix whose elements are 

all 1 or -1, and it satisfies the following relationship: 𝐴+ = 𝐴𝑇(𝐴𝐴𝑇)−1. 
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In the iterative optimization process, each generation will randomly select 𝑆𝐷 individuals from 

the population for early warning behavior. When the danger is approaching, both the discoverers and the 

followers will abandon the current food and move to a new position. The position update method is 

shown in Eq. (4). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + β ∙|𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 |                        𝑖𝑓 𝑓𝑖 > 𝑓𝑔

𝑋𝑖,𝑗
𝑡 + 𝐾 ∙ (

|𝑋𝑖,𝑗
𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓𝑖 − 𝑓𝜔) + 𝜀
)                  𝑖𝑓 𝑓𝑖 = 𝑓𝑔 

(4) 

Here, 𝑋𝑏𝑒𝑠𝑡
𝑡  represents the optimal position in the 𝑡𝑡ℎ  generation population, 𝛽  is a step size 

control parameter that satisfies the normal distribution, with a mean value of 0 and a variance of 1. K is 

a random number of [-1,1] and 𝑓𝑖 represents the fitness of the sparrow at the current position. 𝜀 is a non-

zero minimum value, 𝑓𝑔 is the global optimal fitness and 𝑓𝜔 is the global worst fitness. 

 

2.3. The improved sparrow search algorithm 

Aiming at the problem in the basic sparrow search algorithm that the discoverers will approach 

the global optimal solution from the beginning[39], making the search range small and easy to fall into 

the local optimum, an improved method is proposed: introducing the global optimal solution of the 

previous generation to update the position of the discoverers. In the method, it is affected by the position 

of the discoverers of the previous generation and the global optimal solution of the previous generation 

to avoid falling into the local optimal[40]. Therefore, the equation for updating the position of the 

discoverers is changed from Eq. (2) to Eq. (5). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑖,𝑗
𝑡 + (𝑓𝑗,𝑔

𝑡 − 𝑋𝑖,𝑗
𝑡 ) ∙ W                         𝑖𝑓 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑗
𝑡 + 𝑄                                                    𝑖𝑓 𝑅2 ≥ 𝑆𝑇

(5) 

Where, 𝑓𝑗,𝑔
𝑡  is the global optimal solution of the 𝑗𝑡ℎ dimension in the previous generation and W 

is a random number of [-1,1]. In addition, the position update method for reconnaissance and early 

warning is changed from Eq. (4) to Eq. (6). 

𝑋𝑖,𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + β ∙(𝑋𝑖,𝑗

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 )                        𝑖𝑓 𝑓𝑖 ≠ 𝑓𝑔

𝑋𝑖,𝑗
𝑡 + β ∙ (𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 − 𝑋𝑏𝑒𝑠𝑡
𝑡 )                 𝑖𝑓 𝑓𝑖 = 𝑓𝑔 

(6) 

When 𝑖𝑓 𝑓𝑖 = 𝑓𝑔, the sparrow will update its position to a random position between the optimal 

position and the worst position if the sparrow is in the optimal position. When 𝑓𝑖 ≠ 𝑓𝑔, it will update its 

position to a random position between the worst position and itself. 

 

2.4. ISSA-BP joint algorithm estimation model 

The sparrow search algorithm has better global search and local development capabilities. 

Combining SSA with BP neural network can not only exert the generalization mapping ability of BP 

neural network, but also improve the shortcomings of BP neural network such as easy to fall into local 

minimum and slow convergence speed. Figure 2 shows the implementation process of the ISSA-BP joint 

algorithm. 
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Figure 2. ISSA-BP joint algorithm implementation process diagram 

The optimization process can be roughly divided into three parts: ①Determine the BP neural 

network structure according to functional requirements; ②Use SSA to optimize the weights and 

thresholds of the BP neural network to obtain the initial optimal weights and thresholds; ③Maintain the 

structure of the BP neural network unchanged, assign the initial optimal weights and thresholds to the 

network, and then use the experimental data to test and verify the network. 
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3. EXPERIMENTAL ANALYSIS 

3.1. Data selection 

The terminal voltage and discharge current of the lithium-ion battery are selected as the input of 

the model, and the state of charge of the lithium-ion battery is used as the output of the model. The ISSA-

BP model is applied to a lithium-ion battery with a rated voltage of 4.2 V and a rated capacity of 45 Ah, 

and a state-of-charge estimation model of the lithium-ion battery is established. The model is verified 

under different working conditions. Set the learning rate of the BP neural network optimized by SSA to 

0.1, the training target to 0.0001, and the number of iterations to 1000. The random initial BP neural 

network is compared with the training error curve of the BP neural network optimized by SSA, and the 

result is shown in Figure 3. 

 
(a) The performance curve of the BP algorithm       (b) The performance curve of the SSA-BP algorithm 

 

Figure 3. Performance curves of different algorithms 

 

It can be seen from Fig. 3 that when the number of training times is 9, the error of the SSA-BP 

neural network is already very small, and the accuracy required by the target has been reached. However, 

the BP neural network only meets the accuracy requirements when the number of training times is 141. 

In contrast, the SSA-BP neural network shows a faster convergence rate. 
  

3.2. DST working condition verification 

Under DST working condition, the lithium-ion battery is charged and discharged in constant 

current cycle. The changes of current and voltage are shown in Figure 4. 
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(a) The variation of current                                 (b) The variation of voltage 

 

Figure 4. Variations of current and voltage under DST working condition 

 

 

In the figure above, input the current and voltage data under DST working condition into BP, 

SSA-BP, and ISSA-BP models to obtain the estimation and error results of state of charge change of 

lithium-ion battery, as shown in Figure 5. 

 

 
(a) The results of SOC estimation                           (b) The error of SOC estimation 

 

Figure 5. Lithium-ion battery state estimation results under DST working condition 

 

 

In Figure. 5(a), S0 represents the reference value of SOC, S1 represents the estimated result of 

BP, S2 represents the estimated result of SSA-BP, and S3 represents the estimated result of ISSA-BP. 

In Figure. 5(b), Err1~Err3 are the estimation errors corresponding to S1, S2, and S3 respectively. 

 

3.3. BBDST working condition verification 

Under BBDST working condition, the lithium-ion battery cycle of constant power charge and 

discharge is carried out to better measure the power characteristics of the battery. Current and voltage 

changes are shown in Figure 6. 
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(a) The variation of current                                   (b) The variation of voltage 

 

Figure 6. Variations of current and voltage under BBDST working condition 

 

 

In the figure above, the current, voltage are introduced into BP, SSA-BP and ISSA-BP estimation 

models to obtain the state of charge during the whole experiment. The BBDST condition is more 

complex than the constant current charging and discharging working condition, the test data under this 

condition can better reflect the state change of the battery under complex conditions. 

 

 
(a) The results of SOC estimation                           (b) The error of SOC estimation 

 

Figure 7. Lithium-ion battery state estimation results under BBDST working condition 

 

 

In Figure. 7(a), S0 represents the reference value of SOC, S1 represents the estimated result of 

BP, S2 represents the estimated result of SSA-BP, and S3 represents the estimated result of ISSA-BP. 

In Figure. 7(b), Err1 represents the estimation error of BP, Err2 represents the estimation error of SSA-

BP, and Err3 represents the estimation error of ISSA-BP. 

 

3.4. Results analysis 

From the simulation results of DST and BBDST, it can be seen that the output of ISSA-BP is 

closer to the expected output than BP and SSA-BP, and shows better fitting. Table 1 shows the 

comparison of SOC estimation results of BP, SSA-BP and ISSA-BP models under DST and BBDST 

working conditions.  
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Table 1. Comparison of experimental results of different algorithms under different working condition 

 

Working condition Algorithm Average error Maximum error 

DST 

BP 1.38% 5.28% 

SSA-BP 1.21% 4.52% 

ISSA-BP 0.98% 2.63% 

BBDST 

BP 0.78% 5.96% 

SSA-BP 0.61% 5.98% 

ISSA-BP 0.39% 4.26% 

 

 

In Tab. 1, compared with the BP algorithm, the average error and the maximum error of the 

estimation results of the SSA-BP algorithm are reduced, which proves that the sparrow search algorithm 

has an optimizing effect on the BP neural network. In addition, the estimation results of the ISSA-BP 

algorithm are further reduced on the basis of the SSA-BP algorithm, which proves the feasibility and 

correctness of the optimization scheme.  

The maximum error of the GA-BP model proposed in the literature[41] for SOC estimation is 

less than 7%. The ISSA-BP model proposed in this paper has a maximum error of less than 5% for SOC 

estimation. Compared with the improved PSO-BP model with a maximum error of less than 8%[42], the 

ISSA-BP model proposed in this paper has a maximum error of less than 5%, so the ISSA-BP model 

proposed in this paper has higher accuracy. Compared with using only BP Compared with the model[43], 

the maximum error of SOC estimation is 7%, and the error of ISSA-BP model used in this paper is 

greatly reduced, and the error is less than 5%. 

 

 

 

4. CONCLUSIONS 

It is difficult and important to accurately estimate the SOC of a lithium-ion battery. The 

estimation result of the traditional BP algorithm is almost determined by the initial weight and threshold, 

and it has disadvantages such as being easy to fall into a local minimum. In addition, the traditional 

sparrow search algorithm also has the defect that it is easy to fall into the local minimum. Therefore, 

based on the BP network, the improved sparrow search algorithm is used to optimize the initial weights 

and thresholds globally. The final optimal solution is assigned to the BP network, and the SOC 

estimation model of the lithium-ion battery of the ISSA-BP neural network is established. According to 

the simulation experiment results, the estimation result of the ISSA-BP neural network for SOC is closer 

to the real value than the estimation results of the SSA-BP neural network and BP neural network, and 

its accuracy is higher. The input data of the lithium-ion battery SOC estimation model established in this 

paper is only voltage and discharge current, and does not consider factors such as lithium-ion battery 
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temperature and internal resistance. Therefore, the next step of research should be to complete the 

comprehensive consideration of influencing factors to achieve higher prediction accuracy. 

 

 

 

NOMENCLATURE 

The symbols used in this research can be described as shown in Tab.2. 

 

Table 2. List of symbols 

 

Symbol Description 

SOC State of Charge 

BP Back Propagation 

SSA Sparrow search algorithm 

ISSA 
Improved sparrow search 

algorithm 

DST Dynamic Stress Test 
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