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A mathematical model developed by Lyons and co-workers (Analyst, 121, (1996) 715–731) describes 

a substrate to form a complex with the immobilized catalyst is discussed. The hyperbolic function 

method is applied to solve the nonlinear equations in the electroactive polymer film. The resulting 

analytical expression of the substrate concentration is compared to the numerical results and previously 

available results. A satisfactory agreement is noted. The innovative method yields a compact set of 

analytical approximations that are easy to compute and simple to validate. 
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1. INTRODUCTION 

 

In the disciplines of electrocatalysis, chemical sensor technology, and associated energy storage 

technologies, electrode surfaces covered with electroactive polymer films are being used more and 

more frequently. Over the past 20 years, several simplified mathematical models that describe 

electrocatalysis in electroactive polymer films have been developed [1,2]. The study frequently 

involves formulating and solving nonlinear reaction-diffusion equations, which leads to the 

development of approximative analytical methods for the current amperometric response. 
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This investigation is not simple because one deals with modelling nonlinear reaction/diffusion 

processes in thin films. Several authors have presented insightful analyses of recent advancements in 

this field, including Hillman [3], Lyons [4-6], Evans [7], Wring and Hart [8], Andrieux and Saveant 

[9], Albery [10-13], Bartlett [14,15], Rajendran and collaborators [16-27]. For polymer-modified 

electrodes, more challenging and complex models have been put forth by Albery and Hillman [10] and 

Andrieux and Saveant [9]. Theoretically, [10,11] the latter processes are not well defined. A thorough 

application of the experimental procedures was provided by Bartlett et al. [14].  

Theoretical models of the steady-state current of a polymer-modified electrode, which exhibits 

a rate law defined by the Michaelis-Menten equation, have been produced by Albery et al. [10] and 

Lyons and coworkers [1]. Using the Akbar Ganji Method [29-33], Dharmalingam et al. [28] could 

determine the analytical expression of the concentration of the substrate. So, for steady-state 

conditions, we examined a bounded diffusion problem. In this work, we propose a simple and efficient 

approach to solve the steady-state nonlinear differential equation that arises in the context of the 

electroactive polymer film. 

 

 

2. THE MATHEMATICAL FORMULATION FOR THE PROBLEM. 

We just provide a quick explanation of the model employed here because the model's specifics 

have been comprehensively discussed in [6]. We take into consideration a thin, uniformly thick 

electrocatalytically active polymer film that has been placed on a support electrode. The active sites are 

expected to be evenly distributed throughout the polymer matrix. We further presume that the layer is 

electrically conductive and that charge percolation through the film does not affect the rate.  We 

further presume that the layer is electrically conductive and that charge percolation through the film 

does not affect the rate. Additionally, we assume that the catalyst C and substrate S will react with 

Michaelis-Menten kinetics under the following scheme [6].  

𝑆 + 𝐶
𝐾𝑀
→  [𝑆𝐶] → [𝑃𝐶′]

𝑘 𝑐
→ 𝑃 + 𝐶′ 

                                                         𝐶′
𝑘𝐸
→ 𝐶                                                                                (1) 

The catalytically active form of the immobilized catalyst is represented by C and C'. According 

to [𝑆𝐶], the enzyme-substrate complex, and [𝑃𝐶], the product-enzyme complex, 𝑆 and 𝑃 stand for 

substrate and product, respectively. The Michaelis-Menten constant is denoted by the letters 𝐾𝑀, while 

the catalytic constant is denoted by 𝑘𝑐 [6]. 

𝐷𝑆 and 𝐷′𝑆, stand for a substrate's diffusion coefficient in a film and the Nernst diffusion layer. 

The partition coefficient of and the partitioning of the substrate into the polymer film is assumed to be 

true. The reaction kinetics is Michaelis-Menten form. The governing reaction/diffusion equation is 

expressed using the non-dimensional parameters as follows [6]: 
𝑑2𝑢(𝜒)

𝑑𝜒2
+
𝑛

𝑥

𝑑𝑢(𝜒)

𝑑𝜒
−

𝛾𝑢(𝜒)

1+𝛼𝑢(𝜒)
= 0                                                                                                               (2) 

 

where, 

𝑢 =
𝑆

𝜅 𝑆∞
;       𝜒 =

𝑥

𝐿
;     𝛼 =

𝜅 𝑆∞

𝐾𝑀
;      𝛾 = ɸ2 =

𝑘 𝐿2

𝐷𝑆
                                                                             (3) 
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where 𝑢  denotes dimensionless substrate concentration, and 𝜒 =
𝑥

𝐿
  species the distance parameters. ∇2 

represent the Laplacian operator. The first two terms accounts for substrate diffusion inside the 

polymer matrix, and the third term is non-linear in concentration which describes Michaelis-Menten 

kinetics. Additionally, a defines the relationship between the substrate concentration in the film 𝜅 𝑠∞ 

and the Michaelis constant 𝐾𝑀, which allows us to measure the degree of unsaturation or saturation of 

the catalytic kinetics. In Eq. (3), the last parameter specifies the relationship between the pseudo-first-

order constant 𝑘 for the chemical reaction occurring at the active site and the rate of constant' diffusion 

of the substrate through the polymer matrix. The constant 𝑛 =  0 for planar, 𝑛 =  1 for Cylindrical 

and 𝑛 =  2, for Spherical Geometry. As a result, it provides a method for determining how substrate 

dispersion affects reaction kinetics. The following is an explanation of the beginning and boundary 

conditions: 

𝜒 = 0; 
𝑑𝑢(𝜒)

𝑑𝜒
= 0                                                                                                                                    (4) 

𝜒 = 1; 𝑢(𝜒) = 1                                                                                                                                    (5) 

The Taylor series method [34,35] is applied  to solve the nonlinear reaction/diffusion equation 

for the steady-state to obtain the expression  for the concentration profile of the substrate through the 

polymer layer. We will demonstrate how to quickly, easily, and effectively construct solutions to 

reaction/diffusion differential equations using the Taylor series technique. Now that the concentration 

profile has been integrated, the current reaction can be assessed as follows: 

𝑦 =
𝑖𝐿

𝑛𝐹𝐴𝐷𝑆𝐾𝑀
= 𝛼 (

𝑑𝑢

𝑑𝜒
)
𝜒=1

                                                                                                                     (6) 

 

By solving the non-linear equation using the Taylors series method, recently Usharani  et al. [22] 

obtained substrate concentration as follows.  

𝑢(𝜒) ≈ 𝑢(0) +
𝛾𝑢(0)

(𝑛+1)(1+𝛼 𝑢(0))

𝜒2

2!
+

3𝛾2𝑢(0)

(𝑛+1)(𝑛+3)(1+𝛼 𝑢(0))3
𝜒4

4!
+
15𝛾3 𝑢(0)[(𝑛+1)−2 𝛼  𝑢(0)(𝑛+3)]

(𝑛+1)2(𝑛+3)(𝑛+5)(1+𝛼 𝑢(0))5
 
𝜒6

6!
             (7) 

where u(0) can be obtained by solving the below equation (8): 

1 = 𝑢(0) +
𝛾 𝑢(0)

(𝑛+1)(1+𝛼 𝑢(0))

12

2!
+

3𝛾2 𝑢(0)

(𝑛+1)(𝑛+3)(1+𝛼 𝑢(0))
3

14

4!
+
15𝛾3 𝑢(0)[(𝑛+1)−2 𝛼 𝑢(0)(𝑛+3)]

(𝑛+1)2(𝑛+3)(𝑛+5)(1+𝛼 𝑢(0))5
 
16

6!
                     (8) 

 

 

3. THE CONCENTRATION OF SUBSTRATES USING THE HYPERBOLIC FUNCTION  

METHOD 

Several semi-analytical techniques, including Taylor's series method [46–50], the Adomian 

decomposition method [36], the homotopy analysis method [37,38], the homotopy perturbation 

method [39–41], the variational iteration method [42], the generalized differential transformation 

method [43], a residual method [44], the hyperbolic function method [45], some other new analytical 

method [51], and the Akbari–Ganji method (AGM) have been proposed the  analytical or 

computational solutions for nonlinear differential equations. He [52] recently investigated many 

mathematical techniques for the problem of fractal derivatives to the fourth-order nonlinear integral 

boundary value problems. The nonlinear differential equations that control this system are analytically 

solved in this work using the hyperbolic method. Additionally, this approach makes it simple to 

resolve complex nonlinear equations without the use of challenging mathematical techniques. The 
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simple analytical expression for the steady-state substrate concentration is obtained by solving the 

nonlinear Eqs. 2 and 8  using this method (Appendix A) as follows: 

𝑢(𝜒) = 𝑢(0) cosh (cosh−1 (
1

𝑢(0)
) . 𝜒)                                                                                                   (9) 

where 𝑢(0) can be obtained from the equation (12) 

1 = 𝑢(0) +
𝛾 𝑢(0)

(𝑛+1)(1+𝛼 𝑢(0))

12

2!
+

3𝛾2 𝑢(0)

(𝑛+1)(𝑛+3)(1+𝛼 𝑢(0))
3

14

4!
+
15𝛾3 𝑢(0)[(𝑛+1)−2 𝛼 𝑢(0)(𝑛+3)]

(𝑛+1)2(𝑛+3)(𝑛+5)(1+𝛼 𝑢(0))5
 
16

6!
                  (10)                                                                                        

The Eqn. (9) is the new closed- form of analytical expressions of a concentration of the substrate 𝑢(𝜒) 

for all values of the saturation 𝛼 and diffusion parameter 𝛾, respectively. The dimensionless form of 

the normalized current y is  

𝑦 = 𝛼 (
𝑑𝑢

𝑑𝜒
)
𝜒=1
 = 𝛼 [ cosh−1 (

1

𝑢(0)
) (1 + 𝑢(0))√

(1−𝑢(0))

(1+𝑢(0))
  ]                                                                (11)                                                                                                                    

   = 𝛼 √1 − (𝑢(0))
2
[ cosh−1 (

1

𝑢(0)
)  ]                                                                                                 (12) 

The above result is valid when 𝑢(0) < 1. This result is also obtained via the method of Akbari-Ganji  

(Appendix-B). 

 

 

4. DISCUSSION 

The new approximate analytical expressions for a substrate in electroactive polymer films are 

given in equation (9) for all values of the parameters α (=
κ s∞

KM
 ) and γ (= ɸ2 =

k L2

DS
 ). The layer 

thickness  L, substrate diffusion coefficient DS within the polymer film, and reaction/diffusion 

parameter γ, which governs the relationship between the speed of a chemical reaction within the layer 

and the rate of substrate diffusion across the film, are the intriguing parameters. The parameter α 

quantifies the degree of unsaturation/saturation of the catalytic kinetics. The analytical expression of 

concentration (9) and current (12) for planar and other electrodes are summarized in Table 1.  

 

 

Table 1. The numerous analytical equations for the planar electrode's concentration and current 

 

S.

No 

Ref. Concentration 𝒖 and steady-state current 𝒚 Value of 

γ and α 

1 Albery et al. 

[11] 
𝑢(𝜒) = cosh (𝛾

1

2 𝜒) − sinh (𝛾
1

2 𝜒) tanh (𝛾
1

2)                              

(13) 𝛼 ≤ 1 
𝑦(𝛼, 𝛾) = 𝛼[√𝛾] tanh [√𝛾]                                                            

(14) 

𝑢(𝜒) = [
𝛾

2𝛼
] 𝜒2 −

𝛾

𝛼
 𝜒 + 1                                                              

(15) 

𝛼 ≤ 1 

𝑦(𝛼, 𝛾) = (2𝛾𝛼)1/2                                                                         
(16) 

 

𝑦(𝛼, 𝛾) = ((2𝛾 [𝛼 − 1n(1 + All 

values γ 

and α 
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𝛼)])
1

2) tanh(
𝛾
1
2𝛼

(1+𝛼)(2[𝛼−1n(1+𝛼)])
1
2

) (17)  

2 Lyons et al. [5] 𝑢(𝜒) = cosh(√𝛾 𝜒) sech (√𝛾 )                                                      
(18) 

 

𝑦(𝛼, 𝛾) = 𝛼√𝛾 tanh√𝛾                                                                   
(19)  

𝛼 ≤ 1 

𝑢(𝜒) = 1 +
𝛿

2𝛼
(𝜒2 − 1)                                                                  

(20) 

𝛼 > 1 

𝑦(𝛼, 𝛾) = 𝛾 −
𝛾2

3𝛼
                                                                             

(21) 

 

3 Rahamathunissa 

and Rajendran 

[16] 

𝑢(𝜒) = 1 +
4𝛾

𝜋
 ∑

(−1)𝑛+1{cos[(
𝑛+1

2
) 𝜋𝜒]}

(2𝑛+1)[(
𝑛+1

2
)
2
𝜋2+𝛾]

∞
𝑛=0                                       

(22) 

𝛼 ≤ 1 

𝑦(𝛼, 𝛾) = 𝛼𝛿 −
4𝛼𝛾2

𝜋2
∑

1

(2𝑛+1)[(
𝑛+1

2
)
2
𝜋2+𝛾]

∞
𝑛=0                                  

(23)     

             = 𝛼√𝛾 tanh(√𝛾)  

 

𝑢(𝜒) = 1 +
𝛿

2𝛼
(𝜒2 − 1)                                                                  

(24) 

𝛼 > 1 

𝑦(𝛼, 𝛾) = 𝛾 −
𝛾2

3𝛼
                                                                             

(25)  

 

𝑦𝑠𝑠(𝛼, 𝛾) =
𝛼√𝛾 tanh(√𝛾)+𝛼

2 (tanh(√𝛾 ))
2

1−
1
3
 √𝛾 tanh(√𝛾)

1+
𝛼√𝛾 tanh(√𝛾)

(1−
1
3
 √𝛾 tanh(√𝛾))√𝛾

+
𝛼2√𝛾(tanh(√𝛾 ))2

(1−
1
3
 √𝛾 tanh(√𝛾))𝛾

                               

(26)  

𝛼 > 1 

𝑦𝑠𝑠(𝛼, 𝛾) =
𝛼√𝛾 tanh(√𝛾)

1+√
𝛼

2
 tanh(√𝛾)

                                                               

(27) 

𝛼 ≤ 1 

𝑦𝑠𝑠(𝛾) =
𝛾

1+√
𝛾

2𝛼

                                                                               

(28) 

𝛼 > 1 
for all 

values of 

γ 

4 Dharmalingam 

et al. [28] 𝑢(𝜒) =
cosh(√

𝛾

1+𝛼
 𝜒)

cosh(√
𝛾

1+𝛼
 )

                                                                        

(29) 

All 

values of 

γ and α 

𝑦(𝛼, 𝛾) = 𝛼
sinh(√

𝛾

1+𝛼
 )√

𝛾

1+𝛼
 

cosh(√
𝛾

1+𝛼
 )

                                                           

(30) 

All 

values of 

γ and α 

5 Usha Rani et al. 

[22] 
𝑢(𝜒) = 𝑢(0) +

𝛾 𝑢(0)𝜒2

(1+𝛼 𝑢(0))2!
+

𝛾2 𝑢(0)𝜒4

(1+𝛼 𝑢(0))34!
+

𝛾3 𝑢(0)(1−6 𝛼 𝑢(0))𝜒6

(1+𝛼 𝑢(0))56!
+

All 

values of 

γ and α 
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𝛾4 𝑢(0) (96 𝛼2 𝑢(0)2−20𝛼𝑢(0)−16𝛼𝑢(0)−6 𝛼2 𝑢(0)2+1)𝜒8

(1+𝛼 𝑢(0))78!
+⋯   

(31)   

𝑦 = 𝛼𝛾 [𝑢(0) +
𝛾 𝑢(0)

(𝑛+1)(1+𝛼 𝑢(0))
 
1

3!
+

3𝛾2 𝑢(0)

(𝑛+1)(𝑛+3)(1+𝛼 𝑢(0))
3  
1

5!
+

         
15𝛾3 𝑢(0)[(𝑛+1)−2 𝛼 𝑢(0)(𝑛+3)]

(𝑛+1)2(𝑛+3)(𝑛+5)(1+𝛼 𝑢(0))
5  

1

7!
+⋯]                                     

(32)  

𝛼 ≤ 1 

𝑦 = 𝛾 [𝑢(0) +
𝛾 𝑢(0)

(𝑛+1)(1+𝛼 𝑢(0))
 
1

3!
+

3𝛾2 𝑢(0)

(𝑛+1)(𝑛+3)(1+𝛼 𝑢(0))
3  
1

5!
+

        
15𝛾3 𝑢(0)[(𝑛+1)−2 𝛼 𝑢(0)(𝑛+3)]

(𝑛+1)2(𝑛+3)(𝑛+5)(1+𝛼 𝑢(0))
5  

1

7!
+⋯]                                      

(33) 

𝛼 > 1 

6 This work. 

(HFM) 
𝑢(𝜒) = 𝑢(0) cosh (cosh−1 (

1

𝑢(0)
) . 𝜒)                                           

(34) 

All 

values of 

α 

𝑦 =  𝛼 √1 − (𝑢(0))
2
[ cosh−1 (

1

𝑢(0)
)  ]                                         

(35) 

All 

values of 

α 

   

In Figs. 1-3 for the planar, spherical, and cylindrical electrodes, the numerical results for 

different values of the parameters are compared with our analytical expression of the substrate 

concentration u(χ). The graphs lead to the conclusion that as it α rises or γ decreases, the substrate 

concentration on the electrode surface (χ=0) increases. 

 

 

 

 

 

Figure 1. Comparison of analytical result (Eq. (9))  with numerical results of substrate concentration   

u(χ) for  planar electrode (𝑛 = 0)) for the different values parameters. (a) various values of 𝛼 

and fixed values of 𝛾. (b) various values of 𝛾 and fixed values of 𝛼. The analytical results are 

indicated by (∗∗∗∗∗), and the numerical results are indicated by (           ). 
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Figure 2. Comparison of analytical result (Eq. (9))  with numerical results of substrate concentration     

u(χ) for  cylindrical electrode (𝑛 = 1)) for the different values parameters. (a) various values of 

𝛼 and fixed values of 𝛾. (b) various values of 𝛾 and fixed values of 𝛼. The analytical results are 

indicated by (∗∗∗∗∗), and the numerical results are indicated by (         ). 

 

 

 

 
 

 

Figure 3. Comparison of analytical result (Eq. (9))  with numerical results of substrate concentration     

u(χ) for  spherical electrode (𝑛 = 2)) for the different values parameters. (a) various values of 

𝛼 and fixed values of 𝛾. (b) various values of 𝛾 and fixed values of 𝛼. The analytical results are 

indicated by (∗∗∗∗∗), and the numerical results are indicated by (         ). 
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Table 2. Comparison of normalized steady-state concentrations (Eqns. (8) and (29)) and simulation      

results for various values of parameters.  

 
 α = 0.1, γ = 5 and u(0) = 0.221092 α = 0.1, γ = 25 and u(0) = 0.014744 

 χ 
Numerical 

Value 

HFM of 

Eqn. (8) 

Error 

% of 

HFM 

AGM 

of Eqn. 

(29) 

Error 

% of 

AGM 

Numerical 

Value 

HFM 

of Eqn. 

(8) 

Error 

% of 

HFM  

AGM 

of Eqn. 

(29) 

Error 

% of 

AGM 

0.0 0.2193 0.2211   0.82 0.2339 6.66 0.0139    0.0147 5.76 0.0170 22.30 

0.1 0.2248     0.2265 0.76 0.2392 6.41 0.0157  0.0166 5.73 0.0190 21.02 

0.2 0.2416     0.2431 0.62 0.2555 5.75 0.0216     0.0227 5.09 0.0253 17.13 

0.3 0.2704     0.2715 0.41 0.2834 4.81 0.0332     0.0346 4.22 0.0376 13.25 

0.4 0.3127     0.3133 0.19 0.3242 3.68 0.0533     0.0553 3.75 0.0585 9.76 

0.5 0.3706     0.3702 0.11 0.3799 2.51 0.0873     0.0900 3.09 0.0930 6.53 

0.6 0.4467     0.4450 0.38 0.4528 1.37 0.1438    0.1470 2.23 0.1490 3.62 

0.7 0.5448     0.5409 0.72 0.5465 0.31 0.2372     0.2397 1.05 0.2395 0.97 

0.8 0.6693     0.6621 1.08 0.6650 0.64 0.3908     0.3891 0.44 0.3856 1.33 

0.9 0.8259     0.8133 1.53 0.8140 1.44 0.6422  0.6267 2.41 0.6209 3.32 

1.0 1.0000     1.0000 0.00 1.0000 0.00 1.0000     1.0000 0.00 1.0000 0.00 

Average 0.60  3.05 Average 3.07  9.02 

 

 

Table 3. Comparison of normalized steady-state concentrations (Eqns. (8) and (29)) and simulation   

results for various values of parameters. 

 
 α = 0.1, γ = 0.1 and u(0) = 0.956065 α = 25, γ = 5 and u(0) = 0.904165. 

 χ 
Numerical 

Value 

HFM of 

Eqn. (8) 

Error 

% of 

HFM 

AGM 

of Eqn. 

(29) 

Error 

% of 

AGM 

Numerical 

Value 

HFM 

of Eqn. 

(8) 

Error 

% of 

HFM  

AGM 

of Eqn. 

(29) 

Error 

% of 

AGM 

0.0 0.9561     0.9561 0.00 0.9562 0.01  0.9042   0.9042   0.00  0.9110   0.75 

0.1 0.9565     0.9565 0.00 0.9566 0.01 0.9051     0.9051 0.00 0.9117 0.73 

0.2 0.9578     0.9578 0.00 0.9580 0.02 0.9081   0.9081 0.00 0.9145 0.70 

0.3 0.9601     0.9601 0.00 0.9602 0.01 0.9130     0.9128 0.02 0.9189 0.65 

0.4 0.9632     0.9632 0.00 0.9633 0.01 0.9198     0.9195 0.03 0.9250 0.57 

0.5 0.9672     0.9672 0.00 0.9673 0.01 0.9286     0.9281 0.05 0.9330 0.47 

0.6 0.9721     0.9721 0.00 0.9722 0.0 0.9393     0.9387 0.06 0.9427 0.36 

0.7 0.978    0.9780 0.00 0.9780 0.00 0.9521     0.9511 0.11 0.9543 0.23 

0.8 0.9847     0.9847 0.00 0.9847 0.00 0.9667     0.9655 0.12 0.9676 0.09 

0.9 0.9923     0.9923 0.00 0.9924 0.01 0.9834     0.9818 0.16 0.9829 0.05 

1.0 1.0000     1.0000 0.00 1.0000 0.00 1.0000 1.0000 0.00 1.0000 0.00 

Average 0.00  0.01 Average 0.05  0.42 

 

 

As a result of electrocatalysis at polymer-modified electrodes with various geometries(Planar, 

cylindrical, and spherical), a unique steady-state current response is produced, as shown by Eq (12). 

The error percentage of our results using the hyperbolic function method is lower than that of any other 

results. It can also be deduced from Tables 4-5, that the current increases as the saturation parameter 

and diffusion parameters rise. In contrast, the maximum average error between the simulation result 

and our analytical result (Eq. (8)) is 3%. The simulation result and the prior analytical result have a 

maximum average error of 9%. This mathematical model can also be applied to measure the current 

flow between electrodes when a redox reaction occurs and a biosensor with multi enzymes system with 
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non-Michaelis-Menten kinetics. The reaction-diffusion mechanism in biofuel cells and bioreactors can 

also be employed using this mathematical model for amperometric sensors. 

 

 
 

Figure 3.   Plot of dimensionless normalized current 𝑦 versus dimensionless (a) saturation parameter 𝛼  

(b)  diffusion parameter 𝛾 for various values of other parameter. 

 

 

  
 

Figure 4.  Plot of dimensionless normalized current 𝑦 versus dimensionless (a) saturation parameter 𝛼 

(b)  diffusion parameter 𝛾 for various values of other parameter. 

 

Table 4. Comparison of steady-state current y with the different analytical and numerical results at  

various values of the parameters. 

 
 𝜸= 0.5 𝜸= 1 

α 

Numeri

cal 

Value 

Lyons et 

al. Eq. 

(19) For 

𝜶 ≤ 𝟏 

(21) For 

𝜶 >  1 

% of 

deviatio

n 

 

HFM of 

Eqn. 

(35) 

For ∀ 𝜶 

% of 

deviation 

Dharmali

ngam et 

al. 

eqn. (30) 

For ∀ 𝜶 

% of 

deviatio

n 

Numeri

cal 

Value 

Lyons et al. 

Eq. (19) For 

𝜶 ≤ 𝟏 

(21) For 𝜶 >
 1 

% of 

deviatio

n 

 

HFM of 

Eqn. (35) 

For ∀ 𝜶 

% of 

deviation 

Dharmali

ngam et 

al. 

eqn. (30) 

For ∀ 𝜶 

% of 

deviatio

n 

0.01 0.00433 0.00431 0.46404 0.00427 1.40515 0.00427 1.40515 0.00747 0.00762 1.9685 0.00753 0.79681 0.00756 1.19048 

0.05 0.02049 0.02153 4.83047 0.02075 1.25302 0.02063 0.67863 0.03694 0.03808 2.9937 0.03684 0.27144 0.03666 0.76378 

0.1 0.04069 0.04305 5.48199 0.04011 1.44603 0.03963 2.67474 0.07105 0.07616 6.7096 0.07177 1.0032 0.07068 0.52349 

5 0.41103 0.48333 14.9587 0.41716 1.46946 0.40546 1.37375 0.82443 0.93333 11.668 0.83539 1.31196 0.78993 4.36748 
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10 0.46033 0.49166 6.37229 0.45549 1.06259 0.44778 2.80272 0.90136 0.96667 6.7562 0.91295 1.26951 0.88251 2.13595 

500 0.50000 0.49983 0.03402 0.49904 0.19237 0.49884 0.23254 1.00002 0.99667 0.3362 0.99082 0.92852 0.98684 1.33558 

1000 0.50000 0.49992 0.01601 0.49952 0.09609 0.49942 0.11614 1.00001 0.99966 0.0351 1.00008 0.007 0.99867 0.13418 

2000 0.48000 0.49996 3.99232 0.49976 3.95389 0.49971 3.94428 1.00001 0.99984 0.017 1.00004 0.003 0.99934 0.06704 

Average 4.52  1.36  1.65 Average 3.81  0.69  1.32 

 

 

Table 5. Comparison of steady-state current y for various values of 𝛼 when 𝛾= 5.  

 

α 
Numerical 

Value 

Lyons et al. Eq. 

(19) For 𝜶 ≤ 𝟏 

(21) For 𝜶 >  1 

% of deviation 

 

HFM of 

Eqn. (35) 

For ∀ 𝜶 

% of 

deviation 

Dharmalingam et 

al. 

eqn. (30) 

For ∀ 𝜶 

% of 

deviation 

0.01 0.02157 0.02185 1.28146 0.02158 0.04634 0.02174 0.78196 

0.1 0.21008 0.21856 3.87994 0.21296 1.35237 0.20728 1.35083 

5.5 3.99702 3.48485 14.6971 4.29918 7.02832 3.40052 17.5414 

10.5 4.45128 4.20635 5.82286 4.67316 4.74796 4.00144 11.2419 

100.5 5.02542 4.91708 2.20334 4.97044 1.10614 4.87102 3.16977 

500.5 5.00502 4.98335 0.43485 4.99415 0.21765 4.97352 0.63335 

1000.5 5.00251 4.99167 0.21716 4.99708 0.10866 4.98671 0.31684 

2000.5 4.80121 4.99584 3.89584 4.99854 3.94775 4.99334 3.84773 

Average 4.73  2.64  6.03 

 

 

5. CONCLUSIONS 

An amperometric sensor's mathematical model is described. Through Michaelis-Menten 

reaction kinetics, the sensing components in a surface-deposited polymer film make contact with the 

substrate. Analytical solutions have been found for a nonlinear time-independent partial differential 

equation. With the hyperbolic function approach, analytical expressions were reported for the 

substrate's concentration and the current's steady-state response. When compared to other analytical 

techniques, this method is straightforward, has a simple solution, and yields accurate results. This 

method can quickly solve other nonlinear boundary value problems in the physical and chemical 

sciences. 
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Appendix A: Analytical solution of nonlinear equations (Eqs.2 and 3) using the hyperbolic function 

method (HFM).  

The approximate analytical solution of equation (2) is considered as follows: 

𝑢(𝜒) = 𝐴 cosh(𝑚𝜒) + 𝐵𝑠𝑖𝑛ℎ (𝑚𝜒)                                                                                                   (A1) 

The derivative of Eq. (A1) is 

𝑢′(𝜒) = 𝐴 𝑚 sinh(𝑚𝜒) + 𝐵 𝑚 cosh(𝑚𝜒)                                                                                          (A2) 

The boundary conditions are, 

𝑢′(0) = 0                                                                                                                                             (A3) 

𝑢(1) = 1                                                                                                                                              (A4) 

Now, we can assume that one more boundary condition is 𝑢(0).                                                       (A5) 

Using the boundary condition (A5),  

𝐴 = 𝑢(0)                                                                                                                                              (A6) 

Using the boundary condition (A4), 

1 = 𝑢(0) cosh𝑚 + 𝐵 sinh𝑚                                                                                                              (A7) 

Using the boundary condition (A3), we get 

𝐵 = 0                                                                                                                                                   (A8) 

Now, substituting 𝐵 = 0 in Eq. (A7) becomes, 

1 = 𝑢(0) cosh𝑚                                                                                                                                  (A9) 

Now substituting 𝐴 = 𝑢(0) and 𝐵 = 0 in Eq. (A1), we get 

𝑢(𝜒) = 𝑢(0) cosh(𝑚𝜒)                                                                                                                     (A10) 

Using Eq. (A9) 

𝑚 = cosh−1 (
1

𝑢(0)
)                                                                                                                             (A11) 

∴ The solution to the equation is  

𝑢(𝜒) = 𝑢(0) cosh (cosh−1 (
1

𝑢(0)
) . 𝜒)                                                                                              (A12)  

 

Appendix B. Relation to the result obtained via the method of Akbari-Ganji. 

Using the Akbari-Ganji method it is readily shown that the expression for the concentration profile of 

reactant is: 

 

 

cosh

cosh

m
u

m


                                (B1) 

where m is given by the following expression: 

  1 1
m

n






 
                                                                                                    (B2) 

Furthermore   

 ( ) (0)coshu u m             (B3) 

From eq.(A9) we can show that 

1
(0) sech

cosh
u m

m
                                                                                          (B4) 

Clearly we note that 

   sech coshu m m                                                                                          (B5) 
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Clearly, eq.(B4) is equivalent to eq.(A12) since 
 

 1 11
cosh cosh cosh

0
m m

u
   

 
   

 
 and 

 1 1
cosh cosh cosh

(0)
m

u
 

  
  

  
 as required. Furthermore it has been shown that the reaction flux 

is given by 

 
1

0 sinh tanh
du

y u m m m m
d




 
   

 
                (B6) 

We recall the following identity:  

2tanh 1 sechm m                                                                                          (B7) 

Hence the normalized current is given by: 

 2 21 sech 1 0y m m m u                                                                                             (B8) 

Recalling that 
1

cosh
(0)

m
u

  then we note that, 

1 1
cosh

(0)
m

u

  
  

 
                                                                                                                       (B9) 

If eq.(B9) is substituted into eq.(B8) we immediately obtain eq.(12) in the text. The advantage of the 

Akbari-Ganji result is that 𝑚 may be  immediately related to the reaction/diffusion parameter   and 

the saturation parameter   and to the geometry of the problem via the 𝑛 value, where 𝑛 =  0, 1, 2 for 

planar, cylindrical and spherical diffusion respectively. 
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