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The capacity and state of charge (SOC) of a battery are essential for the battery management system 

(BMS). To perform high-accuracy online estimation of a battery throughout its life cycle, a joint 

estimator of SOC and capacity with low computational complexity based on an adaptive extended 

Kalman filter with a subregional decay element (ADEKF) is proposed in this paper. First, the parameters 

of the first-order circuit model are identified using the varied forgetting factor with recursive least 

squares (VFFRLS), and the simplified reduced-order equation of state for the battery is derived. 

Subsequently, the innovative ADEKF algorithm is proposed to adapt the simplified reduced-order state 

equation to achieve stable convergence of the SOC and capacity. Finally, the accuracy and adaptability 

of joint estimation with different initial states are verified using federal city driving program tests at 0 

°C, 25 °C, and 45 °C for the optimal battery operating charge interval. In addition, compared with the 

other joint estimation methods, the results show that the proposed algorithm has much better 

performance in terms of joint estimation accuracy and convergence speed. 
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1. INTRODUCTION 

 

Lithium batteries are widely used in electric vehicles, grid energy storage systems, or other 

portable electronic devices for their superior performance, discharge stability, high energy density, and 

low cost [1]. Electrical vehicles are developing rapidly as part of countries' responses to ecological 

environment and energy security issues. An efficient and robust BMS is essential to ensure safe battery 

operation, long battery life, and economy. Currently, the two main tasks of the BMS are to accurately 

estimate the capacity and state of charge of lithium-ion batteries [2]. The first predicts the remaining 

battery life and power to avoid overcharging. The second characterizes the aging state of the battery, 

which gradually decreases to 80% of the rated capacity with prolonged use. However, not only can these 
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rarely be determined from battery measurements, but they are also affected by ambient temperature and 

aging, which makes the estimation of SOC and capacity a challenge in practical applications [3]. 

The SOC is an operational indicator for an electric vehicle. Accurate estimation of the SOC helps 

to determine the stable operating conditions of the battery and to inform the battery charging strategy. 

The main existing SOC estimation methods are divided into non-model-based and model-based methods. 

Among them, the non-model-based methods include the amperage-time integration method, the open 

circuit voltage (OCV) method, and the data-based method. The accuracy of the amperage-time 

integration method is largely dependent on the exact initial value of the battery and the ambient noise 

[4]. The open-circuit voltage method derives the SOC from the experimentally measured relationship 

between the SOC and OCV. The accuracy of the estimate is determined by the accuracy of the 

experiment. However, the experiments for acquiring OCV are time-consuming and have limited 

depolarization capability, so the method is not suitable for online SOC estimation [5]. The data-driven 

approach does not require modeling but establishes and trains from data such as voltage and temperature 

to form a matching relationship with the battery SOC to produce the estimate. However, it has a high 

computational cost and is unsuitable for real-world electric vehicle driving [6]. Therefore, the equivalent 

circuit model (ECM) of the battery model-based methods has been widely used, as it balances 

computation requirements and performance. Essentially, the ECM-based approach uses state estimation 

algorithms to achieve an optimal fusion of the ampere-time integration method and the open circuit 

voltage method [7]. This has driven the search for higher accuracy and a lower computational burden 

and led to an expansion of the available filters and observers, including the Kalman filter [8], sliding 

mode observer and moving time domain estimation. It should be noted that the Kalman filter algorithm 

is the most popular method for model-based estimation for SOC. For this algorithm, both measurement 

and process noise covariance matrices are constants. Incorrect initialization may cause large estimation 

errors or filter divergence. The adaptive extended Kalman filter (AEKF) [9-10] with a noise-adaptive 

process has therefore produced great progress in SOC estimation. Nevertheless, the performance of the 

above methods depends highly on the model’s accuracy, and thus, the battery parameters must be 

identified before estimating its state. The existing parameter identification methods mainly contain 

offline and online parameter identification methods [11]. The former obtains the approximate battery 

parameters from the voltage information of specified test data combined with circuit analysis. It is 

difficult to track the operating state of the Li-ion battery over time. Instead, an improved recursive least 

squares-based algorithm allows for online updating of the model parameters, combined with the 

estimation algorithm described above, to obtain a more accurate SOC estimation based on ECM. 

The capacity determines the amount of energy stored in a lithium-ion battery and is closely 

related to the battery's SOC. During battery charging, side reactions caused by temperature or aging can 

deplete the active lithium and cause damage to the electrode material. These factors result in a decrease 

in capacity. Although these changes are slow, especially after some large changes in SOC [12-13], they 

still need to be frequently updated in the SOC estimation. Therefore, calculating SOC using only a fixed 

cell capacitance rating will lead to a small estimation error, which is often overlooked in studies. For 

example, in [14], even though a fractional-order model for lithium-ion batteries was constructed in SOC 

estimation that converges to the true value, the variation in capacity was still not considered. 
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Similarly, capacity/state of health (SOH) estimation methods can be classified into measurement-

based, data-based, and model-based methods [15]. Measurement-based methods, such as incremental 

capacitance analysis (ICA) and differential voltage analysis (DVA) [16], can be used to estimate SOH. 

Although they can reflect battery aging to obtain an accurate estimate, it is difficult to use them for online 

estimation of the actual BMS due to equipment and time limitations. Second, data-driven approaches, 

such as using neural networks to implement estimation and monitoring of battery SOH, rely on a large 

amount of offline data [17]. Given this, model-based capacity estimation methods have turned out to be 

an intensely researched topic. Model-based capacity estimation is often performed in conjunction with 

SOC estimation due to its slow-varying nature [18]. Schwenk et al. [19] used a two-particle filter to 

estimate SOC and capacity, but crosstalk between the two filters could not be avoided. To address this, 

some studies have proposed multiple time scales for SOC and capacity [20-21], but superposition 

interference still exists. In addition, according to the relationship between capacity and SOC, the SOC 

variation of the preset time interval can be used to calculate the battery capacity [22], but this method is 

limited by offline detection with unclear interval settings. Zou et al. [23] designed a fourth-order EKF 

to jointly estimate the SOC and capacity; however, the higher-order filter may lead to a huge 

computational effort or even instability and does not consider the temperature. In [24], Wang et al. 

applied AUKF to the third-order classical equations to jointly estimate the capacity and SOC with the 

help of neural networks to describe the relationship between SOH and battery capacity and temperature, 

but this classical joint estimation method still suffers from a large computational effort. 

To address the above issues, a framework for the joint estimation of capacity and SOC with a 

low computational cost is presented in this paper. First, this paper uses the VFFRLS algorithm to identify 

the Thevenin equivalent model parameters, which improves the accuracy of the parameters under 

complex operating conditions. Subsequently, a simplified model equation with OCV as the observed 

noise is derived. Combined with this equation, this paper proposes the adaptive extended Kalman filter 

algorithm with a subregional decay element (ADEKF) to perform the joint estimation of SOC and 

capacity. Experimental results show that the proposed method achieves a balance between computational 

complexity and estimation accuracy under uncertainty in the initial SOC value and temperature variation 

considerations and outperforms the traditional method in terms of overall performance. 

 

 

2. BATTERY MODEL AND PARAMETER IDENTIFICATION 

2.1 Lithium battery model 

Currently, the ECM method is widely applied in model-based SOC estimation. It can be 

classified into several categories, such as the Thevenin model, the Rint model, and the PNGV model 

[25]. Among them, the Thevenin model can achieve comparable prediction accuracy as the other models 

but with low model complexity. Thus, it is adopted here to emulate the battery dynamics. As shown in 

Figure 1, the model contains open-circuit voltage Uocv, an internal ohm resistance R0, internal 

polarization resistance Rp and internal polarization resistance Cp. 
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Figure 1. Structure of the Thevenin model 

 

 

According to Figure 1 and Kirchhoff’s theorem, the state-space expression of this model can be 

obtained as: 

 

1 1
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p p L
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 (1) 

where Uocv(SOC) represents the computed Uocv through the OCV-SOC relationship, Up denotes 

the voltage across the polarization resistance, and Ut and IL are the terminal voltage and the load current, 

respectively. 

The discretized form of this model is derived as follows: 
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 (2) 

In the formula, Ts is the sampling period, and the subscripts k and k-1 indicate the sampling time. 

 

2.2 VFFRLS-based model parameter identification 

The forgetting factor with recursive least squares (FFRLS) commonly identifies the model 

parameters online with real time variation. However, provided that the battery system is working under 

more sophisticated conditions, it is rarely appropriate to use the constant forgetting factor [26]. Therefore, 

the VFFRLS algorithm is applied in this paper to improve the performance of online parameter 

identification, which enables a balance between the parameter convergence speed and tracking error. 

Above all, we are supposed to conduct some formula transformation. 

At sampling time k, the system output is written as: 

 
T

k k ky      (3) 

where y is the system output and θ, ε and ϕ are the parameter vector, the noise variable, and the 

information vector, respectively. Based on the research results in [27], we can acquire the relationship 

between the observed error and the forgetting factor value, which is given as follows: 
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where e(k) is the observation error of the VFFRLS algorithm, λ is the forgetting factor, and λmin 

is a preset minimum value of the forgetting factor. ρ is a fixed value. Taking 45 ℃ as an example, we 

set λmin and ρ as 0.74 and 44000, respectively. Combined with the fundamental theory of the least-

squares algorithm and after some derivation and transformation, the detailed process of VFFRLS can be 

summarized as follows: 
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 (5) 

Herein, L is the gain, P denotes the covariance matrix, ̂  is the estimate of the parameter vector, 

and I is the identity matrix. 

According to Eq. (2), the terminal voltage Ut can be expressed by: 

 ( ) ( ) ( ) ( )
1
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t OCV L L 0
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 (6) 

Then, we define Et as the difference between Uocv and Ut, and the transfer function can be derived 

by Eq. (6): 

 
( ) ( ) ( )

( ) ( ) 1

pt OCV t
S 0

L L p p

RU s U s E s
G R

I s I s C R s


    


 (7) 

where s is the transfer function operator. Generally, the bilinear transformation in Eq. (8) is 

applied to discretize Eq. (7), and Eq. (9) is calculated by: 
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where z means a discretization operator, and the coefficients in the numerator and the 

denominator are obtained from Eq. (7) and Eq. (9): 
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Assuming that the variation in OCV at adjacent sampling times can be ignored as a consequence 

of its slow-varying feature: 

 , , 1OCV k OCV kU U   (11) 

Thus, Eq. (11) can be reformulated as: 

  , 1 , 1 1 , 2 , 3 , 11t k t k OCV k L k L kU U U I I          (12) 

Herein, we define the parameter vector 𝜃 = [𝛼1 (1 − 𝛼1)𝑈𝑂𝐶𝑉 𝛼2 𝛼3]
𝑇  and information 

vector 𝜙 = [𝑈𝑡,𝑘 1 𝐼𝐿,𝑘 𝐼𝐿,𝑘−1]. 

After θ is identified by the VFFRLS, the corresponding model parameters can be immediately 

acquired from Eq. (13): 
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In the formula, the model’s time constant 𝜏 = 𝑅𝑃𝐶𝑃. As shown in Eq. (13), the OCV can be 

directly identified if 𝛼1 ≠ 1, which can easily be derived from Eq. (10). 

 

 

3. JOINT ONLINE ESTIMATION FOR BATTERY CAPACITY AND SOC 

3.1 Joint estimation based on ADEKF 

The SOC is generally expressed as the ratio between the residual available capacity and 

maximum available capacity. Thus, we can obtain the SOC value at time step k during the discharging 

process as follows: 

 
, 1

1

, 1

L k s

k k

n k

I T
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   (14) 

where ղ is the coulombic efficiency and SOCk-1 and SOCk denote the SOC values at time steps 

k-1 and k, respectively. Cn,k-1 denotes the cell capacity at time step k-1 in ampere-seconds. 

Capacity is a measurement of the battery SOH, and it is of significance for the SOC to accurately 

estimate capacity. According to the aforementioned analysis, we propose an innovative low-complexity 

filter based on the ADEKF considering an assumption of battery characteristics. Primarily, the 

implementation details of the model equation are described below. 

For a nonlinear discrete-time system, the state space model equations can be described as: 

State equation: 

  1 1,k k k kx f x u w    (15) 

Measurement equation: 

  ,k k k ky g x u v   (16) 
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where xk and yk represent the state variable and measurement variable at time step k, respectively, 

f is the nonlinear process function, and g is the nonlinear measurement function. uk is the system input 

signal, and vk and wk are the measurement noise and process noise, respectively. In this paper, since 

Uocv is not related to Up, a smaller number of variables can be integrated into the low-order filter. In 

other words, the state vector is defined as 𝑥 = [𝑆𝑂𝐶, 𝐶𝑛]𝑇 , and we choose y = Uocv in this paper. On this 

basis, the state equations for the estimation of the capacity and the SOC are given as follows: 
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1
1
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n k n k
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n k
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I T
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  (17) 

where Cn,k denotes the cell capacity at time step k. 

Measurement equation: 

  , ,OCV k OCV k kU U SOC  (18) 

Herein, we regard the OCV identified from VFFRLS as the observation state: Uocv,k. 

Uocv,k(SOCk) represents the SOC-OCV mapping and is obtained by the standard SOC-OCV test, which 

will be discussed thoroughly in Section 4.2. 

It is worth noting that the OCV curve does not change significantly while the battery capacity 

decays in an individual cycle. As shown in [28], the change in OCV is only 1.251 mV over 60 discharge 

cycles for the battery’s SOC range of 10% to 80%. Given these characteristics, we can further simplify 

the Jacobi matrix by decoupling the capacity from Uocv as follows: 

 
   , ,

, ,

0
ocv k k ocv k k k

n k k n k

U SOC dU SOC dSOC

C dSOC dC


 


 (19) 

In practice, the system noise is an uncorrelated nonzero mean Gaussian white series. In this 

scenario, the AEKF algorithm shows effectiveness and robustness, so it is essential to update it for better 

joint estimation of capacity and SOC in this paper. The estimation accuracy of the Kalman filter 

algorithm is determined by two factors: the prediction process and the correction process. The latter is 

the feedback correction of the observation error by using the mapping of states to observations. 

There is a smooth section of the SOC-OCV curve which has such a small gradient that a weak 

OCV error can cause a large error in SOC. Accordingly, the error feedback needs to be adjusted 

appropriately when OCV is selected as the measurement noise. Combining the hysteresis of the RLS in 

the low SOC region [29] and the characteristics of the Kalman filter [30], the subregional decay element 

is derived for the AEKF in this paper as follows: 
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Here, Tsoc is the moment when SOC equals 20%, and β and emin are the subregional decay element 

and the minimum error based on a priori estimation, respectively. The ΔUocv refers to the error between 

the true value and the measured value. That is, the transfer parameters should be reduced to the β 

multiples of the original in the low SOC region, and the moments of large OCV should be reduced 

accordingly in the high SOC region. 
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Figure 2. The detailed flowchart for the ADEKF Algorithm. 

 

 

The detailed flowchart of the ADEKF algorithm is shown in Figure 2. The symbol "^" indicates the 

estimated value. B and D in Figure 2 are the Jacobi matrices involved in Eq. (2). The superscripts “+” 

and “−” denote the a priori predicted and the a posteriori updated values, respectively. 

The solid line indicates the process of the traditional Kalman filter. Meanwhile, the dashed line 

denotes the dynamic update of the noise covariance. The conventional AEKF algorithm enables adaptive 

matching of the system process and measurement noise covariances. Based on updating the noise 

covariance through the moving average window, the process measurement covariance is calculated using 

the new interest matrix ek with the corresponding �̂�𝑘
−, as shown in Eq. (22). To ensure the positivity of 

the matrix, the measurement noise covariance subsequently applies the residual error to calculate the 

corresponding variance �̂�𝑘
+. Of note, when the low SOC range and other range-new interest matrices are 

larger than the set value, this paper adds a decay factor for the gain update region. This not only allows 

the optimal value of the algorithm to better track the SOC-OCV mapping but also enhances the 

robustness of the new low-order filter. 

 

 3.2 The joint-estimation process 

Figure 3 shows a supplementary framework for the joint estimation method. First, the battery 

model parameters, including Uocv, are identified online by VFFRLS. Next, the identified OCV is passed 

to the ADEKF in real time to measure the variables. 
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Figure 3. The detailed flowchart for the SOC and capacity estimation. 

 

 

The proposed algorithm integrates only the capacity and SOC in the state vector. Through the 

SOC-OCV relationship, the estimated SOC involving the capacity value at the previous moment is used 

to obtain the OCV estimate value. Error correction between the OCV estimate and reference value are 

combined with β-gain for state correction. Moreover, the decoupling of capacity from Uocv in the 

proposed algorithm further reduces the computational burden with destabilization. 

Theoretically, the proposed method reduces the computational complexity, and it is more 

significant for encountering higher-order RC models or considerable aging cycles. The precision and 

robustness of the proposed method can be verified exactly by the dataset in the following section. In 

addition, its performance will be confirmed compared to the classical third-order estimator. 

Furthermore, the performance of the algorithms proposed in this work is also verified by 

comparison with that obtained for current mainstream algorithms, such as the Multi-timescale EKF, the 

AVMT EKF, the Hybrid model, the Triple PI model and the Dual-AEKF algorithms which is the most 

common classical method. The models and claims of the above joint estimation algorithms are described 

briefly as below. The Multi-timescale EKF algorithm utilizes alternating SOC and capacity estimation 

at different time scales of the EKF. To address the problem of different variation characteristics of battery 

SOC and capacity, the AVMT EKF algorithm proposes a new adaptive variable multi-timescale 

framework. Although this approach can reduce the effect of current drift, using recursive total least 

squares (RTLS) for capacity estimation still leads to large error. The Hybrid model uses the estimated 
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SOC interval accumulation to calculate the capacity, after which the estimated capacity is provided to 

the next SOC estimation with the capacity update. Obviously, the moment selection and length of the 

interval have an impact on the accuracy of the algorithm. The Triple PI model uses three observers for 

the joint estimation of capacity, SOC and resistance. Similar to the higher-order EKF, this model is also 

less resistant to disturbances in the initial iterations. The last method is the Dual-AEKF algorithm, where 

the capacity is estimated using the first AEKF, and it is transferred to the second AEKF to complete the 

SOC estimation. And This model still cannot avoid the interference of data transmission from two filters. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

To effectively validate the model parameter identification method and the novel second-order 

filtering algorithm proposed in this paper, this section employs an INR 18650-20R lithium-ion battery. 

Its main parameters are displayed in Table 1. The experimental data are obtained from the open cell 

dataset of the Center for Advanced Life Cycle Engineering at the University of Maryland. 

 

Table 1. The specifications of the tested lithium-ion battery 

 

Characteristics value Characteristics value 

Nominal capacity/Ah 2 Lower cutoff voltage/V 2.5 

Nominal voltage/V 0.32 Weight/g 45 

Upper cutoff voltage/V 4.2 Temperature range/℃ -20~60 

 

In this paper, the incremental OCV test is selected to track the SOC-OCV mapping. Meanwhile, 

the nonlinearity of this relationship is highlighted by the fitting tool in MATLAB. The root mean squared 

error (RMSE) is used to evaluate the fitting accuracy, as shown in Eq. (22). 

 

2

1
ˆ( )

n

i ii
w w

RMSE
n







 (22) 

 

Herein, 𝑤𝑖  and �̂�𝑖 denote the predicted and reference values, respectively. 𝑛  represents the 

number of data points. For instance, the OCV-SOC relationship was fitted using polynomial functions 

of different orders for data at 25 ℃, whose RMSE is shown in Figure 4. 
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Figure 4. The open circuit voltage fitting curve and RMSE of different order functions. 

 

 

Finally, we determined the eighth-order fitted curve with a minimum RMSE of 0.0059 V to 

describe the relationship between OCV and SOC. The fitted OCV-SOC curve is shown in Figure 4, and 

then the function g(x) mentioned in subsection 3.2 can be determined, whose corresponding function is 

presented as: 

 
8 7 6 5 4 3 2

8 7 6 5 4 3 2 1 0( )g x k x k x k x k x k x k x k x k x k        (23) 

where x is SOC and g is the function between Uocv and SOC. The optimal coefficients of the above 

function with respect to other temperatures are also listed in Table 2. 

 

Table 2. The optimal coefficients of the SOC-OCV function at various temperatures 

 

Temperature/℃ k0 k1 k2 k3 k4 k5 k6 k7 k8 

0 -46.46 142 -138.9 18.98 46.4 -25.23 3.303 0.622 3.456 

25 -175.5 689.9 -1097 906.1 -422.5 118.2 -22.22 3.416 3.264 

45 -225.4 899.4 -1456 1230 -584.6 161.8 -27.58 3.558 3.277 

 

FUDS is a typical dynamic transient driving cycle which is more complex than DST. The data 

are extracted from FUDS with respect to SOC’s 10% to 80% range, which is the classic operating state 

of the battery. Hence, the FUDS contains 8-10 cycles at various temperatures, such as 0 ℃, 25 ℃ and 

45 ℃, and their current and voltage profiles are shown in Figure 5. 

At essentially the same current excitation, the discharge time of the voltage at 45 °C is longest, 

while the discharge time of the corresponding voltage at 0 °C is the shortest. This indicates that when 

the ambient temperature is lower, the chemical reaction rate and activity of the battery are lower, 

resulting in insufficient battery discharge. Notably, when the temperature changes, the available capacity 

of the battery also changes, which should be considered in the SOC estimation. 
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Figure 5. Current and voltage profile of the FUDS test at various temperatures. 

 

 

4.1 Modeling and parameter identification 

According to the above parameter identification method, the Thevenin's model parameters can 

be obtained under the FUDS operating conditions at 25 °C, as shown in Figure 6. It can be seen that R0 

changes little and tends to increase with the use of the battery, while Rp and Cp tend to decrease. This 

also indicates that RLS does not describe the battery polarization in the low SOC region. 
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Figure 6. Parameter identification results at 25℃ based on VFFRLS. 
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The model parameters are time-varying due to changes in electrolyte ionic conductivity and the 

concentration of lithium ions if the battery discharges. This confirms the need for online parameter 

identification. Furthermore, the reference OCV is calculated by the estimated SOC combined with the 

SOC-OCV relationship. The results of the comparison between the considered measured OCV and the 

reference OCV are displayed in Figure 6. It is clear that the error between them can be limited to the 

range of -20 mV to 30 mV. Therefore, the identified OCV has the potential to be treated as a 

measurement variable for the filter. 

Finally, as shown in Figure 6, the error bands between the measured and predicted voltages are 

mostly in the range of -5 mV to 10 mV. This means that the developed cell model is able to track the 

dynamic characteristics of the cell very well. This has also been verified for FUDS operating conditions 

at other temperatures. 

 

 

4.2 Precision of the joint estimation 

In this paper, the convergence time and the estimation error after convergence are used as 

performance measures to quantitatively evaluate both algorithms. The convergence time is defined as 

the time when the estimated SOC/capacity starts to stabilize within a 5%/10% error range. Thus, based 

on the previous information about FUDS at 25 °C, this section implements the joint estimation of SOC 

and capacity when SOC is initially uncertain. The reference SOC is obtained by the coulomb counting 

method, and the initial SOC value is set to 80%. Figure 7 depicts the joint estimation results and 

convergence trends for SOC and capacity using two initial SOC values (preset to 70% and 60%). 

Meanwhile, to verify the accuracy and robustness of the method proposed in this work, the RMSE and 

the mean absolute error (MAE) are applied to evaluate the SOC and capacity indicators of the proposed 

method performance. These indicators are defined as follows: 

 
1

1
ˆ

n

i i

i

MAE w w
n 

   (24) 

 100%
est ref

RE

ref

C C
C

C


   (25) 

where 𝑤𝑖represents the actual value and �̂�𝑖  represents the predicted value. CRE refers to the 

relative error of battery capacity. Meanwhile, Cest and Cref denote the estimated value and the reference 

value of the capacity, respectively. 

It can be concluded from the enlarged local plot of the SOC estimate that the estimated SOC 

converges to the reference value in 25 s even though the initial SOC value is imprecise. Furthermore, 

the error range between the reference SOC and the estimated SOC is roughly controlled to ±1.5%. This 

paper uses Eq. (25) as the basis for capacity evaluation, the initial value is set to the rated capacity, and 

the proposed algorithm can converge to the actual reference capacity of 1.95 Ah in 3600 s. 
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Figure 7. SOC estimation results and errors with incorrect initial SOC values 

 

 

The adjusted available capacity is used for the next step of updating the SOC status. As a result, 

the MAE and RMSE of the SOC estimate do not exceed 1%, while the MAE is controlled to 1.5%, as 

shown in Table 3. Overall, the algorithm exhibits good convergence and robustness under incorrect 

initial SOC values. 

 

Table 3. SOC estimation without correct initial SOC values 

 

Initial parameter values  SOC estimation results 

Available 

Capacity/A·s 
SOC0/% 

 
Convergence time/s MAE/% RMSE/%  

7200 60  35 0.72 0.96  

7200 70  11 0.69 0.80  

 

4.3 Robustness against various temperature effects 

To verify the effect of ambient temperature on this algorithm, this paper compares and analyzes 

the estimation results of the proposed algorithm at room temperature and in high- and low-temperature 

cases, as shown in Figure 8. At high temperature, the activity of lithium ions inside the battery is 

increased, so the capacity convergence state at 45℃ is better than that at 25℃. However, since the initial 

capacity at room temperature is defined as the rated capacity, which deviates from the actual initial 

capacity of the battery, there is a small fluctuation, but it still eventually converges to the reference value. 

At 45 °C, the use of a random initial capacity also does not affect the ADEKF algorithm convergence to 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 2212109 

  

15 

the actual capacity value. This shows that the proposed algorithm can achieve good estimation accuracy 

even when the initial capacity is unknown. 
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Figure 8. The joint estimation results and errors at various operating temperatures. 

 

 

As shown in Table 4, the proposed joint estimation method can better combat temperature 

fluctuations and limit the estimation error bands of SOC and capacity to 1% and 3%, respectively. In 

addition, even though the Thevenin model does not respond well to the low-temperature battery 

polarization characteristics, the ADEKF algorithm can still achieve good estimation results, with the 

SOC is within 2%. This also shows that adding a decay factor in the Kalman gain update process in 

combination with the RLS features improves the results. 

 

Table 4. Calculation results of the SOC estimation against operating temperature variation. 

 

Temperature/℃ 
Initial parameter values  SOC estimation results 

Available Capacity/A·s SOC0/%  MAE/% RMSE/%  

0 7200 80  1.26 1.55  

25 7200 80  0.53 0.56  

45 7380 80  0.63 0.78  
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4.4 Superiority of the joint estimation algorithm 

To further verify the superiority of the proposed method, the algorithm is compared from two 

perspectives: firstly, the suitability of the ADEKF to the reduced-order equation of state, secondly, the 

proposed overall framework is realized for comparison with the traditional method. 

In this section, the superiority of the proposed method is regarded as ‘L-ADEKF’, and the 

simplified low-order equation of state combined with AEKF is named ‘L-AEKF’. The traditional high-

order filter based on AEKF is regarded as ‘H-AEKF’, which also represents the traditional method. The 

three algorithms are compared using the FUDS data at 25 °C and with the initial SOC randomly set to 

0.72 and the initial capacity set to 2 Ah. 

The estimated results of SOC are shown in Figure 9. Obviously, both the proposed method and 

L-AEKF converge to the reference SOC within 60 s, while the H-AEKF performance is relatively weak 

with the initial SOC error. Meanwhile, the L-ADEKF obtains a suitable Kalman gain in the estimation 

process due to the addition of the attenuation factor, which minimizes the MAE and RMSE of the SOC 

of this algorithm. To analyze the causes of this phenomenon in SOC estimation, the capacity estimation 

results of these three methods need to be compared. Intuitively, the capacity error curve of L-AEKF is 

much more drastic, and it is difficult to determine the convergence time. This demonstrates that the 

AEKF algorithm does not match well with the proposed simplified state equation due to the shortage of 

RLS. However, it converges gradually to the true value even over a long time of 8000 s. In contrast, L-

ADEKF shows a more stable convergence ability, keeping the relative error within 2.5%. In addition, 

the traditional algorithm named H-AEKF shows general estimation results due to the instability of the 

higher-order EKF itself. 

To further evaluate the estimation results, it can be seen from Table 5 that the MAE and RMSE 

of the proposed algorithm in SOC estimation are below 0.8% and 2.2%, which are approximately 1.5% 

and 1.3% lower than those of the traditional algorithm, respectively. Meanwhile, the convergence time 

is reduced by 33%.In terms of capacity estimation, the MAE and RMSE of the proposed algorithm are 

controlled within 2.2%, which is approximately 1.6% less than that of the traditional algorithm. 

 

Table 5. Performance comparison of the proposed and traditional methods with an unknown initial state 

 

 

 

SOC estimation  Capacity estimation 

L- ADEKF  H-AEKF  L- ADEKF  H-AEKF 

MAE/% 0.59 2.16  1.72 3.29 

RMSE/% 0.76 2.55  2.11 3.82 

Convergence time/s 51 156  4000 6800 

CPU time/μs 97 143  —— —— 
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Figure 9. SOC and capacity estimation results and errors of the three methods 

 

 

4.5. Model Comparative Analysis  

To verify the performance of the proposed algorithm, we compare it with the some mainstream 

joint-estimation algorithm mentioned in Subsection 3. The comparison results are presented in Table 6. 

It is worth noting that we use the 25 ℃ data from the reference literature for the comparison. None 

indicates that the reference result is not given in this literature. We can observe that the MAE of the SOC 

estimation is the lowest for the algorithm proposed in this paper. On the contrary, the estimation result 

of the Multi-timescale EKF is the worst, which has an RMSE of SOC and capacity greater than 3%. 

Based on the first model, the AVMT EKF algorithm proposes a new adaptive variable multi-timescale 

framework. Thus, its convergence time is reduced by 40% than the Multi-timescale EKF model. The 

Dual-AEKF method has a 1.7% improvement in SOC accuracy over the former approximately. 

However, the capacity convergence time of this method is as much as 8000 s due to the cross-talk effect 

of the double EKF, and the algorithm fluctuates in the late stage of the estimation. The Hybrid model 

can obtain the capacity based on the OCV with accumulated charge, so although the fastest capacity 

convergence speed is achieved, the uncertainty of the interval time leads to a reduction in the SOC 

estimation accuracy and algorithm flexibility. The Triple PI model achieves better accuracy for the joint 

estimation of battery SOC, capacity and resistance based on a ternary proportional integral observer. But 

its structure is too complex for practical application.  

In summary, compared with the above algorithms, the algorithm proposed in this paper shows 

better performance in terms of accuracy and convergence speed and achieves simple and stable capacity 

and SOC joint-estimation, which is important for engineering applications. 
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Table 6. Error analysis for the proposed model compared to that for other joint estimation models 

 

Joint-estimation 

Model 

SOC estimation  Capacity estimation 

MAE/% RMSE/%  RMSE/%  Convergence time/s 

Multi-timescale EKF[31] None 3.01  4.20 12000 

AVMT EKF[32] 3.15 None  3.99 7200 

Hybrid model[33] 0.96 1.25  2.11 3400 

Triple PI model [34] 0.81 0.95  1.67 None 

Dual-AEKF[35] 0.78 0.91  1.65 8700 

ADEKF[this work] 0.54 0.56  1.62 4000 

 

 

5. CONCLUSION 

To reduce the computational complexity and improve the accuracy of online joint battery 

estimation, a simplified integrated filter based on the ADEKF algorithm for online joint estimation of 

SOC and capacity is proposed in this paper, which considers multitemperature conditions and different 

initial values of batteries. The proposed joint estimation method is validated under FUDS conditions. 

The main contributions are as follows: 

(1) The simplified reduced-order equation of state for the battery is derived to reduce the 

computational complexity of the model-based SOC estimation according to the battery characteristics. 

(2) The gain mismatch problem in the online capacity estimation process of the proposed state 

equation is solved. The AEKF is improved by a subregional decay element factor. The initial capacity 

tolerance of online estimation of SOC for Li-ion batteries is improved, which makes the Li-ion battery 

more adaptable to the actual working conditions with variable temperature. 

(3) By comparing the MAE and RMSE of SOC and the capacity of other joint estimation methods 

in cases of random initial values, the method proposed in this work has the fastest convergence speed 

and the smallest estimation accuracy, which confirms the effectiveness of the joint estimation method. 

Moreover, it is seen that the proposed method has improved computational quantity and accuracy. In 

future work, we will explore the sensitivity analysis of additional factors on the battery state and focus 

on finding advanced intelligent algorithms. 
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