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A mathematical model describing the transport and kinetics of substrate and redox mediator in surface 

deposited films of finite thickness is described. These bio-catalytically active chemically modified 
electrodes comprise redox enzymes immobilized in a highly dispersed mesh of single walled carbon 

nanotubes (SWNT) which are in turn immobilized on a support metal surface. A small molecule redox 
mediator is used to both regenerate the reduced enzyme and to transfer electrons either to the carbon 

nanotube surface or to the underlying support electrode surface thereby generating a current which can 
be measured. The pertinent transport and kinetic differential equations of both substrate and redox 

mediator are formulated along with suitable boundary conditions and are solved analytically to derive 
suitable approximate analytical expressions for the current response expected for the system under 

steady state batch amperometric conditions. The kinetics of substrate and mediator within the nanotube 

layer are summarized in terms of a kinetic case diagram. 
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1. INTRODUCTION 

In a recent feature article Li, Wang and Chen [1] described nano-bioelectrochemistry as a new 

interdisciplinary field which provides scope for much exciting development, innovation and new 

discovery over the next few years. This emerging field combines interfacial electrochemistry, 

biochemistry and biocatalysis and nanoscience and has as a central aim the full understanding and use 

of biological electron transfer processes in well defined nanostructured environments which can be 
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used as platforms for emerging biosensor and bioelectronic applications and devices. This area has 

been recently reviewed by a number of authors [2-11].  In a recent review by Willner and Katz [6] it 

was stated that ‘integration of redox enzymes with an electrode support and formation of an electrical 

contact between the biocatalyst and the electrode is the fundamental object of bioelectronics and 

optobioelectronics’. More generally the nanoscale will define the region where the physical and 

engineering science of the 21
st
 century will be pursued, elaborated and utilized [12-15]. Since their 

discovery by Iijima [16] in 1993, carbon nanotubes (both multiwalled and single walled, designated 

MWNT and SWNT respectively) have attracted enormous international interest because of their 

perceived unique structural, mechanical and electronic properties [17-22]. In addition the redox and 

catalytic properties of electrodes modified with both MWNT and SWNT have recently been examined 

[23-36]. These types of nano-heterogeneous systems have been typical exemplifiers of chemically 

modified electrodes which have been extensively studied for over 30 years [37-43]. 

A key concept associated with chemically modified electrodes is that of redox mediation. In 

this process surface immobilized sites may be activated electrochemically via application of a potential 

to the support electrode. The latter sites may then oxidize or reduce other redox agents located in the 

solution phase adjacent to the immobilized layer, for which the direct oxidation or reduction at the 

electrode surface is inhibited, either because of intrinsically slow heterogeneous electron transfer 

kinetics, or because close approach of the soluble redox species to the electrode is prevented. The idea 

is presented schematically in figure 1 where the processes of direct unmediated electron transfer and 

mediated electron transfer at an electrode are compared. 
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Figure 1. Schematic representation of direct and mediated electron transfer at the electrode/solution 
interface. 

 

Of course the attractive feature of chemically modified electrodes lies in the fact that the 

deposited chemical microstructure or bio-recognition element can be the subject of bottom up rational 

design and be tailormade to perform a specific task.  The ‘bottom up’ construction of  nano- structured 

assemblies using catalytic enzymes, small molecule redox mediators and immobilized matrices  can be 

challenging,  and the successful combination of all three components to form a successfully operating 

biocatalytic system necessitates a detailed understanding of the fundamental kinetic and transport 

processes which may occur within the surface immobilized nanostructure. This is best accomplished 
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by developing a mathematical model which captures the essential physics and chemistry which 

encompass the key happenings in the process of biosensor operation namely, the transport of reactant 

(often called analyte or substrate) to the surface immobilized biorecognition element, and the chemical 

reaction dynamics between the substrate and the latter. It is usually assumed that the substrate transport 

mechanism can be ascribed to diffusion (transport in a concentration gradient). The rate law governing 

the interaction between substrate and biocatalyst can then be specified. Hence the modeling procedure 

involves problem formulation in terms of specifying a particular differential equation which involves 

diffusion and chemical reaction components. This reaction-diffusion (RD) equation may in general be 

time dependent and the chemical term may well be of a form such that the net RD equation is non-

linear. It is solved subject to specific initial and boundary conditions to obtain an expression for the 

reaction flux or equivalently, the current flow and hence the amperometric response in terms of 

pertinent experimentally measurable parameters such as substrate and mediator concentration, enzyme 

loading, layer thickness and so on. The mathematical solution may sometimes be analytical, or more 

often, numerical. This type of analysis has been described for a variety of model systems [44-61]. 

Early theoretical work on transport and kinetics in immobilized enzyme biosensor systems has been 

reported by Albery and co-workers [62-64], Bartlett et al [65-70] and others [71]. More recently 

comprehensive theoretical papers by Saveant and co-workers [72-77], Lyons [78-82] , Kulys and 

Baronas [83] and by Gooding et al [84-87] have been published. 

Electron transfer in biological systems is one of the leading areas in the biochemical and 

biophysical sciences [88-90] and in recent years there has been considerable interest in the direct 

electron transfer between redox proteins and electrode surfaces [91-98]. However in the absence of 

mobile mediating small molecules, the observation of well defined electrochemical behaviour of 

immobilized flavoprotein oxidase systems such as glucose oxidase (GOx) is rendered extremely 

difficult, because the active FAD group is embedded deep within the protein structure thereby making 

the transmission coefficient for direct electron transfer between the latter and the support electrode 

very small [99,100]. Various immobilization strategies [101,102] have been adopted to fabricate 

enzyme electrodes for biosensor applications. These strategies have exhibited variable degrees of 

success and in many cases electron transfer mediators have been used to facilitate electronic 

communication between the active site of the protein and the underlying electrode. However the 

potential at which an amperometric enzyme biosensor is operated depends on the redox potential of the 

mediator used rather than that exhibited by the active site of the redox enzyme. Usually the difference 

in magnitude between the latter potentials is significant (typically ca. 0.3 - 0.5V) and is a factor which 

acts against successful biosensor operation, since the more positive the operating potential, the greater 

is the tendency for the sensor to respond to oxidizable substances present in ther sample other than the 

target substrate. Clearly the best strategy for successful enzyme biosensor fabrication is to devise a 

configuration by which electrons can directly transfer from the redox center of the enzyme to the 

underlying support electrode. This has been accomplished in recent years using the concept of 

molecular wiring.  

The similarity in length scales between carbon nanotubes and redox enzymes suggest the 

presence of interactions that may be favourable for biosensor application [9,23]. The strategy of 

physical adsorption or covalent immobilization of large biomolecules onto the surface of immobilized 
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carbon nanotubes may well represent an exciting pathway through which direct electrical 

communication between support electrodes and the active site of redox enzymes can be achieved. For 

instance recent work [103-107] has indicated that the chemical modification of electrode surfaces with 

carbon nanotubes has enhanced the activity of the latter with respect to the reaction of biologically 

active species such as hydrogen peroxide, dopamine and NADH. Furthermore multi-walled carbon 

nanotubes have been shown to exhibit good electronic communication with redox proteins where not 

only the redox center is close to the proteins surface such as found with cytochrome c, azurin and 

horseradish peroxidase, but also when it is embedded deep with the glycoprotein sheath such as is 

found with glucose oxidase [29, 108- 111]. 

In a recent communication describing amperometric glucose detection at SWNT mesh 

modified glassy carbon and gold electrodes incorporating dispersed immobilized glucose oxidase, 

Lyons and Keeley [110] have reported that catalytic activity with respect to glucose oxidation is 

observed only when a soluble mediator such as oxygen or ferrocene monocarboxylic acid is present in 

the solution. Catalytic glucose oxidation does not occur if adsorbed glucose oxidase is only present. 

The homogeneous mediator is required to ensure efficient charge shuttling between the flavin active 

site buried deep within the protein sheath and the underlying carbon nanotube sidewall. It was 

suggested that mediator molecules such as oxygen or ferrocene monocarboxylic acid molecules are of 

the correct size to enter the glycoprotein sheath effectively and interact with the flavin group. It is 

important to note that the carbon nanotube and the enzyme molecule share a similar length scale and so 

the enzyme is able to adsorb on the nanotube sidewall without losing its biologically active shape, 

form and function.  Indeed Baughman and co-workers [103] have suggested the striking analogy of 

piercing a balloon with a long sharp needle such that the balloon does not burst. Instead by a gentle 

twisting action the needle can be made to enter the balloon without catastrophe. Similarly it was 

proposed by Lyons and Keeley [110] that some number of nanotubes  are able to pierce the 

glycoprotein shell of glucose oxidase and gain access to the flavin prosthetic group such that the 

electron tunnelling distance is minimized and consequently electron transfer probability optimized. 

Such access is not generally afforded with traditional smooth electrodes. 

In the present paper we further develop a theoretical model which describes transport and 

kinetics at electrodes which have been chemically modified with highly dispersed meshes of single 

wall carbon nanotubes on which redox enzymes such as glucoes oxidase have been adsorbed. The first 

paper in this series [112] examined the transport and kinetics within a very thin film of SWNT in 

which the bio-catalytic enzyme had been immobilized. In the present paper we develop this idea and 

examine substrate and redox mediator transport and kinetics within a SWNT film of finite thickness L 

in which a redox enzyme such as glucose oxidase has been homogeneously dispersed. Two cases of 

practical interest will be examined. The first pertains when the nanotube strands are electrically 

conducting. The second applies when the strands are not so conducting and the redox mediator is 

regenerated at the underlying support electrode surface. In a subsequent paper [113] we will describe 

the somewhat more complex situation where metal nanoparticle decorated SWNT strands are used and 

the redox mediator can be regenerated along the length of the nanotube strands. In this more complex 

situation the balance between macroscopic linear diffusion throughout the film and microscopic 

spherical diffusion to the catalytic nanoparticle must be considered [44, 114-116].  
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The analysis presented in the present paper will extend and further develop theoretical ideas 

proposed by Bartlett and Whittaker [66], Bartlett and Pratt [68] , Lyons and co-workers [47] and by 

Albery et al [64]. The latter papers focused on developing an approximate analytical description of 

finite diffusion coupled with non-linear Michaelis-Menten kinetics involving redox enzymes 

immobilized within electronically conducting polymer matrices. In the present work the analysis is 

extended to chemically modified electrode surfaces in which the  redox enzyme molecules are 

homogeneously dispersed within a SWNT mesh of finite thickness. It is expected from previous 

experimental work [25] that the surface coverage of adsorbed enzyme will be relatively high, typically 

lying in the range 90-160 pmol cm
-2

.  Hence the mathematical model to be developed will consider 

both the transport of substrate and mediator in the solution filled pores between the nanotube strands to 

either the redox enzyme site or to the electrode surface, the enzyme/mediator and enzyme substrate 

reaction kinetics and the reaction kinetics of the mediator at the support electrode surface or at the 

nanotube sidewall. Furthermore the detailed relationship between the substrate reaction flux Sf  and 

the observed flux fΣ  measured at the electrode is determined. 

 

 

2. THEORETICAL MODEL 

2.1 Model setup and general considerations 

Our mathematical analysis will involve the following simplifications. We assume for simplicity 

that the mesh of carbon nanotubes immobilized on a conductive support electrode surface can be 

described in terms of a homogeneous slab of uniform thickness L. We also assume, unlike part 1 of the 

present series, that the redox enzyme is distributed homogeneously throughout the body of this slab 

with a concentration eΣ . We denote the bulk concentration of substrate as s∞ and that of oxidized 

redox mediator as a∞ . We assume that both the substrate and oxidised redox mediator (such as 

oxygen) can diffuse through the external bathing solution and rapidly partition into the 

nanotube/enzyme layer with partition coefficients designated as ,S Aκ κ  respectively. For ease of 

analysis we neglect the effect of mediator and substrate diffusion in the solution adjacent to the 

nanotube layer and therefore assume that at x =  L, ,L S L As s a aκ κ∞ ∞= = . 

We can visualise two distinct situations. The first occurs when the nanotube sample is 

conducting. This situation is illustrated in figure 2. The second (outlined schematically in figure 3) 

pertains when the nanotube sample is not so conducting. In the first case the reduced mediator reacts 

along the length of the nanotube strands. In the second the reduced mediator is required to diffuse to 

the support electrode surface and react there. 

We assume that the reaction between oxidized enzyme and substrate proceeds via Michaelis-

Menten kinetics. The reduced enzyme is regenerated via reaction with the oxidized mediator in the 

film. This reaction is assumed to proceed via simple bimolecular reaction kinetics, although it is quite 

possible that the reaction between oxidized mediator and reduced enzyme can also involve adduct 

formation and thus involve a Michaelis-Menten type mechanism. This particular  possibility was 

considered in the first paper of this series [112 ]. 
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Figure 2. Schematic representation of reaction and diffusion of substrate and mediator within an 

immobilized nanotube mesh. The nanotube acts as a molecular wire and the mediator reacts along the 

nanotube surface. 
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Figure 3. Schematic representation of reaction and diffusion of substrate and mediator within an 

immobilized nanotube mesh. The nanotube acts as a molecular wire and the mediator reacts at the 
underlying support electrode surface. 
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We therefore describe the reaction sequence in terms of the ‘ping-pong’ mechanism.  

 

( ) ( )

M c
K k

O O R R

k

O R R O

k

k

S E E S E P E P

A M E B M E

B A

B C

′

′

+ → → +

+ → +

→

→

ˆ ˆ ˆ †‡ ˆ ˆ ˆ

 

where S, P represent the substrate and product species respectively, EO, ER denote the oxidized and 

reduced forms of the redox enzyme and A, B denote the oxidized (MO) and reduced (MR) forms of the 

redox mediator respectively. Typical examples of the latter might be O2/H2O2 [66] or 

benzoquinone/hydroquinone [71] respectively. Note that the reduced form of the mediator may react 

either to regenerate the oxidized form A or be reduced further to form a product C. The specifics of the 

reaction will depend on the electrode potential applied to the modified electrode. In either case the 

kinetics of the heterogeneous electron transfer reaction is quantified via the heterogeneous rate 

constant k ′  which will be potential dependent and follow Butler-Volmer  kinetics. We assume that the 

SWNT mesh immobilized on the support electrode surface is very open and porous and the diffusion 

of substrate and redox mediator species in the nanotube layer is described by the diffusion coefficients 

DS and DM = DA = DB respectively. The Michaelis Menten enzyme kinetics are described in terms of 

the Michaelis constant KM and the catalytic rate constant kc respectively. 

As noted in part 1 of this series [112] the enzyme/substrate reaction and the rate of the 

enzyme/mediator reaction are assumed to give rise to a substrate flux 
Sf  which is measured in the 

usual units of amount transformed per unit area per unit time (mol cm-2 s-1). This will be related in 

some defined manner to the observed flux fΣ  which is measured at the electrode and is related to the 

current flowing via the expression: 

 

     
i

f
nFA

Σ =        (1) 

where n, F and A denote the number of electrons transferred, the Faraday constant and the electrode 

geometric area respectively. The exact relationship depends on whether the mediator reacts along the 

nanotube strand or at the underlying support electrode. In the first case 
S

f fΣ = , whereas in the second 

situation the net flux will differ from the substrate flux in a well defined manner. We will consider 

both of these cases in the present paper. We assume that the heterogeneous rate constant k′  is well 

described by the Butler-Volmer equation: 

 

    [ ] ( )0 0 0exp exp
F

k k k E E
RT

β
βξ

 
′ = ± = ± −  

    (2) 

where ( )0F
E E

RT
ξ = −  denotes a normalised potential, β  is the symmetry factor (typically for simple 

ET reactions 1 2β = ) and the other symbols have their usual meanings. When the heterogeneous rate 
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constant is very large then the ratio of the reduced to oxidized mediator concentrations at  the 

layer/support electrode interface will be related via the Nernst equation. 

Furthermore if δ  denotes the diffusion layer thickness then for distances x δ>  we note that 

0, ,b s s a a∞ ∞= = = . Hence for distances greater than the diffusion layer thickness we propose that 

the concentration of reduced redox mediator is zero and that the concentration of substrate and 

oxidized mediator species admit their bulk values. When the mediator reacts at the underlying support 

electrode surface the net flux is given by: 

     0

0

B

db
f D k b

dx
Σ

 
′= = 

 
      (3) 

In contrast when the mediator reacts along the nanotube strand we can write: 

     ( )
0

x L

S S

x L x

ds
f f D ks x dx

dx

=

Σ

= =

 
= = = 

 
∫     (4) 

Where we note that the rate constant k (units: s
-1

) is given by: ( )c M Uk k K e k eΣ Σ= =  where kc 

denotes the catalytic rate constant and KM is the Michaelis constant for the immobilized redox enzyme. 

Furthermore U c Mk k K=  and eΣ  denotes the total enzyme concentration. 

 

2.2. Definition of the boundary value problem 

We first focus attention on the fate of the reduced mediator species B. We can assume that the 

reduced mediator species B diffuses through the nanotube film to the support electrode where it is 

detected via direct electron transfer quantified by the heterogeneous electrochemical rate constant k′  

and it is generated in the nanotube layer via reaction between the oxidized mediator species A and the 

reduced enzyme ER. The latter is quantified by a bimolecular rate constant k. Hence the pertinent 

reaction/diffusion equation for the reduced mediator species in the layer is given by (assuming steady 

state conditions): 
2

2
0B R

d b
D ke a

dx
+ =      (5) 

In the latter expression Re  and a denote the concentrations of reduced enzyme and oxidized 

mediator species within the nanotube layer. Furthermore for the substrate species S we need to 

consider diffusion of S in the film described by a diffusion coefficient DS and subsequent reaction 

between S and oxidized enzyme EO of concentration eO : 
2

2
0S E O

d s
D k e s

dx
− =      (6) 

In the latter expression we note that the rate constant describing the reaction between oxidized 

enzyme and substrate is given by: 

c
E

M

k
k

K s
=

+
      (7) 

Now we note that if steady state conditions pertain: 
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0O
R E O

de
kae k e s

dt
= − ≅     (8) 

And so the concentration of reduced enzyme is given by: 

E O
R

k se
e

ka
=       (9) 

Now we also note that : 

O R
e e eΣ+ =       (10) 

From en.7, eqn.9 and eqn.10 we can show that: 

( )

1

1E E
R

cE

E M c

k se k s
e

ka ka

k e sk se

ka k s ka K s k s

−

Σ

ΣΣ

 
= + 

 

= =
+ + +

    (11) 

Hence eqn.5 transforms to 

( )

2

2
0c

B

M c

kak e sd b
D

dx ka s K k s

Σ+ =
+ +

   (12) 

Also by noting that 
E O R

k e s kae=  then eqn.6 transforms to 

2

2
0S R

d s
D kae

dx
− =      (13) 

And using the result presented in eqn.11 we finally obtain 

( )

2

2
0c

S

M c

kak e sd s
D

dx ka s K k s

Σ− =
+ +

   (14) 

We note that eqn.12 and eqn.14 provide the fundamental description for reaction and diffusion 

of mediator and substrate within the nanotube layer and are similar in form to expressions previously 

derived by Bartlett and co-workers [65-68] for enzyme transport and kinetics within  electroactive 

polymer materials. 

These expressions must be solved subject to the following boundary conditions. If the reduced 

mediator species B reacts on the SWCNT fibers throughout the thickness L of the layer then we have: 

0, 0

,
L S

S S

x L

ds
x

dx

x L s s

ds
f D

dx

κ ∞

=

= =

= =

 
=  

 

     (15) 

Alternatively, if the reduced mediator B reacts at the support electrode surface then we solve 

eqn.14 for s(x) and use the latter result in eqn.12 and then solve the latter reaction/diffusion equation 

subject to the latter boundary conditions: 
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0

0

0, ,

, 0,

B B

x

L L A

db
x b b f k f f D

dx

x L b b a a aκ

Σ Σ

=

∞

 ′= = = = =  
 

= = = = =

   (16) 

In the latter expressions we have neglected concentration polarization of A and B in the 

solution adjacent to the nanotube layer. We also assume that the concentration of oxidized mediator 

has a uniform value given by Aa aκ ∞= throughout the nanotube film. 

 

2.3. Transformation to non-dimensional variables 

We [47] and others [56,68] have noted in previous publications that resolution of a complex 

boundary value problem of the type outlined in section 2.2 is best accomplished if the pertinent 

reaction diffusion equations and boundary conditions are transformed into non-dimensional format. 

This procedure ensures that the mathematical expressions are cast into a form that makes identification 

of suitable approximations more transparent, The introduction of characteristic dimensionless 

parameters related to the fundamental physical processes occurring in the system also enables the 

formulation of suitable limiting expressions for the reaction flux the predictions of which may be 

compared directly with experimental measurements. 

We introduce the following dimensionless distance and concentration variables: 

S A

x s b
u v

L s a
χ

κ κ∞ ∞
= = =      (17) 

We also introduce the saturation parameter α  as follows [47]: 

S

M

s

K

κ
α

∞

=       (18) 

The latter parameter provides a measure of the degree of substrate unsaturation/saturation 

within the nanotube layer. When 1, Ms Kα << <<  and the enzyme/substrate reaction kinetics within 

the layer is unsaturated (rate depends linearly on substrate concentration), whereas in contrast when 

1,
M

s Kα >> >>  the enzyme/substrate reaction kinetics are saturated (rate independent of substrate 

concentration). These two limits define Michaelis-Menten enzyme kinetics.  

There are various ways [47,68] in which the reaction/diffusion equations may be made 

dimensionless. In the present formulation detailed analysis indicates that the following expressions 

may be obtained: 

( )
( )

2

2
0

1

S F ud u

d F u

γ

χ κ
− =

+
     (19) 

( )
( )

2

2
0

1

M F ud v

d F u

γ

χ κ
+ =

+
     (20) 

In the latter expressions we introduce the saturation function F(u) as: 

( )
1

u
F u

uα
=

+
     (21) 
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where we note that [47] Mu s Kα = quantifies the degree of unsaturation/saturation. We note that when 

( )1,u F u uα << ≅ and we have unsaturated enzyme kinetics. In contrast when ( )
1

1,u F uα
α

>> ≅  

and we have saturated enzyme kinetics. Furthermore we have introduced the following 

reaction/diffusion parameters for substrate and redox mediator respectively: 

( )c M SSE
S

SD S S

k K e L sf

f D s L

κ
γ

κ

∞
Σ

∞
= =      (22) 

( )c M SSE
M

MD M A

k K e L sf

f D a L

κ
γ

κ

∞
Σ

∞
= =     (23) 

Also we define a kinetic competition parameter κ as follows: 

( )c M SSE

ME A

k K e L sf

f ke L a

κ
κ

κ

∞
Σ

∞
Σ

= =      (24) 

We note that the parameter Sγ  compares the rate of reaction between substrate and oxidized 

enzyme defined by the flux term 
SE

f  with the rate of substrate diffusion through the nanotube layer 

defined by the flux term SDf . In an analogous manner the parameter Mγ  compares the rate of reaction 

between substrate and oxidized enzyme defined by the flux term 
SE

f  with the rate of mediator 

diffusion through the nanotube layer defined by the flux term MDf . Finally the parameter κ  defines the 

balance between two kinetic reaction rates in the film: the oxidized enzyme/substrate flux 
SE

f (defined 

by the unsaturated bimolecular rate constant U c Mk k K= ) and the reduced enzyme/oxidized mediator 

flux 
ME

f (defined by the bimolecular rate constant k). When 1,
SE ME

f fκ << <<  and the reaction 

kinetics are limited by the reaction between oxidized enzyme and substrate. The film consists of the 

oxidized enzyme only. In contrast when 1, SE MEf fκ >> >>  and the kinetics are limited by that of 

reaction between the reduced enzyme and oxidized mediator species A to regenerate the catalytically 

active oxidized enzyme. Hence the film consists of reduced enzyme only. 

The pertinent boundary conditions for a conducting SWNT ensemble where the mediator reacts 

on the nanotube sidewall is: 

0

0 0

1 1

du

d

u

χ
χ

χ

 
= = 

 

= =

     (25) 

And the substrate flux is given by: 

( )
1

0
1

S S
S S

SD S S

f f du
u d

f D s L d
γ χ χ

κ χ∞

 
Ψ = = = = 

 
∫    (26) 

When the nanotube ensemble is not so conducting then the current measures the reaction of the 

redox mediator at the underlying support electrode and the relevant boundary conditions in normalized 

form is given by: 

00

1 0

v v

v

χ

χ

= =

= =
      (27) 
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And the net observed flux is given by: 

0

0

dv
v

d
ζ

χΣ

 
Ψ = =  

 
     (28) 

Where we note that: 

M

k

D L
ζ

′
=       (29) 

This is a parameter which directly compares the heterogeneous electrochemical rate constant 

for reduced mediator transformation to product at the support electrode to the diffusive rate constant 

for reduced mediator transport to the support electrode surface. 

 

2.4. Relationship between observed flux and substrate flux 

We now derive a relationship between the observed flux ΣΨ  and the substrate reaction flux 

S
Ψ . In general these will not be equal [112] and indeed 

SΣΨ < Ψ . 

We begin by adding eqn.19 and eqn.20 to obtain: 
2 2

2 2

M

S

d v d u

d d

γ

χ γ χ
= −      (30) 

Integrating the latter expression over the dimension of the nanotube layer between the limits of 

0 and 1 we obtain: 

1 0 1 0

M

S

dv dv du du

d d d d

γ

χ χ γ χ χ

         
− = − −        

         
    (31) 

Now since we assume that the substrate does not react directly at the underlying support 

electrode surface then 
0

0
du

dχ

 
≅ 

 
. Furthermore we note that 

1 0

,S

du dv

d dχ χ
Σ

   
= Ψ = Ψ   

   
 and so 

eqn.31 reduces to: 

1

M
S

S

dv

d

γ

γ χΣ

 
Ψ = Ψ +  

 
    (32) 

This expression is equivalent to eqn.A3 in the first paper of this series [112]. As first noted by 

Bartlett and co-workers [68] there are three ways in which the reduced mediator is lost from the film. 

First it can be turned over at the electrode. Second it can escape into the bulk solution. Third it may be 

turned over by the substrate. The first two processes are described by the fluxes of mediator at the 

electrode surface and the film/solution interface respectively. With no enzyme catalyzed reaction 

occurring these two fluxes must be equal for steady state to be attained. The difference between these 

two fluxes is therefore due to turnover of mediator by the substrate. Now the substrate can only enter 

the nanotube film at the layer/solution interface, and be consumed by reaction with the mediator, since 

it has zero flux at the electrode surface. These two processes must therefore balance at steady state. 

Since the enzyme is only present in small catalytic quantities, the rate of enzyme catalysed 
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consumption of substrate is equal to that of the mediator. We therefore note that at steady state the flux 

of substrate into the film must therefore be equal to the difference between the fluxes of mediator at 

the electrode and at the film/solution interface and from eqn.32 we can write: 

1

S
S

M

dv

d

γ

γ χ
Σ

   
Ψ = Ψ −  

   
    (33) 

 

2.5. The thin film limit 

It is clear that exact solutions of the u and v master equations presented in eqn.19 and eqn.20 

cannot be derived for all values of  α  and κ . This is because the kinetic terms in the expressions are 

non-linear. In order to obtain mathematical solutions to these master equations it is necessary to 

simplify them. One particular strategy is to examine the so called ‘thin film’ limit. Here we assume 

that substrate diffusion is so rapid that there are no reaction layers within the film. Under these 

circumstances we set 1u ≅  and 1v ≅  , so the concentrations of substrate and mediator will be uniform 

throughout the layer. 

We initially examine eqn.19 and consider the situation pertaining when the nanotube film is 

conducting.  Setting 1u ≅  in eqn.19 and noting in this circumstance that ( )
1

1
F u

α
≅

+
 we get: 

( )
( )

2

2

1
0

1 1

Sd u

d

γ α

χ κ α

+
− =

+ +
    (34) 

This expression can be further simplified to: 
2

2
0

1

Sd u

d

γ

χ α κ
− =

+ +
     (35) 

We can readily show by direct integration that the normalized substrate flux is given by: 

1
1

S
S

du

d

γ

χ α κ

 
Ψ = =  + + 

    (36) 

We examine the limits of large and small α  corresponding to substrate saturation and 

unsaturation respectively. First when 1α >>  or 
M

s K>>  we note that eqn.36 reduces to: 

S
S

γ

α κ
Ψ ≅

+
      (37) 

The latter expression can be reduced to simpler representations depending on the balance 

between α  and κ . For example when α κ>>  eqn.37 reduces to: 

S
S

γ

α
Ψ ≅       (38) 

If we insert the values for each of the dimensionless parameters obtained from eqn.18. eqn.24 

and eqn.26 into eqn.38 we immediately obtain the following approximate expression for the substrate 

reaction flux: 

S cf k e LΣ≅       (39) 
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This expression describes the situation of rate determining decomposition of the ES complex 

which will pertain when the enzyme kinetics is saturated. Here the flux is independent both of the 

substrate and oxidized mediator concentration. The flux is first order with respect to layer thickness 

and enzyme concentration. This will be labeled case III.  

 In contrast when α κ<<  corresponding to the situation where 1α >>  and so κ  is very 

large indeed implying that 
SE MEf f>> then eqn.37 reduces to: 

S
S

γ

κ
Ψ ≅       (40) 

And again from eqn.24 and eqn.26 we get that the substrate reaction flux is: 

S A
f k e Laκ ∞

Σ≅      (41) 

Here the flux is independent of substrate concentration and is first order with respect to enzyme 

concentration, oxidized mediator concentration and layer thickness. This is designated case V and 

corresponds to rate determining reaction between oxidized mediator and reduced enzyme. The 

regeneration of the catalytically active oxidized enzyme is rate determining. 

Turning to the situation when the saturation parameter is small such that 1α <<  then Ms K<<  

and we consider the case when the substrate concentration is low. This is the important case for 

amperometric detection. Under such conditions eqn.36 reduces to: 

1

S
S

γ

κ
Ψ ≅

+
      (42) 

Here we can again consider two limits. First when 1κ <<  which corresponds to the situation 

where 
SE ME

f f<<  then eqn.42 reduces to: 

S SγΨ ≅       (43) 

Transforming to an expression for the substrate flux affords: 

c
S S

M

k
f e L s

K
κ ∞

Σ

 
≅  
 

     (44) 

This situation describes rate determining bimolecular reaction between substrate and oxidized 

enzyme (unsaturated enzyme kinetics). This is case I.  Here the substrate flux and hence the current is 

first order with respect to substrate concentration, enzyme concentration and layer thickness. When 

1κ >>  eqn.42 reduces to eqn.40 and the substrate flux is defined in terms of eqn.41. Again we regain 

case V and have rate determining regeneration of the oxidized enzyme. Hence case V pertains for all 

values of the substrate concentration. 

We now consider eqn.20 which pertains when the nanotube layer is not so conducting. Again 

( )
1

1
F u

α
≅

+
 and eqn.20 reduces to: 

2

2
0

1

Md v

d

γ

χ α κ
+ =

+ +
     (45) 

This expression may be integrated once to yield: 
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1

Mdv
A

d

γ χ

χ α κ
= − +

+ +
     (46) 

And integrated again to produce 

( )

2

2 1

Mv A B
γ χ

χ
α κ

= − + +
+ +

    (47) 

The integration constants A and B are evaluated from the pertinent boundary conditions. When 

0
0 v vχ = =  and so immediately

0
B v= . Again when 0

0

0
dv

A v
d

χ ζ
χ

Σ

 
= = = Ψ = 

 
. Furthermore 

when 
1

1 0v vχ = = =  and eqn.47 reduces to: 

( )( )0
2 1 1

Mv
γ

ζ α κ
=

+ + +
    (48) 

Hence the total flux is given by 

( )( )
0 12 1 1

Mv
γ

ζ
ζ α κ

Σ −
Ψ = =

+ + +
   (49) 

Recalling eqn.36 we can readily show that ( )1 1 S Sα κ γ+ + = Ψ  and hence eqn.49 transforms 

to: 

( )1

1

2 1

M
S

S

γ

γ ζ
Σ −

  
Ψ = Ψ 

+  

    (50) 

Where we note that the loss factor is given by: 

[ ]1

0
expM MD L D L

k k
ζ βξ− = =

′
m    (51) 

Hence the loss factor defines the ratio between the rate of reduced mediator diffusion from the 

layer into the solution to the rate of reduced mediator chemical transformation at the electrode surface. 

It is also dependent on potential. The negative sign in eqn.51 refers to the reduced mediator 

undergoing an oxidation at the support electrode whereas the positive sign signifies that the electrode 

is polarized such that the reduced mediator will undergo further reduction. The expression outlined in 

eqn.50 is a general relationship between the observed flux and the substrate flux and is therefore of 

considerable utility. In general when the potential is set to extreme values [ ]exp 0βξ →m  and the 

following relation pertains between the corresponding limiting flux values: 

,

,
2

S LM
L

S

γ

γ
Σ

Ψ
Ψ =     (52) 

We note that SDM

S MD

f
r

f

γ

γ
= =  defines the ratio of the substrate to mediator diffusive fluxes in the 

film. It is logical that the observed flux will also depend on this quantity. We illustrate in figure 4 a 

plot of the ratio 
SΣΨ Ψ  as function of the parameter ζ  for various values of the ratio SDM

S MD

f
r

f

γ

γ
= = . 
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It is clear that for any value of the ratio SDM

S MD

f
r

f

γ

γ
= = , as the rate of mediator loss via electrochemical 

transformation at the support electrode/film interface increases (by increasing the potential applied to 

the electrode for example) compared with the rate of loss of mediator from the film via diffusion 

across the film/solution interface increases, the net flux approaches that due to substrate reaction. 

Furthermore the result predicted by eqn.52 is confirmed when the value of ζ  is large which it will be 

at high potential : a constant plateau region is observed.  

The expression presented in eqn.50 is also useful since it immediately enables us to evaluate 

the net flux for the three limiting kinetic situations considered previously for the situation where the 

observed current arises from reaction of the reduced mediator at the support electrode surface. When 

1α <<  we recall that 
1

S
S

γ

κ
Ψ ≅

+
, and so the net flux is 

( ) ( )1 1

1 1

12 1 2 1

M M
S

S

γ γ

γ κζ ζ
Σ − −

    
Ψ = Ψ ≅   

++ +    

   (53) 

Hence for case I, corresponding to the case where 1, 1α κ<< << , the corresponding 

expression for the net flux is: 

( ) ( )1 1

1

2 1 2 1

M M
S

S

γ γ

γ ζ ζ
Σ − −

  
Ψ = Ψ ≅ 

+ +  

   (54) 

Or 

( )1

1

2 1

c
S

M

k
f e L s

K
κ

ζ
∞

Σ Σ−

   
≅   

+    

    (54) 

Which is rate determining unsaturated enzyme kinetics. When , 1, 1κ α κ α>> >> << , 

eqn.53 reduces to: 

( )12 1

Mγ

ζ κ
Σ −

Ψ ≅
+

      (55) 

This defines kinetic case V valid for 
M

s K<< . And hence we note 

( )1

1

2 1
Af ke L aκ

ζ
∞

Σ Σ−
≅

+
     (56) 

Hence the regeneration of the oxidized enzyme is rate determining. 

In contrast when 1α >>  we get the two further cases . When 1, 1,α κ α κ>> << >> , case 

III, we note that S
S

γ

α
Ψ ≅ and so the net flux becomes 

( ) ( )1 1

1

2 1 2 1

M M
S

S

γ γ

γ ζ ζ α
Σ − −

  
Ψ = Ψ ≅ 

+ +  

   (57) 

And the net flux is 
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( )1

1

2 1
c

f k e L
ζ

Σ Σ−
≅

+
      (58) 

Which corresponds to rate determining saturated enzyme kinetics. 

Finally for 1, 1,α κ κ α>> >> >>  we enter the region defining kinetic case V and 

S
S

γ

κ
Ψ ≅ so the net flux again takes the form outlined in eqn.55 and eqn.56. And the regeneration of 

the oxidized enzyme is again rate determining. Hence enzyme regeneration can be rate determining 

over the entire substrate concentration range.  
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Figure 4. Variation of flux ratio with ζ parameter calculated via eqn.50 for various defined values of 

the substrate/mediator transport flux ratio r.  

 

We conclude that significant insights into the transport and kinetics can be extracted via use of 

the thin layer approximation. We now progress and extend the analysis to consider the case where the 

immobilized enzyme layer is of finite thickness. We will show that three further distinct kinetic cases 

can be identified. 

 

2.5. Conductive matrix:  finite thickness 

We now relax the thin film condition and assume that the concentration polarization of 

substrate must be considered within the immobilized enzyme layer. Hence eqn.19 must be solved. If 

we assume unsaturated conditions then ( )1,u F u uα << ≅  and eqn.19 reduces to: 
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2

2
0

1

Sud u

d u

γ

χ κ
− =

+
     (59) 

When 1uκ << , then 1 1uκ+ ≅  and the u-equation reduces to 
2

2
0S

d u
u

d
γ

χ
− =       (60) 

This expression may be readily integrated to yield 

1 1

1 1

cosh sinh

sinh cosh

S S

S S S S

u A B

du
A B

d

γ χ γ χ

γ γ χ γ γ χ
χ

   = +   

   = +   

  (61) 

When 0 0
du

d
χ

χ
= = , hence 

1
0B = . Also when 1 1uχ = =  and so 1

1

cosh S

A
γ

=
 
 

. Hence 

the substrate concentration profile through the layer is given by: 

( )
cosh

cosh

S

S

u
γ χ

χ
γ

 
 =
 
 

      (62) 

Furthermore the normalized substrate flux is given by: 

1

tanhS S S

du

d
γ γ

χ

   Ψ = =    
    (63) 

This result has been derived in a previous analysis [47,59] performed for reaction/diffusion 

with Michaelis-Menten kinetics for substrate reaction within an electronically conducting polymer thin 

film. We can consider two distinct limits. First when 1
S

γ <<  then 
SE SDf f<<  and substrate/enzyme 

unsaturated reaction kinetics will be much slower than the rate of substrate diffusion through the film 

which will be fairly rapid. In other words the layer thickness is very much less than the kinetic length 

of the substrate. Then we assume that tanh S Sγ γ  ≅   and so the normalized substrate flux admits 

the following form: 

S S
γΨ ≅ .      (43) 

This of course is case I already discussed in the thin film limit. When substrate diffusion is very 

rapid we effectively have the latter limit so our result is not to be unexpected. Again the flux will be 

given by eqn.44 corresponding to rate determining unsaturated Michaelis Menten kinetics occurring 

within the bulk of the immobilized enzyme layer. This result will be valid when the mediator/enzyme 

flux is also large. As noted in eqn.44 the reaction flux and hence the current is first order with respect 

to substrate concentration, enzyme concentration and layer thickness. Here increasing the film 

thickness or enzyme loading increases the current because the reaction of substrate occurs uniformly 

throughout the layer. In contrast when 1
S

γ >>  then 
SE SD

f f>>  and substrate diffusion through the 

film will be slower than the substrate/enzyme reaction kinetics. Hence the layer thickness is very much 

larger than the kinetic length. Under these circumstances we note that tanh 1Sγ  ≅   and the 

normalized substrate flux reduces to: 

S S
γΨ ≅       (64) 
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This is a new case which we denote as case II.  We can readily show that the substrate flux is 

given by: 

c
S S S

M

k
f D e s

K
κ ∞

Σ

 
≅  

 
    (65) 

Here we note that reaction between substrate and enzyme is rate limiting and occurs in a region 

located in the outer edge of the film. This case will occur when the diffusivity of the substrate is 

relatively low or when the substrate only diffuses a short distance into the layer before it reacts with 

the enzyme in a thin reaction layer near the film/solution interface. This will occur when the reaction 

between enzyme and substrate is favoured and so the kinetic length will be small. We note that under 

such circumstances in case II the substrate flux and hence the measured current is half order with 

respect to enzyme concentration, is independent of layer thickness and is first order with respect to 

substrate concentration characteristic of unsaturated Michaelis - Menten kinetics. 

We can re-examine eqn.59 and attempt another method of solution which will be valid when 

1Sγ >>  and when 1κ ≅ . We note the following identities: 

2

2

2 2

2

1

2

S

du d u du u

d d d u

d du du d u

d d d d

γ
χ χ χ κ

χ χ χ χ

   
=   

+  

   
=   

   

     (66) 

Hence we note that 
2

2

2
1

2
1

S

S

d du u du

d d u d

du u
d du

d u

γ
χ χ κ χ

γ
χ κ

   
=   

+  

   
=   

+  

    (67) 

Integrating we get: 
2

0
2

1

u

S

du u
du

d u
γ

χ κ

 
= 

+ 
∫      (68) 

Now we note that: 

( )2

1
ln 1

1

u u
du u

u
κ

κ κ κ
= − +

+∫
    (69) 

Noting that when 0 0
du

u
dχ

= =  and so from eqn.67 and eqn.68 we get: 

( )2

1
2 ln 1S

du u
u

d
γ κ

χ κ κ

 
= − + 

 
    (70) 

Noting that 1u =  when 1χ =  we finally derive an expression for the normalized substrate flux: 

( ){ }2

1

2
ln 1S

S

du

d

γ
κ κ

χ κ

 
Ψ = = − + 

 
    (71) 
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Now when 1κ <<  then we can assume that ( )
2

ln 1
2

κ
κ κ+ ≅ −  and so eqn.71 reduces to 

2

2
2

2

S
S S

γ κ
γ

κ
Ψ ≅ =  which is eqn.64 again describing case II.  Alternatively when 1κ >>  we note 

that ( )ln 1 lnκ κ+ ≅  and assuming that lnκ κ>>  we get: 

( )2

2 2
lnS S

S

γ γ
κ κ

κ κ
Ψ ≅ − ≅     (72) 

This expression defines a new kinetic case which we label case VI. Here the substrate flux is 

given by: 

2
S S S A

f k D s a eκ κ∞ ∞

Σ≅      (73) 

Here we note that the reaction flux is half order with respect to enzyme concentration, substrate 

concentration and mediator concentration and is zero order with respect to layer thickness. 

We now consider the situation when 1uα >> . Under such conditions 1 u uα α+ ≅  and 

( )
1

F u
α

≅  and the reaction/diffusion eqn.19  reduces to: 

2

2
0

1

Sd u

d

γ α

χ κ α
− =

+
     (74) 

Here we need to consider the situation where either 1κ α <<  or 1κ α >> . First when 

1κ α <<  eqn.74 reduces to: 
2

2
0Sd u

d

γ

χ α
− =       (75) 

This expression may be readily integrated twice to produce: 

( )

2

2

2 2
2

S

S

du
A

d

u A B

γ
χ

χ α

γ
χ χ χ

α

= +

= + +

    (76) 

Now when: 

 

1

0 0

1 1
S

du

d

du
u

d

χ
χ

χ
χ

= =

 
= = Ψ =  

 

    (77) 

And so we note that 2 20 1
2

SA B
γ

α
= = − . Hence the normalized flux is given by: 

1

S
S

du

d

γ

χ α

 
Ψ ≅ ≅ 

 
     (38) 

Which is case III already discussed. This expression describes the situation of rate determining 

decomposition of the ES complex which will pertain when the enzyme kinetics is saturated. We recall 

that the substrate flux is given by 
S c

f k e LΣ≅ .  Here the flux is independent both of the substrate and 

oxidized mediator concentration. The flux is first order with respect to layer thickness and enzyme 
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concentration. We can readily show that the substrate concentration profile within the layer is given 

by: 

( ) ( )21 1
2

Su
γ

χ χ
α

≅ − −     (78) 

In contrast when 1κ α >>  then 1 κ α κ α+ ≅  and eqn.74 reduces to: 
2

2
0Sd u

d

γ

χ κ
− =       (79) 

Integrating twice we obtain: 

( )

3

2

3 3
2

S

S

du
A

d

u A B

γ
χ

χ κ

γ
χ χ χ

κ

= +

= + +

    (80) 

Again using the boundary conditions outlined in eqn.77 we obtain that: 3 30 1
2

SA B
γ

κ
= = − . 

Hence the normalized flux is given by: 

S
S

γ

κ
Ψ ≅       (40) 

This is case V corresponding to rate determining reaction between oxidized mediator and 

reduced enzyme. The regeneration of the catalytically active oxidized enzyme is rate determining. We 

recall that the substrate flux is given by
S Af k e Laκ ∞

Σ≅ . Here the flux is independent of substrate 

concentration and is first order with respect to enzyme concentration, oxidized mediator concentration 

and layer thickness. The reaction between oxidized mediator and reduced enzyme occurs throughout 

the film and so increases in direct proportion to increasing layer thickness. The flux is independent of 

substrate concentration since the enzyme kinetics with respect to the latter are saturated. 

We need to consider one final possible kinetic situation. This is termed the moving boundary 

scenario. Here we assume that 1α >>  and 
Sγ  is large. The immobilized enzyme layer may be 

decomposed into two regions labeled RI and RII. The outermost region RII is assumed saturated 

whereas the inner region RI is unsaturated. Hence in RI 1uα <  and in RII 1uα >  The line of 

demarcation between RI and RII is labeled 
*χ χ= . Here we note that 1uα = .  Hence when 

* 0χ =  the 

entire layer is saturated whereas when 
*

1χ =  the entire layer is unsaturated as outlined in fig.5. 

Furthermore when 0χ = , 0du dχ =  and when 1χ = , 1u =  as before.  

The strategy we will adopt is to evaluate the flux expressions in regions RI and RII and using 

the condition of flux matching at 
*

χ χ=  to obtain an expression for the limiting substrate flux. Now in 

region RI, 1uα <  and we solve 
2

2
0

1

Sud u

d u

γ

χ κ
− =

+
, which for 1κ <<  reduces to 

2

2
0S

d u
u

d
γ

χ
− = . This 

expression may be solved as before by noting that 0 0
du

d
χ

χ
= =  and when 

*
1uχ χ α= =  Hence 

we note that : 

*

*tanhS

S

du

d
χ χ

γ
γ χ

χ α
=

   =    
    (81) 
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Figure 5. Delination of two region approach : Moving Boundary case.. 

  

In region RII the pertinent reaction diffusion equation is given by 
2

2
0Sd u

d

γ

χ α κ
− =

+
 or since 

κ α<<  which reduces to: 
2

2
0Sd u

d

γ

χ α
− = . The latter expression integrates to at 

*
χ χ= :  

 
4

2

4 4
2

S

S

du
A

d

u A B

γ
χ

χ α

γ
χ χ

α

 
= + 

 

= + +

     (82) 

Now using flux matching  at *χ χ=  in the first expression in eqn.82 and eqn.81 we get: 

4 * *tanh
S S

SA
γ γ

γ χ χ
α α

 = −  . Furthermore the substrate flux is given by: 

4 * *

1

tanhSS S S
S S

du
A

d
χ

γγ γ γ
χ γ χ

χ α α α α
=

   Ψ = = + = − +    
   (82) 

Hence in order to evaluate the substrate flux we must initially evaluate *χ .Using the second 

expression in eqn.82 at 1χ =  we get : 
4 41

2

S A B
γ

α
= + + . Furthermore when 

* 1uχ χ α= = , and so 

1u α=  and so 2

* 4 * 4

1

2

S A B
γ

χ χ
α α

= + + . Hence we note that 

2 2 2

4 * 4 * * * * *

1 1
tanh

2 2

SS S S
SB A

γγ γ γ
χ χ χ γ χ χ χ

α α α α α α
 = − − = − − +   Now when 
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*1 tanh 1S Sγ γ χ >> ≅   and so we finally obtain that : 2

4 * *

1

2

SSB
γγ

χ χ
α α α

= + − . Gathering the 

latter information together we can readily show that 
*

χ  obeys the following quadratic equation: 

( )2

* *

1 2 2
2 1 1 1 0

SS S

χ χ α
γγ γ

 
− + + − + + = 

 
 

   (83) 

Solving this equation affords: 

*

1 2 1 2 1 2
1 1 1

S S SS S

α α α
χ

γ γ γγ γ

−
= + − ≅ − + ≅ −    (84) 

Where we recall that 2 1α >>  and 1Sγ >> . Hence we conclude that the condition for complete 

saturation within the film can be defined when the parameter 
S

γ  is large.  This occurs when 
*

0χ =  or 

when 2Sγ α= . Hence the range of validity defining the mixed kinetics case is 1
2

Sγ
α< < .  Now 

recalling eqn.82 we note that:  

*

2

SS S
S

S

γγ γ
χ

α α α

γ

α

Ψ ≅ − +

=

     (85) 

This is a new kinetic situation which we label case IV. Transforming into dimensioned 

quantities we can show that in case IV the substrate flux admits the following form: 

2S S S cf D k e sκ ∞
Σ≅       (86) 

Hence the substrate flux is half order with respect to substrate and enzyme concentrations, is 

independent of layer thickness and mediator concentrations, and the enzyme-substrate kinetics is rate 

determining since 1κ << . The latter process occurs in a thin reaction layer near the surface of the film 

since 
Sγ  is large. 

 

2.6. Not so conductive matrix:  finite thickness 

We now examine the more complicated situation where the nanotube matrix is not so 

conductive and we have to use a low molecular mass, mobile  redox mediator such as oxygen [66], 

benzoquinone [71] or ferrocent monocarboxylic acid to ensure efficient amperometric detection.. Here 

the reduced mediator B diffuses to the underlying support electrode surface where it undergoes 

reaction, either being re-oxidized to the A form again or undergoing further reduction to a product 

species C. 

Again we need to solve eqn.19 and eqn.20 for substrate and mediator subject to the boundary 

conditions presented in eqn.16. We note that the solution of the master equation for substrate is 

initially solved and the resulting expression for the normalized substrate concentration, u, is inserted 

into eqn.20 and the latter expression integrated to obtain an expression for the observed flux ΣΨ . 
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We first examine the mediator reaction/diffusion master equation in the limit where 1uα << . 

In this situation eqn.20 reduces to: 
2

2
0

1

M ud v

d u

γ

χ κ
+ =

+
     (87) 

However if we make the further assumption that 1uκ <<  then eqn.87 reduces to 
2

2
0M

d v
u

d
γ

χ
+ =      (88) 

 Where we recall that 
( )c M SSE

M

MD M A

k K e L sf

f D a L

κ
γ

κ

∞
Σ

∞
= = . Now u is obtained from a solution of 

eqn.59 . We have previously shown that sec coshS Su h γ γ χ   =      and so eqn.88 reduces to: 

2

2
sec cosh 0M S S

d v
h

d
γ γ γ χ

χ
 + =      (89) 

This expression may be readily integrated once to obtain: 

1
sec sinhM

S S

S

dv
h K

d

γ
γ γ χ

χ γ
 = − +     (90) 

And integrated again to yield 

( ) { } 1 2sec cosh 1M
S S

S

v h K K
γ

χ γ γ χ χ
γ

 = − − + +     (91) 

Since 0v = when 1χ =  then { }1 2 1 secM
S

S

K K h
γ

γ
γ

+ = − . Also when 00 v vχ = = , and so 

0 2v K
ζ

ΣΨ
= = . Also we note that 1

0

dv
K

dχ
Σ

 
= = Ψ 

 
. Taking all of these observations into 

consideration one may immediately derive that the net normalized mediator flux measured at the 

support electrode surface is: 

 

{ }1
1 sec

1

M S
Sh

γ γ
γ

ζ
Σ −

Ψ = −
+

     (92) 

The latter when transformed to the observed reaction flux is given by: 

1 sec

1

S S U S

M S S

D s L k s e L
f h

D L D s L

k

κ κ

κ

∞ ∞
Σ

Σ ∞

   
= −   

   +  
′

    (93) 

The expression outlined in eqn.92 is presented in figure 6 below. We note that the computation 

is done by setting 1 0.1MD L

k
ζ − = =

′
 and by varying the value for 

M SE MDf fγ = . Hence under the 

conditions set mediator diffusion is rapid through the film and redox mediator turnover at the support 

electrode is much faster than mediator diffusion through the film. We plot normalized flux versus 

substrate reaction/diffusion parameter which represents the balance between substrate/enzyme reaction 

kinetics and substrate diffusion through the film. 
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Figure 6. Variation of normalized flux versus substrate reaction/diffusion parameter defined via 

eqn.92. 
 

It is clear from figure 6 that the normalized flux arising from redox mediator transformation 

measured at the support electrode surface decreases as the 
S

γ  parameter increases corresponding to 

slower substrate diffusion and faster substrate reaction throughout the layer. This is to be expected 

since the substrate will not proceed far into the film before it undergoes reaction and much of the 

reduced mediator will be lost to the bulk solution from the film in these outer regions before it can 

travel and react at the support electrode surface.  

We can also readily show that the mediator concentration profile within the nanotube layer is 

given by: 

 

( ) { } ( ) { }1
1 sec 1 sec 1 cosh

1

M M
S S S

S S

v h h
γ γ

χ γ ζχ γ γ χ
γ ζ γ

   = − + + −   + 
 (94) 

Note that the loss factor is given by: [ ]1

0
expM MD L D L

k k
ζ βξ− = =

′
m . Now we can examine 

the limit of low and high substrate reaction diffusion parameter S
γ . First when  1

S
γ <<  

corresponding to the situation where the layer thickness is very much less than the kinetic length of the 

substrate then SE SDf f<<  and substrate/enzyme unsaturated reaction kinetics will be much slower than 

the rate of substrate diffusion through the film which will be fairly rapid.. Under these circumstances 

we approximate sec 1
2

S
Sh

γ
γ ≅ −  and so eqn.92 reduces to: 
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{ }12 1

Mγ

ζ
Σ −

Ψ ≅
+

     (95) 

Transforming the latter expression into flux by noting that 
M ALf D aκ ∞

Σ ΣΨ = produces: 

 

{ } { }1 12 1 2 1
2 1

U S S U S

M

k s e L f k s e L
f

D L

k

κ κ

ζ ζ

∞ ∞
Σ Σ

Σ − −
≅ = =

 + + + 
′ 

   (96) 

The result presented in eqn.96 is a modified version of case I previously discussed. This 

situation describes rate determining bimolecular reaction between substrate and oxidized enzyme 

(unsaturated enzyme kinetics) as outlined in eqn.43 and eqn.44. Note also that the rate of reaction 

between substrate and oxidized enzyme is much slower than that between reduced enzyme and 

oxidized mediator. Hence regeneration of oxidized enzyme is assumed to be rapid. Note that the 

observed flux fΣ  differs from that corresponding to the simple substrate flux. 
S

f  via a term containing 

the loss factor [ ]1

0
expM MD L D L

k k
ζ βξ− = =

′
m  which depends on the ratio of mediator diffusion and 

mediator reaction at the underlying support electrode. 

We now return to eqn.92 and consider the situation where substrate/enzyme reaction is much 

faster than substrate diffusion (again the regeneration of the oxidized enzyme is also assumed to be 

kinetically facile). This corresponds to the case where 1
S

γ >> . Under these circumstances we can 

use the following approximation sec 2expS Sh γ γ ≅ −   and 1 sec 1 2exp 1S Sh γ γ − ≅ − − ≅  . 

Hence the general flux equation outlined in eqn.92 reduces to: 

 

11

M Sγ γ

ζ
Σ −

Ψ ≅
+

      (97) 

Now we recall that the gamma parameter ratio is defined as 

SE MD SD S S
M S

SE SD MD A M

f f f D s L

f f f D a L

κ
γ γ

κ

∞

∞
= = =  and reflects therefore the diffusive rates of substrate and 

diffusion within the nanotube film. The flux expression presented in eqn.97 represents a new kinetic 

limiting case which we denote as case VII and label as the titration situation. Transforming to fluxes 

we obtain: 

 

1

S S

M

D s L
f

D L

k

κ ∞

Σ ≅

+
′

     (98) 

This kinetic situation pertains when diffusion of substrate through the nanotube layer is slow 

and rate determining. Again the magnitude of the flux observed at the underlying support electrode 

surface corresponding to reaction of the reduced mediator species is modified by the loss factor. In the 



Int. J. Electrochem. Sci., Vol. 4, 2009 

  
1222

titration case the total flux is determined by the balance of fluxes of mediator and substrate to the 

reaction zone within the film.  

Bartlett and Pratt [68] realized that under certain conditions in an enzyme modified electrode 

multilayer, the reaction kinetics may be mediator limited in one part of the film and substrate limited in 

another as a result of changes in substrate and mediator concentrations across the layer. This type of 

behaviour occurs when both mediator and substrate concentrations change significantly within the 

film. In a clever argument, Bartlett and Pratt [68] divided the enzyme layer into two regions (A and B, 

as illustrated in fig.2 of reference 68) divided by a demarcation line located at the critical distance 

χ ε= . It was assumed that for χ ε<  (region A) the kinetics were substrate limited and for χ ε>  

(region B) the kinetics were mediator limited. Bartlett and Pratt [68] solved approximate reaction 

diffusion equations appropriate to these two regions subject to the constraint that at the join between 

the two regions where χ ε=  the concentrations and fluxes of substrate and mediator must match. It is 

possible using this approach after considerable algebraic analysis to obtain a useful expression for the 

observed reaction flux. Indeed this expression is presented in eqn.104. However life is too short for 

such long and convoluted analyses however erudite and consequently a more simple and direct 

approach to the final result will be developed. 

This titration case mentioned in the previous paragraph can be developed using the following 

independent argument as also first noted by Bartlett and Pratt [68]. When the kinetics of the enzyme 

catralyzed reaction are fast the reaction occurs in a thin reaction zone somewhere within the nanotube 

film located at a distance χ ε= . For χ ε>  there is no reaction because 0v → . For χ ε<  there is no 

reaction because 0u → . Now in the steady state the fluxes of substrate and mediator within the 

reaction zone must balance and so we can write that: 

M S

x x x x

db ds
D D

dx dx
ε ε= =

   
= −   

   
     (99) 

Or in normalized form: 

S SM A
D sD a dv du

L d L d
χ ε χ ε

κκ

χ χ

∞∞

= =

   
= −   

   
   (100) 

The latter flux equality expression may be manipulated to produce 

 

M

S

dv du

d d
ε ε

γ

χ γ χ

   
= −   

   
    (101) 

Since the reaction occurs at χ ε=  we can write that: 

0

1

1

vdv

d

du

d

ε
χ ε

χ ε

 
= 

 

 
= 

− 

      (102) 

Hence we can derive an expression for the critical distance ε  by substituting eqn.102 into  

eqn.101 as follows: ( ) ( )01 M Svε γ γ ε− = −  . Further simplification produces: 
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0

0
M

S

v

v

ε
γ

γ

=

−

      (103) 

Now the net flux is given by: 

0
0

M

S

v
v

γ

ε γ
ΣΨ = − = −      (104) 

We recall that 1

0
v ζ −

Σ= Ψ and so eqn.104 reduces to: 

{ }11 M

S

γ
ζ

γ
−

ΣΨ = +      (105) 

which was derived previously in eqn.97. 

Bartlett and Pratt [68] have also noted that the result presented in eqn.104, derived for 

unsaturated Michaelis- Menten  kinetic conditions, is quite general. The same expression also holds for 

1uα >> . This is because in the substrate limited region of the film the substrate concentration is 

considerably less than its bulk value. Therefore the substrate concentration will be less than the 

Michaelis constant even though the bulk value may be greater.  

Returning to the mediator reaction/diffusion master equation in the limit where 1uα <<  

(eqn.87) we now examine the alternative limit corresponding to 1uκ >> . Henceα κ<< . Under such 

circumstances eqn.87 reduces to: 
2

2
0Md v

d

γ

χ κ
+ =       (106) 

This expression may be readily integrated twice to yield: 1
Mdv

K
d

γ
χ

χ κ
= − +  and furthermore we 

obtain: ( ) 2

1 22Mv K Kγ κ χ χ= − + + . Noting that when 1 0vχ = =  implies 
1 2

2
M

K K γ κ+ =  and 

also since 1

0
0 v vχ ζ −

Σ= = = Ψ  then 1

0

dv
K

dχ
Σ

 
= Ψ =  

 
. Hence { }11 2Mζ γ κ−

ΣΨ + = . Simplifying 

we obtain: 

{ }12 1

Mγ

ζ κ
Σ −

Ψ =
+

     (107) 

The latter may be transformed into an expression for the observed flux: 

 

{ }12 1
2 1

A A

M

ka e L ka e L
f

D L

k

κ κ

ζ

∞ ∞
Σ Σ

Σ −
= =

 + + 
′ 

    (108) 

 

This is a modified form of case V corresponding to the situation of rate determining reaction 

between the oxidized mediator and reduced enzyme which occurs throughout the film. This reaction 

flux will be reduced by the diffusion of reduced mediator out of the layer given by the 
M

D L  term . 
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We now re-examine eqn.20, the master equation describing transport and  kinetics of the redox 

mediator species and examine the limiting form when the substrate concentration is large when 

1uα > .  Under these circumstances eqn.20 reduces to: 

 

2

2
0

1

Md v

d

γ α

χ κ α
+ =

+
     (109) 

Again this expression may be readily integrated to yield: 
1

111

Mdv
K

d

γ α
χ

χ κα

−

−
= − +

+
  and 

{ }

1
2

1 212 1

Mv K K
γ α

χ χ
κα

−

−
= − + +

+
. Again noting that 0 1v χ= =  implies that 

{ }

1

1 2 12 1

MK K
γ α

κα

−

−
+ =

+
 

and also noting that when 1

00 v vχ ζ −
Σ= = = Ψ then 1

0 2v K ζ −
Σ= = Ψ  and 

1

0

dv
K

dχ Σ

 
= = Ψ 

 
. Taking 

all these observations into consideration we obtain: { } { }1 1 11 2 1
M

ζ γ α κα− − −

ΣΨ + = + . Consequently 

we obtain the following expression for the normalized flux under conditions of high substrate 

concentration: 

{ }( )

1

1 12 1 1

Mγ α

ζ κα

−

Σ − −
Ψ =

+ +
    (110) 

If we examine the limit corresponding to 1 1κα − <<  or κ α<<  then 11 1κα −+ ≅  and the 

normalized flux expression reduces to: 

{ }12 1

Mγ

α ζ
Σ −

Ψ ≅
+

     (111) 

Transforming the latter expression into flux by noting that 
M A

Lf D aκ ∞

Σ ΣΨ = produces: 

2 1

c

M

k e L
f

D L

k

Σ
Σ ≅

 
+ 

′ 

     (112) 

This is a modified form of case III. Hence when the substrate concentration is high ( 1α >> ) 

and when 1 1κα − <<  or when κ is very small corresponding to
SE ME

f f<< , the rate determining step 

corresponds to the situation where the enzyme-substrate adduct dissociates with a frequency defined 

by the catalytic rate constant 
c

k . 

In contrast when 1 1κα − >>  or κ α>> , eqn.110 reduces to:
{ }12 1

Mγ

κ ζ
Σ −

Ψ ≅
+

 which was 

outlined in eqn.108. Hence the flux is 

2 1

A

M

ka e L
f

D L

k

κ ∞
Σ

Σ ≅
 

+ 
′ 

 and we encounter a modified form of case 

V again. Hence eqn.110 defines the connection between cases III and V. Hence under saturated 

conditions and when 
SE MEf f>>  the mediator/enzyme reaction will be rate limiting. 
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2.7. The’Magic’ approximation 

A key component in the reaction-diffusion expressions subjected to analysis in this paper is the 

non linear kinetic term presented in eqn.21 as ( )
1

u
F u

uα
=

+
. In the analysis thus far we have 

simplified this term by taking the limit of 1uα <<  or 1uα >>  corresponding to unsaturated substrate 

kinetics or saturated substrate kinetics respectively. Ideally we would wish to develop an expression 

which would be valid for all values of the saturation parameter α . Both Bartlett [68] and Lyons [47] 

developed a useful expression sufficient for this purpose. Lyons [47] labeled this suggestion the 

‘Magic’ approximation which states that : 

( )
2

1 1

u u

u

α

α α

+
≅

+ +
     (113) 

We initially explore this approximation before using it to solve the reaction/diffusion 

expressions. Now if we set 1λ α −=  then ( ) ( ) ( ){ }11 1 ( )u u u u u u u uα λ λ λ λ λ−+ = + = + = + , and the 

approximation can be recast as: 

( )
2

1

1

u u

u

λ

λ λ

+
≅

+ +
     (114) 

It is immediately apparent that the approximation is exact when u = 1 for all values of λ . 

Hence the approximation is exact when substrate depletion in the modified electrode layer is 

negligible. As previously noted [47,68] the approximate expression becomes worse as u decreases or 

in other words as the degree of substrate depletion in the enzyme layer increases. It is least accurate for 

0u = . For 1λ ≥  and uλ >> : 
1

2

1u u u u

u

λ λ

λ λ λ λ

−+ +
≅ ≅ =

+
     (115) 

This expression will be valid for 1u λ−>> . Under these conditions the function is 

approximately linear from 0 to 1λ −  for u values from 0 to 1. In contrast when 1λ <<  or 1uλ <<  then  

1
u

uλ
≅

+
     (116) 

 

and the expression is only valid for u λ>> . Now the function is independent of u except for very low 

u values. 

We now return to the master equations outlined in eqn.19 and eqn.20 and examine the limit at 

low κ . Hence  

( )
( )

( )
2 2

2 2
0

1

S

S

F ud u d u
F u

d F u d

γ
γ

χ κ χ
− ≅ − =

+
   (117) 

and 

( )
( )

( )
2 2

2 2
0

1

M

M

F ud v d v
F u

d F u d

γ
γ

χ κ χ
+ ≅ + =

+
   (118) 
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and we set 

( )
( )

21 1

u u
F u

u

α

α α

+
= ≅

+ +
    (119) 

to obtain the following expressions: 

( )

( )

2

22
0

1

S
ud u

d

γ α

χ α

+
− =

+
     (120) 

( )

( )

2

22
0

1

M ud v

d

γ α

χ α

+
+ =

+
     (121) 

Turning attention to the u expression initially we can readily show that the solution to the 

differential equation is given by : 
( )

( )
2

cosh sinh
1 11

S SS u
A B

γ χ γ χγ α

α αα

   +
= +   

+ ++       
, which may be further 

simplified to obtain: 

( )
2

1
cosh sinh

1 1

S S

S

u A B
γ χ γ χα

α
γ α α

    +  
= + −    

+ +        
   (122) 

Differentiating eqn.122 we obtain: 

( )1
sinh cosh

1 1

S S

S

du
A B

d

γ χ γ χα

χ α αγ

    +  
= +    

+ +        
   (123) 

Now we note that when 
0

0 0
du

d
χ

χ

 
= = 

 
 and when 1 1uχ = = . Hence 0B =  and also we 

note that sec
1 1

SSA h
γγ

α α

 
=  

+ +  
. We may immediately note that the normalized substrate flux is: 

1

sec sinh tanh
1 1 1

S S S

S S S

du
h

d

γ γ γ
γ γ

χ α α α

      
Ψ = = =       + + +            

  (124) 

This expression is valid for all values of the saturation parameter α and connects the case 

I/case II regions over the entire range of  α provided that 1κ << . Now for all values of  α  and for 

1
S

γ <<  when 
SE SD

f f<<  i.e. substrate diffusion through the layer is more rapid than substrate 

reaction then ( )tanh 1 1S Sγ α γ α + ≅ +   and the normalized flux reduces to: 

 
1

S
S

γ

α
Ψ ≅

+
      (125) 

This expression is the appropriate form of eqn.36 derived in the thin layer approximation for 

the limiting circumstance of 1κ << . This expression transforms to the simple Michaelis-Menten 

equation describing rate determining reaction between the substrate and oxidized enzyme throughout 

the layer of thickness L: 
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c S
S

M S

k e L s
f

K s

κ

κ

∞
Σ

∞
≅

+
      (126) 

We can readily show that the substrate concentration profile valid for all  values of saturation 

parameter is: 

sec cosh 1 sec cosh
1 1 1 1

S S S S
u h h

γ γ χ γ γ χ
α

α α α α

         
= − −        

+ + + +                

  (127) 

This expression can be used to explore the solution to the mediator reaction-diffusion equation 

outlined in eqn.121 as follows. We note that ( )1 sec cosh
1 1

S S
u h

γ γ χ
α α

α α

   
+ = +    

+ +      
 and so the v 

equation reduces to 
2

2
sec cosh 0

1 1 1

S SMd v
h

d

γ γ χγ

χ α α α

   
+ =   

+ + +      
   (128) 

This expression may be integrated to yield: 

 

( )

1

1 2

sec sinh
1 1

1 sec cosh
1 1

S SM

S

S SM

S

dv
h K

d

v h K K

γ γ χγ

χ α αγ

γ γ χγ
α χ

γ α α

   
= − +   

+ +      

   
= − + + +   

+ +      

  (129) 

Since when 1 0vχ = =  we get ( )1 2 1M

S

K K
γ

α
γ

+ = +  and when 1

0

0
dv

K
d

χ
χ

Σ

 
= = Ψ = 

 
. 

Hence we note that: 

     ( )2 1M

S

K
γ

α
γ

ΣΨ + = +       (130) 

Furthermore since at 1

00 v vχ ζ −
Σ= = = Ψ , then ( )1

0 21 sec
1

SM

S

v h K
γγ

ζ α
γ α

−
Σ

 
= Ψ = − + + 

+  
 

and so we finally obtain that ( )1

2 1 sec
1

SM

S

K h
γγ

ζ α
γ α

−
Σ

 
= Ψ + +  

+  
. When the latter is substituted into 

eqn.130 we obtain on simplification the following useful expression for the total normalized flux: 

 

( )
{ }1

1
1 sec

11

SM

S

h
γγ α

αγ ζ
Σ −

  +  
Ψ = −   

++     
    (131) 

Again for ( )1 1Sγ α+ <<  we note that a suitable limiting expression for the observed 

reaction flux is: 
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{ }( )12 1 1

Mγ

ζ α
Σ −

Ψ ≅
+ +

     (132) 

This is another modified form of case I (see eqn.96) valid for all saturation parameter values. 

This expression reduces to the following modified type of Michaelis-Menten rate equation: 

 

( )2 1

c S

M
M S

k e L s
f

D L
K s

k

κ

κ

∞

Σ
Σ

∞

≅
 

+ + ′ 

    (133) 

This situation describes rate determining bimolecular reaction between substrate and oxidized 

enzyme for both unsaturated and saturated enzyme kinetics. Note also that the rate of reaction between 

substrate and oxidized enzyme is much slower than that between reduced enzyme and oxidized 

mediator. Hence regeneration of oxidized enzyme is assumed to be rapid. In contrast when 

( )1 1Sγ α+ >>  the bracketed hyperbolic secant term in eqn.131 is effectively unity and the 

normalized flux reduces to: 

( )
{ }1

1

1

M

S

γ α

γ ζ
Σ −

+
Ψ ≅

+
     (134) 

This is a modified form of eqn.97 valid for all values of the saturation parameter and represents 

the titration case designated case VII. In terms of observed flux we obtain: 

 

1

1

S

S S M

M

s

D s K
f

D LL

k

κ

κ

∞

∞

Σ

 
+ 

 
≅  

 +
′  

    (135) 

This kinetic situation pertains when diffusion of substrate through the nanotube layer is slow 

and rate determining. We note from eqn.135 that the diffusive flux of substrate through the layer is 

modified both by the substrate concentration and by the loss factor. 

 

2.8. The kinetic case diagram 

In this paper we have considered two distinct situations. The first refers to the conditions 

pertaining when the nanotube layer is conducting. The second refers to the situation when the nanotube 

layer is not so conducting. In doing so we have developed the pertinent reaction/diffusion equations for 

substrate and redox mediator, and obtained approximate analytical solutions for the latter non-linear 

differential equations which refer to various rate limiting situations. These limiting situations are 

defined in terms of the specific parameters ,κ α  and 
Sγ . Seven main  kinetic limiting cases have been 

derived .Cases I-VI are identified for the conducting matrix problem , whereas for the not so 

conducting nanotube matrix four cases labeled I, III, V and VII are identified as stemming directly 

from the mathematical solution of the reaction-diffusion equations. These cases are outlined in table I 
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where expressions for the normalized flux and reaction flux are presented. In table II we present 

typical diagnostic criteria by which the correct case may be elucidated in an experimental situation. 

We indicate how the reaction flux or current depends (in effect the reaction order) with respect to 

changes in a particular experimental parameter such as substrate concentration, mediator 

concentration, enzyme loading or layer thickness. The latter may be readily varied experimentally. It is 

clear that each case presents a distinct quartet of reaction orders and so it is possible to identify a 

particular kinetically limiting case . 

We summarize the theoretical results obtained in the paper in terms of a kinetic case diagram. 

These diagrams are presented in fig.7 and fig.8. In figure 7 the ,α γ  plane is outlined whereas in fig.8 

the orthogonal ,α κ   plane is considered. In these figures we include the approximate limiting 

expressions for the normalized flux for each particular delineated kinetic case and also present the 

pertinent expressions connecting each of the limiting regions. The diagrams serve as a means by which 

the results of the detailed mathematical analysis may be conveniently represented in a very concise 

manner. 

logα
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γ
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II
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Figure 7.  Kinetic case diagram illustrating the α,γS plane. The region designated G is the general case 

which is represented by the Albery equation. 

 

Albery and co-workers [64] examined the kinetics of bound enzyme systems and suggested that 

the general expression for the substrate flux valid for the situation where 
S

γ  and α  are both close to 

unity (case G in figure 6) is given (using the present notation) by: 

 

( )( )
( ) ( )( )

2

2
ln 1 tanh

1 2 ln 1

SS
S

α γγ
α α

α α α α

 
 Ψ − +
 + − + 

;   (136) 
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Table 1. Typical expressions forreaction flux derived in text for approximate kinetic cases. 

 

 

Table 2. Typical diagnostic criteria for immobilized enzyme biosensors. 

 

Case s∞  eΣ  a∞  L  

I 1 1 0 1 

II 1 1/2 0 0 

III 0 1 0 1 

IV 1/2 1/2 0 0 

V 0 1 1 1 

VI 1/2 1/2 1/2 1/2 

VII 1 0 0 -1 
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Figure 8. Kinetic case diagram illustrating the α,κ plane. 

 

 

We indicate the shape of this expression in figure 7 and figure 8. In fig.7 the variation of 

normalized substrate flux with saturation parameter is presented for various values of the substrate 

reaction/diffusion parameter. These profiles typically exhibit the Michaelis-Menten biphasic kinetic 

behaviour [47]. It is interesting (see fig.7) that the normalized flux is predicted to decrease somewhat 

for larger values of α  regardless of the value assumed for the substrate reaction diffusion parameter.  

The expression outlined in eqn.136 has been applied also to describe amperometric detection in 

electroactive polymer thin films where Michaelis-Menten type adduct formation has been proposed to 

operate [47,68].. We now briefly consider the Bartlett-Pratt analysis [68] and see how it differs from 

the present approach. 

The problem of reaction/diffusion of substrate and mediator within an electronically conducting 

polymer thin film containing immobilized enzyme molecules has been developed by Bartlett and Pratt 

[68]. This analysis has many elements in common with the current model and the reader is referred to 

the literature for full details of the analysis [68]. However to aid comparison between the present work 

and the Bartlett-Pratt model we provide in table 3 a direct comparison between the characteristic 

variables and parameters used in the present work and those alluded to in the Bartlett-Pratt paper. 

Once this correspondence is taken into account the governing reaction diffusion equations 

developed by Bartlett and Pratt (see eqn.17 and eqn.18 of  ref.[ 68]) can be seen to be equivalent to 

ours as presented in eqn.19 and eqn.20 of the present work. 
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Figure 7. Plot of the Albery equation outlined in eqn.136 . The variation of normalized substrate flux 
with saturation parameter is outlined for various fixed values of the substrate reaction/diffusion 

parameter 
S

γ . 
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Figure 8. Plot of the Albery equation outlined in eqn.136 . The variation of normalized substrate flux 

with substrate reaction/diffusion parameter 
S

γ  is outlined for various fixed values of the saturation 

parameter α . 

 

Table 3. Direct comparison between Lyons and Bartlett-Pratt Models. 

 

Present work Bartlett-Pratt Model [68] 

u  s  

v  a  
χ  χ  
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1κ −  γ  
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1 M
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γ
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γ
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η  
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Bartlett and Pratt consider the case where the redox mediator is entrapped within the 

conducting polymer film (a case (i) scenario in the Bartlett-Pratt lexicon). This necessitates the use of 

slightly different boundary conditions at the film/solution interface corresponding to 1χ =  . In such a 

situation mediator entrapment implies that (in our notation). 
1

0
dv

dχ

 
= 

 
. This will possibly correspond 

to the situation encountered for a redox hydrogel based biosensor. In contrast we have assumed that the 

oxidized form of the mediator is present in the bulk solution (corresponding to a case (ii) scenario in 

Bartlett-Pratt terminology). In contrast if the reduced form of the mediator is present in the bulk 

solution (such as is the situation when a substituted ferrocene species is used as redox mediator, 

labeled scenario (iii) by Bartlett and Pratt) and partitions into the film then the oxidized mediator 

concentration will be zero at the outer surface of the modified electrode and 
11 0v− =  or 

1 1v =  at 

1χ = . Bartlett and Pratt [68] also assumed that the relationship between the oxidized and reduced 

mediator concentration at the inner electrode/film interface is given by the Nernst equation. Instead we 

have proposed that mediator transformation at the underlying support electrode in given by the 

irreversible form of the Butler-Volmer equation. 

We have considered seven distinct situations in the present paper. In all of these circumstances 

it is assumed that all the mediator and all the substrate diffusing into the film are consumed by the 

enzyme catalyzed reaction so that the concentration of substrate at the inner electrode surface and the 

concentration of reduced mediator at the outer film/solution interface are both zero. Bartlett and Pratt 

[68] have noted that this may not necessarily be the case. Two further cases may well exist in which 

either all the mediator or all the substrate is consumed within the film (see fig,3 in reference [68]). We 

do not consider these possibilities in the present paper. 

 

 

 

3. CONCLUSIONS 

In this paper we have presented a uniform model to describe substrate and redox mediator 

reaction kinetics and diffusion within a dispersed enzyme loaded carbon nanotube film of finite 

thickness. The pertinent reaction diffusion equations have been formulated, the pertinent boundary 

conditions appropriate to the situation where a redox mediator in its oxidized form is present in the 

solution adjacent to the enzyme film have been formulated, and approximate analytical expressions for 

the reaction flux obtained both for the situation when the film is conducting and when the film is less 

conducting. A series of distinct kinetic cases have been developed, and a prediction is made for the 

way in which the observed reaction flux (proportional to the steady state current) varies with changes 

in substrate and mediator concentration, with enzyme loading and with film thickness for each of these 

particular approximate cases. The mathematical analysis has been summarized in terms of kinetic case 

diagrams.  

In the final paper in this trilogy we shall extend the theoretical analysis presented here to the 

more complex redox enzyme/metal nanoparticle/carbon nanotube systems. 
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