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An amperometric glucose biosensor's theoretical model is discussed. The glucose oxidase enzyme in this 

model is immobilized in conducting polypyrrole.This model includes a nonlinear term that corresponds 

with the kinetics of enzyme reactions. The solution of coupled nonlinear reaction diffusion equations is 

obtained using new approach of Taylor method . Additionally, a comparison of numerical simulation 

and analytical approximation is provided. There is an agreement between numerical results and 

analytical expressions. 
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1. INTRODUCTION 

 

The development of insoluble immobilized enzymes has received much attention since the 

second half of the 20th century [1]. These applications, such as reusable heterogeneous biocatalysts [2], 

stable and reusable devices for analytical and medical applications [3-7], selective adsorbents for 

purifying proteins and enzymes [8], fundamental tools for solid-phase protein chemistry [9,10], and 

microbial sensors, can benefit from using immobilised enzymes instead of their soluble counterparts. 

It has been observed that the fabrication of biosensors [11-14] is well suited to the immobilization 

of enzymes in conducting polymer during the electro-polymerization step [15]. The process is simple to 

control. A theoretical model for an amperometric polypyrrole+glucose oxidase (PPY+GOD) electrode 

has already been presented by Bartlett and Whitaker [19]. Another significant advantage of this 
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technique is the ability to entrap the mediator in the polymer as a dopant anion [20-24] or by covalent 

fixation on the pyrrole monomer [19].For low substrate and high benzoquinone concentrations compared 

to the corresponding Michaelis constants, Marchesiello and Genesis [20] developed analytical 

expressions of the concentrations of the substrate and benzoquinone. Analytical solutions have been 

derived for the steady state nonlinear reaction/diffusion equations in an amperometric glucose sensor 

[21]. 

To the best of my knowledge, no rigorous analytical expressions of substrate concentrations and 

mediators of amperometric glucose biosensor under non-steady-state conditions have been reported for 

all value parameters.Using the new approach of Taylor series method, this communication aims to derive 

approximate analytical expressions for non-steady-state concentrations and current. 

 

 

2. MATHEMATICAL FORMULATION OF THE PROBLEM  

The catalytic reaction scheme between benzoquinone and glucose is given by[ 20]  

Glucose + GOD(FAD) ® GOD(FADH2 ) + gluconolactone 

Q  GOD(FADH2 )  GOD (FAD) + H2Q. 

 The oxidation of hydroquinone: - H2Q  Q  2H  2e . 

Schematic representation of the above reaction scheme is given in Fig-1.  

 

 
 

Figure 1. Schematic diagram of reaction scheme 

 

The derivation and concise description of mass transport nonlinear equations in glucose 

biosensors by Marchesiello and Genesis [20] are summarised below. The enzymatic reaction rate 

between glucose and benzoquinone proceeds at a ping-pong mechanism [20]. The system of nonlinear 

differential equations describing the concentrations of S andH2𝑄 at steady- state are as follows [20]: 

D𝑠
𝑑2[𝑠]

𝑑𝑋2 −
𝑘𝑐𝑎𝑡[𝐸]

1+
𝐾𝑄
[𝑄]

+
𝐾𝑠
[𝑆]

= 0        (1) 

DH2𝑄
𝑑2[H2𝑄]

𝑑𝑋2
−

𝑘𝑐𝑎𝑡[𝐸]

1+
𝐾𝑄
[𝑄]

+
𝐾𝑠
[𝑆]

= 𝐾Σ[H2𝑄]       (2) 
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The boundary conditions are as follows [28]:  

[𝑠] = [𝑠]0, [H2𝑄] = 0 at 𝑋 = 𝐿 (polymer/solution interface)    (3) 
𝑑[S]

𝑑𝑥
= 0, [H2𝑄] = 0 at 𝑋 = 0 (platinum/polymer interface)     (4) 

where  [S], [H2𝑄] and  [Q]  are glucose, benzoquinone and enzyme concentrations in the film, 

𝑘𝑐𝑎𝑡is the turnover number for GOD,  𝐾𝑠and 𝐾𝑄 are the Michaelis constants for glucose and 

benzoquinone, respectively. The third term is the oxidation term.The charge-transfer constant for 

oxidation in the conducting polymer is𝐾, so the electrochemical reaction rate in the conducting polymer 

is 𝑣 = 𝐾Σ[H2𝑄].  𝐴𝑙𝑠𝑜 [𝑠]0 is  bulk concentration of glucose. The total electro-catalytic current 𝐼𝑇 is the 

sum of two currents. The current  

𝐼𝑆 = 2𝐹𝐴𝐷H2𝑄 (
𝑑[H2𝑄]

𝑑𝑋
)

𝑋=0
        (5) 

For H2𝑄 oxidation on the platinum electrode, and  

𝐼𝑃 = ∫ 𝑑𝐼 =
𝐿

0
∫ 2𝐹𝐴𝐾Σ[H2𝑄]𝑑𝑥

𝐿

0
       (6) 

where 𝐿 is the film thickness of the reaction layer. The partition coefficients are assumed to equal 

one, and there is no concentration polarisation of S and H2𝑄  in the solution.. We make the non-linear 

PDE outlined in Eqs (1) and (2) dimensionless by introducing the following parameters: 

𝑥 =
𝑋

𝐿
, 𝑢 =

[𝑆]

[𝑆]0
, 𝑣 =

[H2𝑄]

[𝑆]0
, 𝛼 = 𝐿/Λ, 𝛼′ = 𝐿/Λ′, 

Λ = (
D𝑠K𝑠

[𝐸]K𝑐𝑎𝑡
)

1/2

, Λ′ = (
𝐷H2𝑄

𝐾Σ
)

1/2

, 𝑀 =
[𝑆]0

K𝑠
+

[𝑆]0 K𝑠

K𝑠[𝑄]
    (7) 

The system of  reaction-diffusion equations (1) and (2) are normalised as follows: 
𝑑2𝑢

𝑑𝑥2 −
𝛼2𝑢

𝑀𝑢+1
= 0         (8) 

𝑑2𝑣

𝑑𝑥2 +
𝛼2𝑢

𝑀𝑢+1
= 𝛼′2𝑣         (9) 

where 𝑢 and 𝑣 are the dimensionless concentration of S and H2𝑄. Dimensionless boundary 

conditions are  
𝑑𝑢

𝑑𝑥
= 0, 𝑣 = 0 when 𝑥 = 0          (10) 

𝑢 = 1, 𝑣 = 0 when 𝑥 = 1         (11) 

The dimensionless parameters  compare the enzymatic reaction rate to the substrate diffusion 

in the polymer. The dimensionless parameter compares  the rate of [H2𝑄]oxidation in the conducting 

polymer with the rate of [H2𝑄]diffusion in the polymer. For electrochemically inert polymer,  has low 

value and for electrochemically active polymer,  has high value. The parameter M is a dimensionless 

constant. The dimensionless form of the current is given by 

𝜓𝑆 =
𝐼𝑆

2𝐹𝐴𝐷H2𝑄
= (

𝑑𝑣

𝑑𝑥
)

𝑥=0
        (12) 

𝜓𝑃 =
𝐼𝑃

2𝐹𝐴𝐾Σ
= ∫ 𝑣 𝑑𝑥

1

0
        (13) 

 

 

3. RESULTS AND DISCUSSION 

Exact solutions to nonlinear equations are extremely difficult to find.Asymptotic methods are 

developed  for solving nonlinear differential equations approximately. The homotopy perturbation 

method [22-26],Taylor series method [27-36],and Akbari-Ganji method [37-40] Rajendran-Joy method 
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[41]. In this paper, the Taylor series method and  Akbari-Ganji method is applied to solve the nonlinear 

model (equations (1)-(3)) for the immobilized enzyme reactions as per our assumptions considered for 

our enzyme kinetics .   

 

3.1 Analytical expression of concentrations using Taylor series method 

One of the earliest analytic-numerical algorithms for approximating initial value problems for 

ordinary linear/nonlinear differential equations is the Taylor series method [27-32]. This method also 

can be applied to solve the nonlinear differential equation with complex functions with mixed boundary 

conditions defined on finite intervals. The concentration of glucose using Taylor’s series method  is 

obtained  as follows( Appendix-A): 

𝑢(𝑥) = 𝑢(0) +
𝛼2𝑢(0)

𝑀𝑢(0)+1

𝑥2

2!
+

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3

𝑥4

4!
+

(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5

𝑥6

6!
+

                             
(𝛼2)4𝑢(0)(90 (𝛼2)2(𝑢(0))2−36(𝛼2)𝑢(0)+1)

(𝑀𝑢(0)+1)7

𝑥8

8!
.     (14) 

    

where 𝑢(0)is obtained by solving the eqn.(15) for the given values of the parameters. 

𝑢(0) +
𝛼2𝑢(0)

𝑀𝑢(0)+1

1

2!
+

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3

1

4!
+

(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5

1

6!
= 1   (15) 

The concentration of benzoquinone using Taylor’s series is 

𝑣(𝑥) = 𝑣′(0)
𝑥

1!
−

𝛼2𝑢(0)

𝑀𝑢(0)+1

𝑥2

2!
+ 𝛼′2𝑣′(0)

𝑥3

3!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3 +
(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0)+1)
)

𝑥4

4!
+

              (𝛼′2)2 𝑣′(0)
𝑥5

5!
         (16) 

The  eqn. (17) is solved for the given  specified parameter values to get the value of unknown 

parameter𝑣′(0) 

0 = 𝑣′(0) −
𝛼2𝑢(0)

𝑀𝑢(0)+1

1

2!
+ 𝛼′2𝑣′(0)

1

3!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3 +
(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0)+1)
)

1

4!
+ (𝛼′2)2 𝑣′(  (17) 

Now current becomes           

𝜓𝑆 =
𝐼𝑆

2𝐹𝐴𝐷H2𝑄
= (

𝑑𝑣

𝑑𝑥
)

𝑥=0
= 𝑣′(0)       (18) 

𝜓𝑃 =
𝐼𝑃

2𝐹𝐴𝐾Σ
= ∫ 𝑣 𝑑𝑥

1

0
= ∫ 𝑣 𝑑𝑥

1

0
= 𝑣′(0)

1

2!
−

𝛼2𝑢(0)

𝑀𝑢(0)+1

1

3!
+ 𝛼′2𝑣′(0)

1

4!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3 +

(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0)+1)
)

1

5!
+ (𝛼′2)2 𝑣′(0)

1

6!
       (19)  

            

3.2 Analytical expression of concentration using new approach of Taylor series method 

The nonlinear differential equations governing the mentioned system has been investigated using a 

simple and novel method known as the new approach of Taylor series method.Using this method, we 

obtain the concentrations as follows (Appendix-B) 

𝑢(𝑥) =
cosh 𝑚𝑥

cosh 𝑚
         (20) 

𝑣(𝑥) = sinh 𝑛 (𝑥2 − 𝑥)        (21) 

Here the 𝑢(0) = 1/ cosh 𝑚 can be obtained from the below equation.    

𝑢(0) +
𝛼2𝑢(0)

𝑀𝑢(0)+1

1

2!
+

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3

1

4!
+

(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5

1

6!
= 1   (22) 
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The following equation (23) can be used to determine unknown constant𝑣′(0) = − 

𝑣′(0) −
𝛼2𝑢(0)

𝑀𝑢(0) + 1

1

2!
+ 𝛼′2𝑣′(0)

1

3!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0) + 1)3
+

(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0) + 1)
)

1

4!
+ (𝛼′2)2𝑣′(0)

1

5!
= 0 

      (23) 

Now current can obtained as follows:        

   

𝜓𝑆 =
𝐼𝑆

2𝐹𝐴𝐷H2𝑄
= (

𝑑𝑣

𝑑𝑥
)

𝑥=0
= −𝑛        (24) 

𝜓𝑃 =
𝐼𝑃

2𝐹𝐴𝐾Σ
= = ∫ 𝑣 𝑑𝑥

1

0
=

√𝜋𝑒−𝑛/4{𝑒𝑟𝑓𝑖(√
𝑛

4
)−𝑒𝑛/2(𝑒𝑟𝑓(√

𝑛

4
))}

2√𝑛
            ( 25) 

    

3.3 Validation of analytical results with numerical simulation 

The numerical method offers an approximate solution to a mathematical problem. It is also useful 

to validate the analytical method. We solved the initial-boundary value problems for nonlinear 

differential equations (8) and (9)numerically using the MATLAB function pdex1.The simulation results 

solution is compared with our analytical results using new approach of Taylor series methodin Figures 

2-3. Upon comparison, it gives a satisfactory agreement for all values of the parameters𝛾 (dimensionless 

activation energy), 𝛽 (dimensionless heat ofreaction), and  Φ (Thiele modulus). 

 

 
 

Figure 2. Comparison of analytical expression concentration of glucose   with numerical simulation 

results for different values of dimensionless reaction diffusion parameter 𝛼 and 𝑀. 

 

Figures 2(a)-2(c) show the normalised non-steady state glucose concentration versus 

dimensionless distance X for various values of the dimensionless reaction diffusion parameter 𝛼and𝛼’ 

The concentration of substrate increases when𝛼decreases and M increases, as shown in the graph. From 

this Figures 1(a)–1(c), it is evident that the value of concentration is uniform when 𝛼< 0.5. 0r 𝑀>100. 

 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 221064 

 

6 

 
 

Figure 3. Comparison of analytical expression concentration of benzoquinone V with numerical 

simulation results for different values of dimensionless reaction diffusion parameter 𝛼 and 𝑀. 

 

Figures 3(a)-3(c) show the concentration of mediator 𝑉 versus dimensionless distance 𝑋 for 

different values of the dimensionless diffusion parameters 𝛼’ and 𝑀. According to this graph, the value 

of the concentration of mediator  decreases abruptly when 𝑀 and 𝛼’ increase. For all other parameters, 

the concentration of mediator reaches a maximum at the middle of the membrane (𝑥 = 0.5). 

 

 
 

Figure 4. Comparison of normalized steady-state current 𝜓S versus the diffusion dimensionless 

parameter  

 

 

The normalized steady-state current 𝜓S(𝛼, 𝛼’ , 𝑀) as the function of the dimensionless parameter 

𝛼, 𝛼’, and  𝑀’ is given in Figures 4(a)–4(b). It is clear from these figures that the current values decrease 

slowly and reach a constant value when 𝛼’ ≥ 40. When 𝑀increases, the current values also decrease. 

 

 

4. CONCLUSIONS 

We have derived approximate analytical expression concentration profiles and current of 

amperometric glucose biosensor based on immobilized enzymes for steady-state conditions over a wide 

range of parameters. A nonlinear time-independent differential equation has been solved using the 

Taylors series and Akbari-Ganji method. The effects of the reaction and diffusion parameters on 
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concentration and current are discussed. The numerical results from the Matlab software are used to 

validate these analytical results. A satisfactory agreement is noted. In summary, the obtained analytical 

expressions for the concentration and current are reliable. Therefore, they can be applied to other 

enzyme-based electrochemical tissue-based biosensors with complex boundary conditions. This method 

can be used for solving differential in different fields of study such as solid mechanics, fluid mechanics, 

heat transfer, etc 
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Appendix A: Approximate analytical solution of nonlinear Eqns. (7) and (8) using Taylor’s series 

method. 

The Taylor’s series solution of Eqns.(7) and (8)  are 

𝑢(𝑥) = 𝑢(0) + 𝑢′(0)
𝑥

1!
+ 𝑢′′(0)

𝑥2

2!
+ 𝑢′′′(0)

𝑥3

3!
+ ⋯    (A1) 

𝑣(𝑥) = 𝑣(0) + 𝑣′(0)
𝑥

1!
+ 𝑣′′(0)

𝑥2

2!
+ 𝑣′′′(0)

𝑥3

3!
+ ⋯    (A2) 

Let us assume that  𝑢(0)is constant. From the boundary condition (9) we get 

𝑢′(0) = 0          (A3) 

Now Eqn.(7) can be rewritten  at x=0 as follows: 

𝑢′′(0) =
𝛼2𝑢(0)

𝑀𝑢(0)+1
         (A4) 

Differentiate the  equation (7) successively with respect to x and substituting  𝑥 = 0 we get 

𝑢′′′(0) = 0

          

(A5) 

𝑢(𝑖𝑣)(0) =
(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3
         (A6) 

𝑢(𝑣)(0) = 0          (A7) 

𝑢(𝑣𝑖)(0) =
(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5        (A8) 

Putting these in Taylors series,  we  get the  concentration of glucose as follows: 
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𝑢(𝑥) = 𝑢(0) +
𝛼2𝑢(0)

𝑀𝑢(0)+1

𝑥2

2!
+

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3

𝑥4

4!
+

(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5

𝑥6

6!
   (A9) 

Substitute the initial condition( 𝑢(1) = 1 ) we get 

1 = 𝑢(0) +
𝛼2𝑢(0)

𝑀𝑢(0)+1

1

2!
+

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3

1

4!
+

(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5

1

6!
   (A10) 

Similarly we can  assume that 𝑣′(0)is constant. 

Now Eq.(9) can be rewritten  as follows: 

𝑣′′(0) = −
𝛼2𝑢(0)

𝑀𝑢(0)+1
         (A11) 

Differentiating the equation (9) successively and substituting ,we get 

𝑣′′′(0) = 𝛼′2𝑣′(0)

         

(A12) 

𝑣(𝑖𝑣)(0) = − (
(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3 +
(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0)+1)
)      (A13) 

𝑣(𝑣)(0) = (𝛼′2)2 𝑣′(0)        (A14)

  
The concentration of product using Taylor’s series is 

𝑣(𝑥) = 𝑣′(0)
𝑥

1!
−

𝛼2𝑢(0)

𝑀𝑢(0)+1

𝑥2

2!
+ 𝛼′2𝑣′(0)

𝑥3

3!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3 +
(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0)+1)
)

𝑥4

4!
+ (𝛼′2)2 𝑣′(0)

𝑥5

5!

 (A15) 

Substitute the initial condition 𝑣(1) = 0 we get 

0 = 𝑣′(0) −
𝛼2𝑢(0)

𝑀𝑢(0) + 1

1

2!
+ 𝛼′2𝑣′(0)

1

3!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0) + 1)3
+

(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0) + 1)
)

1

4!
+ (𝛼′2)2 𝑣′(0)

1

5!
 

(A16) 

Appendix B: Approximate analytical solution of nonlinear eqns. (8) and (9 using new approach of 

Taylors series method. 

Equations (8) and (9) can be rewritten as follows: 

𝑢′′(𝑥) −
𝛼2𝑢(𝑥)

𝑀𝑢(𝑥)+1
= 0          (B1) 

𝑣′′(𝑥) +
𝛼2𝑢(𝑥)

𝑀𝑢(𝑥)+1
= 𝛼′2𝑣(𝑥)        (B2) 

where 𝑢 and 𝑣 are the dimensionless concentration of S and H2𝑄 . The transformed boundary conditions 

are 

𝑑𝑢

𝑑𝑥
= 0, 𝑣 = 0 when 𝑥 = 0        (B3) 
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𝑢 = 1, 𝑣 = 0 when 𝑥 = 1        (B4) 

Assume that the solution of eqn. (B1)  is 

𝑢(𝑥) = 𝐴 cosh 𝑚𝑥 + 𝐵 sinh 𝑚𝑥       (B5) 

Using the boundary conditions (B3) and  (B4) we get 

𝑢(𝑥) =
cosh 𝑚𝑥

cosh 𝑚
         (B6) 

Where 𝑢(0) =
1

cosh 𝑚
 which  can be from obtained by solving the below equation . 

1 = 𝑢(0) +
𝛼2𝑢(0)

𝑀𝑢(0)+1

1

2!
+

(𝛼2)2𝑢(0)

(𝑀𝑢(0)+1)3

1

4!
+

(𝛼2)3𝑢(0)(1−6(𝛼2)𝑢(0))

(𝑀𝑢(0)+1)5

1

6!
   (B11) 

Similarly we  assume the solution of the equation (B2)  as 

𝑣(𝑥) = sinh 𝑛 (𝑥2 − 𝑥)         (B12) 

where 𝑣′(0) = −𝑛 can be from obtained by solving the below equation. 

0 = 𝑣′(0) −
𝛼2𝑢(0)

𝑀𝑢(0) + 1

1

2!
+ 𝛼′2𝑣′(0)

1

3!
− (

(𝛼2)2𝑢(0)

(𝑀𝑢(0) + 1)3
+

(𝛼2𝛼′2𝑢(0))

(𝑀 𝑢(0) + 1)
)

1

4!
+ (𝛼′2)2 𝑣′(0)

1

5!
 

            (B13) 
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