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Electrochemical processes involving a follow-up homogeneous chemical reaction are very common 

and largely examined in the literature. A rigorous analytical solution for chronoamperometry and 

Normal Pulse Voltammetry is presented in this paper, applicable to spherical electrodes of any size. 

From this solution, the technique is analyzed as a useful electrochemical way to characterize 

homogenous chemical reactions from potential-dependent chronoamperometry experiments. The 

validity of existing approximate solutions is also checked by comparison with the rigorous results, 

demonstrating that they cannot be used for large electrodes and/or slow chemical reactions. 
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1. INTRODUCTION 

The study of homogenous chemical reactions coupled to oxidation-reduction processes at 

electrode surfaces is a major subject in Electrochemistry as well as other scientific fields, such as 

biomedicine and chemical synthesis. In particular, the common case of homogenous reactions 

involving the electrogenerated species has been extensively examined by means of different 

electrochemical techniques: cyclic voltammetry [1], chronoamperometry [2,3], square wave 

voltammetry [4-6], chronocoulometry [7], chronopotentiometry [8]. 

Examples of these systems include the electroreduction/oxidation of metal complexes [9,10] 

and organic compounds (ascorbic acid, aminophenols, azines and certain radicals) followed by 

reactions of additions, substitutions, dimerizations, disproportionation,..[11-21]. 
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Numerical approaches to this problem are frequently laborious and mathematically demanding, 

and the analytical solutions existing in the literature generally assumes simplifying hypothesis (steady-

state conditions [22-24]) which limit their applicability. 

In this context, we present an explicit and analytical rigorous solution for EC mechanism in 

potential-dependent chronoamperometry, valid for spherical electrodes of any size including 

microelectrodes. The expression is given as series of two dimensionless parameters, related to the 

electrode sphericity and to the kinetics of the homogenous chemical reaction. 

In general, the characterization of subsequent homogenous reactions involves the elucidation of 

the mechanism of reaction, as well as the determination of the rate constants and the half-wave 

potential of the redox system. 

Useful diagnostic criteria for the mechanism type are here discussed, based on the variation of 

the half-wave potential with the chemical kinetics and the electrode size. Besides, from the fitting of 

experimental and theoretical chronoamperograms the simultaneous determination of the rate constants 

and the half-wave potential is possible [25,26]. So, it is of great interest to have at our disposal a 

rigorous solution, which permits us an accurate determination of these parameters without any 

limitation, in such a way that the time range of investigation is extended towards short times and fast 

kinetics. 

Finally, two approximate solutions are checked by comparison with the rigorous results, 

pointing out that for slow chemical kinetics, short pulse durations and/or medium-sized 

microelectrodes they involve significant errors. 

 
 

 

2. THEORY 

Let us consider an electrochemical process giving rise to a reactive species that undergoes a 

homogenous first or pseudo-first order chemical reaction: 

 
1

2

A B           (E)

    B C               (C)
k

k

ne− →+ ←

→←
 (I) 

where 1k  and 2k  are the rate constants of the homogeneous reaction and the equilibrium constant is 

given by: 

 
*

2 B

*
1 C

k c
K

k c
= =  (1) 

where * ( , )ic i B C≡  are the bulk concentrations of species B and C, respectively. 

The mass transport of the different species towards or from the electrode surface is described 

by the following diffusive-kinetic differential equation system: 

 ˆ 0AcΛ =  (2) 
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 1 2
ˆ 0B B Cc k c k cΛ + − =  (3) 

 1 2
ˆ 0C B Cc k c k cΛ − + =  (4) 

where Λ̂  is the diffusion operator corresponding to Fick’s second law for spherical diffusion: 

 

 
2

2

2ˆ D
t r rr

 ∂ ∂ ∂
Λ = − + 

∂ ∂∂ 
 (5) 

assuming equal diffusivities for all the species.  

The boundary value problem, when assuming that the electrochemical reaction behaves as 

reversible, is given by: 

 

00,  

0,  

t r r

t r

= ≥ 


> → ∞
   ( ) ( ) ( )* * *

A A B B C C, ,  , ,  ,c r t c c r t c c r t c= = =        (6) 

}00,  t r r> =                         

   
( ) ( )

0 0

A B, ,

r r r r

c r t c r t
D D

r r
= =

∂ ∂   
= −   

∂ ∂   
 (7) 

( )

0

C ,
0

r r

c r t

r
=

∂ 
= 

∂ 
                                              (8) 

 ( ) ( )A 0 B 0, ,c r t e c r t= η  (9) 

with: 

 ( )0'nF
E E

RT
η = −  (10) 

where n , F , R , T , E  and 0'E  have their usual meanings. 

To solve the above problem, we introduce two variables, ζ  and φ , defined as: 

 ( ) ( ) ( )B C, , ,r t c r t c r tζ = +  (11) 

 ( ) ( ) ( )B C, , ,r t c r t Kc r t eχφ = −    (12) 

with: 

 t=χ κ  (13) 

where 1 2
k kκ = + . 

By means of the mathematical procedure described in reference [27], we solve the problem 

obtaining the following expression for the current corresponding to an EC mechanism: 
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η η
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with: 

 

 
0 2

1

p j
j j

j

S a p χ
∞

=

= ⋅ ⋅∑  (15) 

 ( )2 1,

1, 1

sphe i j
ij i j i j

i j

S a p a ξ χ
∞

+ −
= =

= ⋅ +∑  (16) 

 ( ) *
d A

D
I t nFA c

t
=

π
 (17) 

and 

 
A

*

*

ζ
µ=

c  (18) 

where 
* **

B Cc c= +ζ  and ,i ja  and xp  are defined in the Appendix. 

 

 

 

 

3. RESULTS AND DISCUSSION 

From the rigorous solution here deduced, the effects of the kinetics and the electrode sphericity 

on the current of an electrochemical process followed by an irreversible chemical reaction ( 0K = ) are 

studied in Figure 1. Thus, we have plotted the normalized current ( / ( )N
dI I I= ∞ ) versus the 

sphericity parameter ( 02 /Dt rξ = ), the kinetic parameter ( tχ κ= ) and the applied potential, being 

0 A
*( ) 4dI r n F D c∞ = π . 

In general, according to Eq. (14) the response of an EC mechanism depends on ξ  and χ  

values, as well as on the applied potential. With respect to the influence of the kinetics of the 

homogenous reaction ( χ ), in Figure 1.a we can see that the maximum influence is observed at 

potential values around the half-wave potential ( 1 2E / ), this influence being null under cathodic limit 

conditions ( E → −∞ ) (see black curves in Figure 1.a). Thus, for a given potential value the current 

increases with χ , which can be understood by considering that the electrogenerated species is 

removed in the follow-up homogenous reaction so that an additional current flows to fulfil the 

concentration ratio given by the nernstian condition (Eq. (9)) [14,21].   
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Figure 1. NI - χ - E  (Figure 1.a) and NI -ξ - E  (Figure 1.b) curves for EC mechanism. 0K = , 

* 0=ζ . (a) 1=ξ ; (b) 10=χ .  
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The current varies between two extreme situations, corresponding to the cases of very slow 

(inert equilibrium, 0→χ ) and very fast (full-labile equilibrium, χ → ∞ ) chemical reactions. In the 

first case, the chemical equilibrium is “frozen” so that there is not interconversion of species B and C 

and the response of the system tends to that of a simple electron transfer process (E mechanism): 

  
1 2

( 0) 1
1

NI
e

 
→ = + 

+  
η

χ
πξ

                                (19) 

When the subsequent chemical reaction is very fast ( χ → ∞ ), the equilibrium is maintained at 

any time and distance from the electrode surface, and the expression for the current is given by:  

 
(1 ) 2

( ) 1
1 (1 )

N K
I

K e

 +
→ ∞ = + 

+ +  
η

χ
πξ

 (20) 

Under cathodic limit conditions ( η → −∞ ), the expression for the current is always equivalent 

to that corresponding to an E mechanism regardless of the chemical kinetics, since it only depends on 

species A. 

Concerning the electrode sphericity (Figure 1.b), the value of the normalized current decreases 

with ξ , that is, when the electrode radius decreases, tending to a constant value when 
0

r  value is very 

small.  

 
 

 

Figure 2. Difference between the currents of EC and E ( 0χ = ) mechanisms versus the applied 

potential and χ .  1=ξ . Other conditions as in Figure 1. 



Int. J. Electrochem. Sci., Vol. 4, 2009 

  
1401

Figure 2 shows the difference between the currents of EC and E mechanisms versus the applied 

potential and the kinetic parameter χ . A peak-shaped curve is obtained so that the sensitivity to the 

follow-up chemical step is highest around the half-wave potential. Therefore, this potential region 

(around +20 mV from the formal potential for the conditions considered in the figure) is the most 

appropriate for the study of EC mechanism by single step chronoamperometry.  

In accordance with all the above it is very important the study of the position of the wave, that 

is, the analysis of the behaviour of the half-wave potential ( 1 2E / ) since its experimental determination 

is easy and it contains information about the chemical reaction [23]. Thus, in Figure 3 we study the 

dependence of 1 2E /  with χ  and ξ  for different mechanisms of reaction.  

 

 

 
Figure 3. Variation of the half-wave potential ( 1 2E / ) with χ  for EC mechanism ( 0K = , coloured 

lines,), CE mechanism ( 1K = , black lines, ref. [27]) and catalytic and E mechanisms (grey line, ref. 

[23]). For the case of EC mechanism the different curve traces correspond to the results obtained from 

the rigorous solution ( , Eq. (14)), the kinetic steady state approximation ( , [22,28]) 

and the diffusive-kinetic steady state approximation ( , [23]). 1t s= , 2510 /D cm s−= . Other 

conditions marked on the curves. 

 

 

In the case of EC mechanism, we have plotted the data obtained from the rigorous solution 

(solid line) together with the results from the kinetic steady state (dotted line) [22,28] and the 

diffusive-kinetic steady state (dashed line) [23] approximate solutions. The first approximation 

assumes that the perturbation of the chemical equilibrium (φ , eq. (12)) does not depend on time (i.e., 

(r t) t 0, /∂ φ ∂ = ), and the second one supposes, along with kinetic steady state, that (pseudo)species 

( )B Cc c= +ζ  and A present a time-space dependence similar to that obtained when no homogenous 

reaction takes place, i.e., they have a purely diffusive behaviour (see ref. [23]). 
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Figure 4. Effect of the initial concentration of species B and C ( * *
A/ c=µ ζ , Figure 4.a) and the 

equilibrium constant value (K, Figure 4.b) on 
NI - E curves of EC mechanism. 1=ξ , 1=χ . (a) Two 

equilibrium constants are considered: 0K =  (black line) and  5K =  (green lines); µ  values marked 

on the curves. (b) 0=µ ; K  values indicated on the panel. 
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We can see that 1 2E /  is sensitive to the chemical kinetics ( χ ), the electrode radius and the type 

of mechanism under consideration. Thus, for an EC  mechanism 1 2E /  varies towards more positive 

values as χ  and 
0

r  increase, whereas for a CE mechanism (black solid lines) the shift takes place 

towards more negative values and for a catalytic or E mechanism (grey solid line), the value of 1 2E /  is 

independent of χ  and 
0

r , taking the same value from planar electrodes to microelectrodes [23]. 

Therefore, the shift of 1 2E /  with χ  (either varying the rate constants through pH,… or the pulse 

duration) and with the electrode radius can be simple and useful diagnostic criteria. 

When the chemical kinetics is very slow ( 0χ → ), the half-wave potential tends to the value 

corresponding to the electroreduction of species A ( 0
1 2E E

'
/ = ). For fast chemical kinetics, a simple 

expression for the half-wave potential is derived from the diffusive-kinetic steady state approximation 

[23]: 

 
( )( )

( ) ( )
00'

1/2

0 0

1 1
( 1) ln

1 1 1

K r DRT
E E

nF r Dt K r D

+ +
>> = +

+ + +

κ
χ

π κ
 (21) 

The above equation includes the dependence of 1 2E /  with kinetic and geometrical variables, 

and indicates that in the case of very fast kinetics (κ → ∞ ) the half-wave potential tends to a value 

which only depends on the equilibrium constant: 
0'

1/ 2

1
( ) ln

RT K
E E

nF K

+ → ∞ = +  
 

κ . 

We have also checked the validity of the two approximate solutions above-mentioned, by 

comparison with the rigorous results. Figure 3 shows that for small χ  values (short pulse duration 

and/or slow chemical reaction) and not too small electrode radius, the approximate solutions diverge 

from the rigorous one dealing to significant errors. So, under these conditions they are not suitable for 

accurate characterization of EC systems.  

To conclude, in Figure 4.a we study the case at which species B and C are initially present 

(
* */ 0Ac= ≠µ ζ ) and, therefore, the complete anodic-cathodic wave. Obviously, for an irreversible 

chemical reaction ( 0K = , black line) the initial concentration of these species has no influence on the 

voltammogram since the chemical equilibrium is fully displaced to the electroinactive species. For 

0K ≠  (green lines), the anodic current increases with µ  and the null-current potential (equilibrium 

potential) shifts towards less positive values, according to the equation: 

 
*

0' 0 '

*

1
ln lnA

B

c
RT c RT K

E E E
nF nF Kc

  + 
= + = +   

   µ
 ( 22) 

In Figure 4.b the effect of the equilibrium constant on the voltammograms is plotted, showing 

that the increase of K value gives rise to a shift of the wave towards less positive potentials. 
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Appendix  

In order to tackle the problem presented here, it is convenient to define: 

 ( )
( )A

A
*

0

,
,

A

c r t r
u r t

c r
=  (A1) 

 ( )
( )

*
0

,
,

A

r t r
u r t

c r
=ζ

ζ
 (A2) 

 ( )
( )

*
0

,
,

A

r t r
u r t

c r
=φ

φ
 (A3) 

in such a way that it is fulfilled that:  

 

( ) ( )

( ) ( )

( ) ( )

2

A A

2

2

2

2

2

, ,

, ,

, ,

u r t u r t
D

t r

u r t u r t
D

t r

u r t u r t
D

t r

∂ ∂
= 

∂ ∂ 
∂ ∂ 

= 
∂ ∂ 

∂ ∂
= 

∂ ∂ 

ζ ζ

φ φ

 (A4) 

and the boundary value problem is given by: 

 

00,  

0,  

t r r

t r

= ≥ 


> → ∞
              ( ) ( ) ( )

0 0

, ,    , 0,    ,A

r r
u r t u r t u r t

r r
= = =φ ζ µ                          (A5) 

 }00,  t r r> =  

 
( ) ( ) ( ) ( )

0 0

0A A 0

0 0

, ,, ,

r r r r

u r t u r tu r t u r t

r r r r
= =

 ∂ ∂ 
 − = − −  

∂ ∂     

ζ ζ
 (A6) 

 
( ) ( ) ( ) ( )

0 0

0 0

0 0

, , , ,

r r r r

u r t u r t u r t u r t
e

r r r r
= =

   ∂ ∂   
   − = −   

∂ ∂         

ζ ζ φ φχ  (A7) 

 ( ) ( ) ( ) ( )A 0 0 0
1 , , ,K e u r t e K e u r t u r t + = + 

χ η χ
ζ φ  (A8) 

In order to apply Koutecky’s dimensionless parameters method [29,30], we introduce the 

following variables: 

 0

2

r r
s

Dt

−
=  (A9) 

 
0

2 Dt

r
ξ =  (A10) 
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and by means of the mathematical procedure described in reference [27] we obtain the expression for 

the current given by eq. (14) where: 

 

0i =  (Planar Electrode) 

( )( )
( )( )00

1 1

1 1

e K
a

K e

+ + +
=

+ +

η

η

µ µ
          (A11) 
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0 2 0
0 00 00

2 2

1

1

1 1 1 1
1

! !
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j

j j

j

n

p p aK K
a a K a K e K

j e p e e p j n

−

=

      + +
= + + − − − + + +             −      

∑ η

η η η
µ   (A12) 

0i >  (Spherical corrections) 

0j =  

0 0 0i ia b= =             (A13) 
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1
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−
+

= =+ + +
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η

µ
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1
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1,

1 12 2 1 2

1
1
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  
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1 1
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j
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+
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( ) ( )
1, 1, 2

1 12 2 2! !

j j
i j i n in i n

ij
n ni j i j i j

b a a p
b

p j n p j n p
− − +

= =+ + +

= − − −
− −
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and 

 

2 1
2

         0
1

2

x

x

p x
x

 
Γ + 
 = ≥

+ 
Γ  
 

 (A18) 

where ( )xΓ  is the Euler Gamma function. 

 

 



Int. J. Electrochem. Sci., Vol. 4, 2009 

  
1406

References 

 

1. E. Laviron, J. Electroanal. Chem., 35 (1972) 333.  

2. W. M. Schwartz and I. Shain, J. Phys. Chem., 69 (1965) 30. 

3. L. Marcoux and T. J. P. O’Brien, J. Phys. Chem., 76 (1972) 1666. 

4. F. Garay and M. Lovric, J. Electroanal. Chem., 527 (2002) 85. 

5. V. Mirceski, J. Electroanal. Chem., 508 (2001) 138. 

6. J. J. O'Dea, J. G. Osteryoung and R. A. Osteryoung, Anal. Chem., 53 (1981) 695.  
7. T. H. Ridgway, R. P. Van Duyne and C. N. Reilley, J. Electroanal. Chem., 34 (1972) 267. 

8. M. López-Tenés, J. M. Molina and A. Molina, Electroanalysis, 16 (2004) 938. 
9. E. Sondaz, A. Gourdon, J.-P- Launay and J. Bonvoisin, Inorg. Chim. Acta, 316 (2001) 79.  

10. B. Nigovic and N. Kujundzic, Polyhedron, 21 (2002) 1661.  
11. M. Kim, Anal. Chem., 59 (1987) 2136.  

12. D. M. H. Kern, J. Am. Chem. Soc., 76 (1953) 1011. 
13. A. C. Testa and W. H. Reinmuth, Anal. Chem., 33 (1961) 1320.  

14. K. B. Wilberg and T. P. Lewis, J. Am. Chem. Soc., 92 (1970) 7154.  

15. R. S. Nicholson and I. Shain, Anal. Chem., 36 (1964) 706.  

16. H. Y. Cheng and R. L. McCreery, Anal. Chem., 50 (1978) 645.  

17. M. Mohammad, Anal. Chem., 49 (1977) 60.  

18. Y. Zhu, G. Cheng and S. Dong, Biophys. Chem., 90 (2001) 1.  

19. L. Fotouhi, F. Hajilari and M. M. Heravi, Electroanalysis, 14 (2002) 1728.  

20. A. J. Bard and L. R. Faulkner, Electrochemical Methods, 2nd Ed., Wiley, New York (2001). 

21. H. Lund and O. Hammerich, Organic Electrochemistry, 4th Ed., Marcel Dekker, New York 

(2001). 

22. E. Budevski and G. Desimirov, Dokladi Akad. Nauk SSSR, 149 (1963) 120. 

23. A. Molina and I. Morales, Int. J. Electrochem. Sci., 2 (2007) 386. 

24. K. B. Oldham, J. Electroanal. Chem., 313 (1991) 3. 

25. H. Y. Cheng and R. L. McCreery, J. Electroanal. Chem., 85 (1977) 361. 
26. V. T. Kumar and R. L. Birke, Anal. Chem., 65 (1993) 2428. 

27. A. Molina, F. Martínez-Ortiz, E. Laborda and I. Morales, J. Electroanal. Chem., 633 (2009) 7. 
28. I. Morales and A. Molina, Electrochem. Commun., 8 (2006) 1453. 

29. J. Koutecky, Czech. J. Phys., 2 (1953) 50.  
30. A. A. M. Brinkman and J. M. Los, J. Electroanal. Chem., 7 (1964) 171. 

 
 

© 2009 by ESG (www.electrochemsci.org) 

 


