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To identify and analyze the transient current jump caused by the weak interaction between biomolecules 

in a nanopore experiment, CM Analyzer software was designed based on the Circle-Median algorithm. 

The algorithm effectively recognized falling events and outliers in nanopore data. To verify the accuracy 

of the developed software, a simulation signal with different noise (std: 0.5~2) was generated, and results 

showed that the software achieves data-processing requirements with a 250-kHz sampling rate and high 

noise. The algorithm was also used in α-hemolysin biological nanopore-based single DNA molecule 

detection experiments, and results showed that the software can accurately identify the falling current 

and rising transit in single nanopore blockages. 
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1. INTRODUCTION 

 

With the update and development of laboratory nanotechnology in recent years, nanopore single-

molecule detection techniques have become rapid, high-throughput and low-cost ultrasensitive detection 

platforms with many application prospects [1~4]. Currently, nanopore single-molecule detection 

techniques have been widely used in the detection of nucleic acids [5~13], proteins [14~17], 

polypeptides [18], organic small molecules [19], metal ions and other substances [20~23]. The basic 

principle of the nanopore single-molecule detection technique is to apply an external voltage to both 

ends of the buffer solution in a detection cell so that molecules to be tested can pass through nanopores 

one by one and produce single-molecule current blockages driven by electric field force (Fig. 1 a). When 

molecules to be tested pass through nanopores, due to the different physical and chemical properties of 

various molecules to be tested and their different interactions with nanopores, nanopore weak current 

http://www.electrochemsci.org/
mailto:shenbin@ecust.edu.cn
mailto:whuifeng@ecust.edu.cn


Int. J. Electrochem. Sci., 17 (2022) Article Number: 221177 

 

2 

signals (pA level) are output as blockages with different current amplitudes, durations and signal 

frequencies. On this basis, the extraction and analysis of characteristics of nanopore blockage signals 

can help describe the nature of single molecules and weak interactions between biomolecules. 

The nanopore single-molecule detection platform primarily consists of three parts: a detection 

cell, a signal acquisition device and data processing software. To record nanopore data accurately, it is 

necessary to amplify and restore weak currents using a signal acquisition device with high precision, 

high sampling rate and low noise [24~31]. 

 

 

 
 

Figure 1. Schematic of nanopore detection platform: (a) illustration of single nucleic acid molecule 

traversing across an α-hemolysin (α-HL) nanopore; (b) original signal recorded by the signal 

acquisition device of nanopore detection platform, and schematic diagram of the function module 

of the data processing algorithm, Circle-Median; (c) signal after detection and recognition by the 

Circle-Median algorithm composed of blockage event (blue), current falling event (red), and 

outlier (black X marker). 

 

 A data processing system with high efficiency, high adaptability and low error is also required 

to analyze the recorded data and extract signals of research value. Currently, methods that have been 

used in nanopore data processing software include moving window [32], CUSUM [33], MOSAIC [34], 

Nanopore Analysis [35], Hidden Semi Markov Models (HSMM) & K-means hybrid algorithm [36], 
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Modified Hidden Markov Models [37], real-time event recognition [38], etc. These methods or pieces 

of software can detect or identify blockages when processing nanopore experimental data but fail to 

analyze transient current jumps produced by weak interactions between biological molecules. 

To extract and analyze transient current jumps in nanopore data, CM Analyzer (Fig. 1b-c), which 

is a type of data processing software that is based on the Circle-Median algorithm, is designed in this 

paper and realizes the accurate identification of transient current jumps in collected nanopore data. 

 

 

2. EXPERIMENT 

2.1 Experimental design 

2.1.1 Instrument and reagents 

α-HL was purchased from Sigma‒Aldrich (St. Louis, MO, USA) and were not further purified 

before use. Both EDTA and decane (anhydrous, ≥99%) were purchased from Sigma‒Aldrich (St. Louis, 

MO, USA). 1,2-Diphylyl phospholipid (chloroform, ≥ 99%) was purchased from Avanti Polar Lipids 

Inc. (Alabaster, AL, USA). DNA was synthesized by Sangon Biotech (Shanghai) Co., Ltd., and purified 

with HPLC. Unless specifically noted, all reagents used in this experiment were analytically pure. The 

water for the experiment was ultrapure water (18.2 MΩ·cm, 5 °C) and prepared using a Milli-Q Water 

Purification System (Billerica, MA, USA). The sequence of DNA molecules to be tested is as follows: 

5’-TTTTTTTTTTTTTTTTTTTTTCAACATCAGTCTGATAAGCTATTTTTTTTTTTTTTTTTTTT-

3’ 

 

2.1.2 Design of simulation signals 

In this study, random simulation signals programmed with Python were used. Blockage signals 

were generated and were collected after being recorded for 𝑇 = 100 𝑚𝑠 at a sampling frequency of 𝑓 =

250 𝑘𝐻𝑧 in the nanopore single-molecule detection experiment. These signals were composed of four 

parts:  

1) the blockage formed by molecules to be tested through nanopores, whose current value was 

𝐼𝑏𝑙𝑜𝑐𝑘𝑎𝑔𝑒 = 20 𝑝𝐴;  

2) the downward current jump formed by weak interaction between biomolecules, whose number 

was 3 ≤ 𝑁𝑓𝑎𝑙𝑙𝑖𝑛𝑔 ≤ 5, current was 8 ≤ 𝐼𝑓𝑎𝑙𝑙𝑖𝑛𝑔 ≤ 15. The data size recorded in each downward current 

jump was 300 ≤ 𝑛𝑓𝑎𝑙𝑙𝑖𝑛𝑔 ≤ 2400; 

3) the transient current jump formed by weak interaction between biomolecules, whose number 

was 4 ≤ 𝑁𝑜𝑢𝑡𝑙𝑖𝑒𝑟 ≤ 8, and the current of each transient current jump was 13 ≤ |𝐼𝑜𝑢𝑡𝑙𝑖𝑒𝑟 − 𝐼𝑚𝑎𝑖𝑛| ≤ 15; 

4) different noises were added in sequentially.  

After the simulation signals were synthesized, the signals were analyzed and processed using the 

data processing software CM Analyzer. 
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2.1.3 Nanopore single-molecule detection experiment 

The nanopore detection method was drawn from studies reported by references [5], [10]. One 

milliliter of buffer solution (1.0 M LiCl, 10 mM Tris, 1.0 mm EDTA, pH 8.0) was added to two 

chambers, cis and trans, of an acetal resin detection cell (Warner Instruments, Hamden, CT, USA). 

Phospholipid decane solution (30 mg/mL) was applied to a 50-μm micropore of the detection cell to 

build a phospholipid bilayer. After a stable phospholipid bilayer membrane was formed, α-HL (10 μL, 

15 μg/mL) was added to the cis end of the detection cell. α-HL assembled itself into a stable single 

nanopore on the phospholipid membrane. Then, molecules to be tested were added to the cis end of the 

detection cell, and a 120-mV bias voltage was applied. The current signals were passed through a 5-kHz 

low-pass filter and then amplified and acquired at a sampling frequency of 250 kHz using an Axon 200B 

patch clamp amplifier, a DigiData 1440A D/A converter and Clampex 10.4 data recording software 

(Molecular Devices, Forest City, CA, USA). The resulting data were processed with CM Analyzer (the 

data analysis software developed in this study), ClampFit 10.4 (Molecular Devices, Forest City, CA, 

USA) and OriginLab 8.0 (OriginLab Corporation, Northampton, MA, USA). 

 

2.2 Design of the circle-median algorithm 

The function module diagram of the nanopore data processing algorithm, Circle-Median, is 

shown in Fig. 1b and included three modules: data preprocessing, circle-median filtering and transient 

current jump detection. 

Because the bias voltage applied in each experiment varied, the original signals may produce 

different baseline currents. The data preprocessing module sliced the original signals according to the 

baseline current value and captured and saved all blockages. In previous research, the baseline current 

value might have been given in advance. Because the nanopore data obtained in the experiments are a 

type of time series data, they should contain rich semantic information, including image and language 

data. Using a deep learning method, the baseline current values can be predicted and calibrated through 

a trained deep neural network. 

In this study, denoising, baseline tracking and other data preprocessing tasks for nanopore data 

were converted into deep learning tasks. The data preprocessing module automatically calculates the 

baseline current value. The workflow of this module is as follows: 

First, the nanopore data obtained from the experiments were converted into timestamp 

embedding and numerical embedding by the method reported in the literature [39]. Such an embedding 

method can allow the encoder to use both global time and local time information. Second, the input 

embeddings processed in the previous step were input into the transformer [40] encoder and decoder 

network for calculation. Finally, a fully connected neural network and a softmax layer were connected 

after the transformer network. This softmax layer maps the output between (0, 1) to indicate the 

probability that the predicted value is the baseline value. 

The transformer network used in this study had 6 transformer blocks, and the number of 

multihead attention blocks was 8. The training nanopore data were collected from previous experiments. 

javascript:;
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The captured blockages were analyzed and processed using the Circle-Median filtering module, 

which can identify downward current jumps in signals. The principle was to replace the value of a given 

point in a signal with the median of points in its neighborhood, as expressed in Formula (1): 

𝑥(𝑖) = 𝑀𝑒𝑑[𝑥(𝑖−𝑁), ⋯ , 𝑥(𝑖), ⋯ , 𝑥(𝑖+𝑁)]                              (1) 

where 𝑥(𝑖)  is the ith point in the signal. The neighborhood size of median filtering was 2𝑁 + 1. This 

filtering method effectively suppressed noise and can make the detected value closer to the true value. 

Compared with other linear filtering methods, median filtering can eliminate isolated noise in signals 

more effectively. However, when a given point, 𝑥(𝑖), was located in the head or the tail of the signal and 

the set neighborhood boundary exceeded the signal boundary, points that could not be obtained in 

median filtering were replaced with zero. Thus, a large deviation would occur when median filtering 

was used in the head or the tail of a signal; Circle-Median filtering reduced this deviation. Inspired by 

the attention mechanism [40], the nanopore events were regarded and all the neighborhood weights were 

calculated once for each point in the event. Then, for a given point 𝑥(𝑖) in the event and a given 

neighborhood of this point, the circle-median filter principle can be expressed as in Formula (2): 

𝑥(𝑖) = {

𝑀𝑒𝑑[𝑥(𝑛−𝑁+𝑖), 𝑥(𝑛−𝑁+𝑖+1), ⋯ , 𝑥(𝑛), 𝑥(1), ⋯ , 𝑥(𝑖), ⋯ , 𝑥(𝑖+𝑁)], (𝑖 < 𝑁) 

𝑀𝑒𝑑[𝑥(𝑖−𝑁), ⋯ , 𝑥(𝑖), ⋯ , 𝑥(𝑖+𝑁)], (𝑁 ≤ 𝑖 ≤ 𝑛 − 𝑁)

𝑀𝑒𝑑[𝑥(𝑖−𝑁), ⋯ , 𝑥(𝑖), ⋯ , 𝑥(𝑛), 𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑁−𝑛+𝑖)], (𝑖 > 𝑛 − 𝑁)

              (2) 

where 𝑥(𝑖) is the ith point in the signal; the data size recorded is n; and the neighborhood size of circle-

median filtering is 2𝑁 + 1. This neighborhood size was determined by the sample size n. After Circle-

Median filtering was conducted on the nanopore data, we had to separate blockages from current jumps 

in the data. A common method in previous studies was K-means cluster computation. However, due to 

the randomness of nanopore data and inclusion of unpredictable currents in this experiment, it was 

difficult to estimate K in the proposed algorithm. If the initial value was selected improperly, the final 

clustering analysis was affected. In this study, the Zscore MAD method was used to match circle-median 

filtering. Blockages and current jumps in the filtered nanopore data were clustered. The principle was to 

analyze each value in the signal and compare it with the preset threshold to determine whether the point 

was in current jumps. The Zscore MAD can be expressed in Formulae (3) and (4): 

𝑀𝐴𝐷 = 𝑀𝑒𝑑[|𝑥(𝑖) − �̃�|]                                  (3) 

𝑍𝑠𝑐𝑜𝑟𝑒 = |
0.6745×(𝑥(𝑖)−�̃�)

𝑀𝐴𝐷
|                                  (4) 

where 𝑥(𝑖) is the ith point in the signal. When the Zscore was greater than the preset threshold (4.0), we 

determined that 𝑥(𝑖)was in a current jump. 

The principle of the transient current jump detection module derived from box plot and quantile 

in statistics. In detection, first, all signals in blockages were arranged by current, from small to large. 

The rearranged signals can be expressed in Formula (5): 

𝑥 = [𝑥(0), 𝑥(1), ⋯ , 𝑥(𝑛−1)]                                   (5) 

where the total data size of blockages was 𝑛 − 1, and 𝑥(0) < 𝑥(1) < ⋯ < 𝑥(𝑛−1). The quantile can be 

expressed in Formula (6): 

𝑃𝑚 = [
𝑚

100
× (𝑛 − 1)]                                    (6) 

where 𝑃𝑚  is the corresponding subscript of the m-quantile of the data in Formula (5): when 𝑚 = 0, 

𝑃𝑚  was the minimum. When 𝑚 = 100, 𝑃𝑚 was the maximum. When transient current jumps were 
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screened from blockages, the starting and ending times of transient current jumps should be calculated 

using the method reported previously [41~43]. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Simulation signals 

First, we used simulation signals to test the algorithm. The simulation signals generated 

contained 4 current jumps and 7 transient current jumps. Noises whose mean was 0 pA and standard 

deviations were 0.5, 1, 1.5 and 2 were added sequentially. After synthesis, the simulation signals 

generated by the system are shown in Fig. 2a. The noise density diagram with four different standard 

deviations is shown in Fig. 2b. After entering the high-frequency area, noises were distributed uniformly 

randomly and presented the characteristics of white noises. With an increasing standard deviation of 

noise, the energy of noise in the frequency domain also increased gradually. 

 
Figure 2. Generation of simulation signals: (a) simulation signals at different noise of std levels: 0.5, 1, 

1.5, and 2; the current value of blockade event is 20 pA and contains four current falling events 

and seven outliers; the current value of current falling event is from 8 to 15 pA; the difference 

between peak outlier and the current value of blockade event is between 13 and 15 pA. 

 

3.2 Effect of noise on data processing 

To test the performance of the algorithm under different noises, the circle-median filtering 

module in CM Analyzer was first used to test the identification accuracy of the algorithm for current 

jumps in simulation signals of noises with different standard deviations, as shown in Fig. 2a. The 
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identification results are shown in Fig. 3a. Then, the transient current jump detection module in CM 

Analyzer was used to test the identification accuracy of the algorithm for transient current jumps in 

simulation signals. The results are shown in Fig. 3b. 

 

  
Figure 3. Effects of noise on data analysis: (a) performance of filtering simulation signals with different 

noise by CM Analyzer; (b) identification results of simulation signals with different noise by CM 

Analyzer; (c) detection rate of current falling events; and (d) detection rate of outliers. 

 

Concurrently, to determine the accuracy of the identification results and obtain the detection rates 

of the CM Analyzer for current jumps and transient current jumps under the impact of noise with 

different standard deviations, we expressed the detection rates using Formula (7): 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = |
𝑉𝑎𝑙𝑢𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑉𝑎𝑙𝑢𝑒𝑇𝑟𝑢𝑒
| × 100%                          (7) 
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where 𝑉𝑎𝑙𝑢𝑒𝑇𝑟𝑢𝑒 is the true or transient current jump contained in the blockages; and 𝑉𝑎𝑙𝑢𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 is 

the detected or transient current jump identified by CM Analyzer. 

Fig. 3a shows that with an increasing standard deviation, only marginal fluctuation was added to 

the signal waveform processed by the circle-median filtering module; thus, no marked impact was 

observed. The same situation was also found in Fig. 3b. Thus, an increasing standard deviation did not 

affect the identification of transient current jumps. The statistical summary charts of the detection rate 

of the CM Analyzer for the simulation signals are shown in Figs. 3c and 3d. The red curve in Fig. 3c 

shows the detection rate of the algorithm for current jumps. The green curve in Fig. 3d shows the 

detection rate of the algorithm for transient current jumps. When the standard deviation of noise 

increased from 0.5 to 2, the detection rates of the CM Analyzer for current jumps and transient current 

jumps remained 100%. The data processing of the CM Analyzer maintained high identification accuracy 

under high noise. 

 

3.3 Application in the analysis of nanopore experimental data 

To test the performance of the algorithm in more detail, data collected in the nanopore experiment 

were processed in CM Analyzer to verify the identification accuracy of the algorithm for transient current 

jumps produced by weak interactions between biomolecules in the nanopore single-molecule detection 

experiment. 

A total of 81460736 data points were recorded in the experiment, and the experiment duration 

was approximately 325 s. Data from 92-102 s were selected for analysis. The original data are shown in 

Fig. 4a. Comparing the noise density curve of the experimental data in Fig. 4b and the noise density 

curve of the simulation signals in Fig. 2b, the energy of the noise at high frequencies in the experimental 

data must be smaller than that in the simulation signals so that the CM Analyzer software can satisfy the 

data analysis in the nanopore experiment. Blockages recorded throughout the experiment are shown in 

Fig. 4c. The scatter diagram shows statistics about the degree (the ratio between blocked current value 

and open current value) and duration of blockage. After analyzing the original data using CM Analyzer, 

the analysis results of four blockages (red marks in Fig. 4a) are shown in Figs. 4d, 4e, 4f and 4 g. In 

these figures, the blue curve represents blockage, the red curve represents a current jump in this blockage, 

and the black mark represents a transient current jump in this blockage. 

Fig. 4 shows that the CM Analyzer can accurately identify transient current jumps produced by 

weak interactions between biomolecules in nanopore single-molecule detection experiments. 
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Figure 4. Real experimental data records: (a) original data of the nanopore experiment; (b) noise power 

spectral density curve of real experimental data; (c) I/I0–duration scatter plot, where I/I0 is the 

average residual current blockade, I0 is the average current of an empty pore, and I is the average 

residual current of a blocked pore; (d-g) analysis of four blockade events, where the blue curve 

represents blockade events, the red curve represents current falling events, and black x markers 

represent outliers. 

 

 

The nanopore data processing process can be divided into four steps [31]: denoising raw data 

from experiments; identification of current events; extraction features of events; and analysis of features 

to infer the properties of analytes. Low-pass filters, Kalman filters, and consensus filters are used to 

denoise the experimental raw data [32~33, 44]. Cumulative Sums, MOSAIC, DBC and other methods 

are used to process steps 2 or 3 [34~35, 38]. In recent years, with the development of machine learning, 

approaches such as hidden Markov models, fuzzy-c means, K-means, and AdaBoost have also been used 

to process nanopore data with good results [36~37, 45]. Currently, deep learning is also being applied 
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more often to nanopore data processing. For example, [46~48] investigated feature extraction and 

inferring classifiers using Bi-Path, U-Net, and ResNet in deep neural networks. 

In previous studies, the 4 steps of nanopore data processing were usually performed 

independently. In this study, a transformer in deep neural networks was incorporated into nanopore data 

processing, and the user can use one network to complete data processing steps 1 and 2 without 

intervention and input. The advantage of splitting the nanopore data processing task into four subtasks 

to perform is that it allows a more focused effort, while the disadvantage is also marked. The split tasks 

lose their entireness, and each task must correspond to one network, model, and different model 

parameters, which increases the complexity of the mission by a factor of 4, while the model parameters 

increase by much more than a factor of 4. Therefore, we want to use one model to solve all four subtasks. 

There are already many multitask models in the fields of computer vision and natural language 

processing that can solve multiple subtasks with a unified network. Multitask models can use fewer 

parameters to solve more problems, which is one of the trends of deep learning. Currently, there is no 

well-designed multitask processing model to manage time-series data, which is a primary direction of 

future research. We explained the 4 steps of the nanopore data processing process as 4 subtasks that must 

be solved by a deep learning network and intend to build an end-to-end nanopore data processing model 

that uses a unified deep neural network to process these four subtasks simultaneously. 

 

 

4. CONCLUSION 

In this paper, a nanopore single-molecule detection algorithm called CM Analyzer is designed to 

provide a new method to study data processing systems in nanopore single-molecule detection 

experiments. Compared with other nanopore data processing algorithms, the proposed algorithm can 

identify weak interactions between biomolecules and accurately analyze current jumps and transient 

current jumps in experiments. Through tests on simulation signals and in real experiments, the detection 

rates of the algorithm for current jumps and transient current jumps remain stable under the impact of 

high noise, satisfy the precision demand of data processing and promote the development of nanopore 

single-molecule detection techniques. 
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