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Corrosion of steel reinforcement can seriously compromise the service life of reinforced concrete 

structures. Hence, service life prediction and enhancement of concrete structures under corrosion 

attack are of significant importance. As a result, numerical methods that can reliably predict the service 

life of concrete structures have attracted increasing attention. In this, the first of two companion 

papers, a simple and significantly improved inverse relation relating the current density with potential 

for the cathodic reaction is proposed. This enables the current densities to be determined accurately 
from the measured potentials. Equally importantly, the proposed inverse relation also enables the 

efficient and straight-forward nonlinear algorithm for modeling of steel corrosion in concrete 
structures to be developed. Such an algorithm is presented in the companion paper of this. 
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1. INTRODUCTION 

Corrosion of steel reinforcement is a well-known and well-documented phenomenon, and is 

considered the most prevalent form of deterioration of reinforced concrete structures [1, 2]. Initially, 

due to the highly alkaline nature of the concrete, a passive protective oxide film is formed on the 

surface of the steel reinforcement, effectively preventing the steel surface from being corroded. The 

passive protection layer, however, may be seriously compromised when the chemical composition of 

the pore solution is altered by carbonation or chloride contamination of the concrete cover. As a 

consequence, corrosion begins, resulting in a reduction in steel cross-sectional area, cracking, and 

spalling as well as loss in bond between steel and concrete. 
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In recent years, numerical methods that simulate the corrosion processes of reinforcing steel in 

concrete and allow parametric studies in addition to laborious experimental investigations have gained 

increasing attention [3-6]. This is mainly due to the considerably improved understanding of the basic 

processes underlying reinforcement corrosion and the significantly increased possiblities for modelling 

complex electrochemical processes involved in corrosion. However, much remains to be investigated 

further to fully realise the potentials of current numerical models. Specifically, because of the 

concentration polarization, the polarized potential of the cathodic reaction expressed as a function of 

the current density is nonlinear and cannot be solved for explicit inverse relations, which have to be 

approximated instead. Current approximate inverse relations, however, do not represent well the exact 

solution. This paper thus aims to propose a new inverse relation between the current density and 

potential for the cathodic reaction. 

 

 
 

 

2. KINETICS OF CORROSION 

2.1. Potential-current density relations for anodic and cathodic reactions 

The potential-current density relations for the anodic and cathodic reactions of steel corrosion 

are well-established [7, 8].  

The corrosion of steel in concrete is caused by the dissolution of iron into the pore water at the 

anode [9], which can be represented by the following half-cell reaction  

 
−+ +→ eFeFe 22

      (1)  

 

In order for electrical neutrality to be preserved, the electrons produced in this anodic reaction 

must be consumed at the cathodic sites on the steel surface [9]. The cathodic reaction is given by  

 
−− →++ OHeOHO 442 22              (2)   

    

At equilibrium, the rate of the forward reaction in Eqs. 1 and 2 is equal to the reverse one. The 

potentials and current densities at these states are called equilibrium potentials and exchange current 

densities, respectively. When the equilibrium is disturbed, there is a net current between the anodic and 

cathodic areas on the steel, and the equilibrium potentials are changed to new potentials at the 

electrodes. The extent of potential change caused by the net current at the electrodes, measured in 

volts, is termed polarization. There are three causes of polarization, namely activation, concentration 

and Ohmic potential drop. For steel corrosion in concrete structures, activation is considered as the 

only cause of the anodic polarization while activation and concentration are the causes of cathodic 

polarization [8]. 
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2.1.1. Polarization of anodic reaction 

The activation polarization of the anodes can be determined by  
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where βa is the Tafel slope of the anodic reaction (V/dec), ia is the anodic current density (A/mm2) and 

ia0 is the exchange current density of the anodic reaction (A/mm
2
).  

Hence the polarized potential φa (V) of the anodic reaction can be written as [10] 
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where φa0 is the equilibrium potential of the anodes (V). 

 

2.1.2. Polarization of cathodic reaction 

If the amount of oxygen at cathode is not sufficient, the concentration polarization controls the 

polarization of cathodes. Concentration polarization at the cathodes can be calculated as  
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where R is the universal gas constant (8.314 J/K.mol), T is the absolute temperature (K), F is Faraday’s 

constant (9.65.104 C/mol), z is the number of electrons exchanged in the cathodic reaction, ic is the 

cathodic current density (A/mm
2
) and iL is the limiting current density of the cathodic reaction 

(A/mm
2
).  

The limiting current density iL of the oxygen reduction at the cathodic sites can be calculated as 

follows [7] 
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where 
2OD  (m2/s) is the effective oxygen diffusion coefficient in concrete, δ (= 0.005 mm) is the 

thickness of the stagnant layer of electrolyte around the steel surface, tn (=1) is the transference number 

of all ions in the solution except for the reduced species, and 
2OC  (mol/l of pore solution) is the 

concentration of oxygen around the steel. 

The activation polarization of the cathodes can be determined as  
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where βc is the Tafel slope of the cathodic reaction (V/dec) and ic0 is the exchange current density of 

the cathodic reaction (A/mm
2
).  

Thus the polarized potential of the cathodic reaction can be written as [10] 
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where φc is the potential (V), and φc0 is the equilibrium cathodic potential (V) under a certain 

environment. Fig. 1 illustrates the relation between potentials and the current densities for anodic and 

cathodic reactions given in Eqs. 4 and 8. 

 

 

Figure 1. Potential-current density relations for anodic and cathodic reactions. 

 

2.2. Inverse relations for anodic and cathodic reactions 

In Eqs. 4 and 8, the polarized potentials φa and φc of the anodic and cathodic reactions are 

expressed as functions of the current densities. However, in reality, the potentials are usually measured 

and inverse relations are therefore required to enable the current densities to be determined from the 

obtained potentials.  

Equally importantly, suitable inverse relations are also needed to allow the efficient and 

straight-forward nonlinear algorithm for modeling of steel corrosion in concrete structures to be 

developed. The modeling of steel corrosion in concrete structures involves solving the governing 

equation in Laplace form that satisfies the two boundary conditions of potential and current density at 

the steel-concrete interfaces [11, 12]. Currently available models often use only one of the above two 

boundary conditions, with the other satisfied by iteration to convergence. In contrast, with a suitable 

inverse relation, the two boundary conditions can be combined and satisfied simultaneously, resulting 
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in a straight-forward algorithm for modeling of steel corrosion in concrete structures. In addition, the 

incorporation of a suitable inverse relation also enables a unified algorithm for different types of 

corrosion modeling, e.g. to solve macro-cell modeling [12-14] and macro-and-micro-cell modeling 

[11]  in one single algorithm. This is presented in detail in the companion paper [15].  

 

2.2.1. For the anodic reaction 

The inverse relation of Eq. 4 is the same as the Butler-Volmer relation for the anodic reaction 
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2.2.2. For the cathodic reaction 

Without the concentration polarization term ηcc, the inverse relation of Eq. 8 is similar to the 

Butler-Volmer relation for the cathodic reaction 
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However, the effect of concentration polarization on the cathodic reaction often cannot be 

ignored due to the low oxygen concentration around the cathodic sites on the steel surface. As a result, 

Eq. 8 becomes nonlinear and cannot be solved for explicit inverse relations, which have to be 

approximated instead.  

Kranc and Sagues [16] attempted to incorporate the concentration polarization into Butler-

Volmer equation as follows 
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where 
2O

C , S

OC
2
 are the concentrations of oxygen in the concrete pore solution and at the steel surface, 

respectively. This relation, however, is overly simplistic. Among various shortcomings, the relation 

fails to reflect the asymptotic nature of the curve at limiting current density iL, an important 

characteristic of the current density-potential curve for cathodic reaction.  

An improved approximation was proposed by Gulikers [3], which was also based on  the 

Butler-Volmer relation 
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A comparison of Gulikers’ proposed relation and the exact solution for iL between 0.2x10
-8

 and 

60x10
-8

 (A/mm
2
) is given in Fig. 2. The exact solution for the current density is obtained by solving 

Eq. 8 numerically with known values of ic0, φc0, βc, iL, φc using Brent method [17]. It is clear from Fig. 

2 that Gulikers’ relation overcomes the non-asymptotic shortcoming of that proposed in [16]. 

However, Gulikers’ relation still does not completely represent the inverse relation of Eq. 8, especially 

in the regions of significant change of slope in the current density-potential curve for cathodic reaction. 

A better relation that represents more fully the inverse relation of Eq. 8 is therefore needed. 

 

 

Figure 2. Gulikers’ relation with exact inverse relation. 

 

 

 

3. NEW INVERSE RELATION BETWEEN CURRENT DENSITY AND POTENTIAL FOR 

THE CATHODIC REACTION 

 

Upon close examination of the potential-current density relation for cathodic reaction in Eq. 8 

and Fig. 2, the following features can be observed 

 

i. When the limiting current density iL of the cathodic reaction is significantly larger than the 

cathodic current density ic, i.e. iL/(iL-ic)≅ 1, the concentration polarization is negligible, 

resulting in the familiar Butler-Volmer relation for cathodic reaction as in Eq. 10. 

ii. When the polarized potential of the cathodic reaction φc approaches the equilibrium cathodic 

potential φc0, the cathodic current density ic approaches the exchange current density of the 

cathodic reaction ic0. 

iii. When the polarized potential of the cathodic reaction φc approaches negative infinity, the 

cathodic current density ic reaches the limiting current density iL (asymptotic nature of the 

curve). 
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Based on the above observations, a number of modified current density-potential relations for 

cathodic reaction have been investigated, among which the following relation provides the desired 

shape of the cathodic curves 
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where γ is a curvature-defining constant. Fig. 3 illustrates the change of curvatures of the cathodic 

curves with different values of γ.  

 

 

Figure 3. Effect of γ constant on the curvature of cathodic curves. 

 
 

In order to determine the appropriate value for the constant γ, a sensitivity analysis is carried 

out by comparing the current densities determined by the exact relation and the proposed relation for a 

typical input data set and for a range of γ. Again, the exact solution for the current density is obtained 

by solving Eq. 8 numerically with known values of ic0, φc0, βc, iL, φc using Brent method. 

Based on the common values of parameters ic0, φc0, βc, iL and φc for steel corrosion in concrete 

structures (Table 1), the input parameters for the sensitivity analysis are selected and given in Table 2. 

The resulting current densities determined by the exact and proposed relations for different values of γ 

are presented in Fig. 4. By observation, the current densities determined by the two relations correlate 

very well for γ of about 3, but differ considerably for γ of less than 1.  
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a) Correlation with γ = 0.2 

 
b) Correlation with γ = 0.5 

 
c) Correlation with γ = 1 

 
d) Correlation with γ = 3 

 
e) Correlation with γ = 5 

 
f) Correlation with γ = 10 

 

Figure 4. Current density determined by exact and proposed relation for different values of γ. 
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Table 1. Review of parameters for cathodic curve. 

 

 ic0(A/mm
2
) φc0(mV) βc(mV/dec) 

Kim and Kim [11] 0.0006x10
-8

 160 176.3 

Isgor and Razaqpur [12] 0.0006x10-8 160 160 

Ghods, Isgor and Pour-Ghaz [18] 0.001x10
-8

 160 160 

Kranc and Sagues [16] 0.000625x10-8 160 160 

Pour-Ghaz,  Isgor and Ghods [13] 0.001x10
-8

 160 180 

Warkus, Raupach and Gulikers [19] - - 200 

 

Table 2. Selected input parameters for sensitivity analysis. 

(Note: the combination of different values of ic0, φc0, βc, iL, φc provided in following table                
gives 891 data points) 

 

Input parameters Values 

φc (mV) -800,-700,-600,-500,-400,-300,-200,-100,0,100,200 

ic0(A/mm
2
)  0.0001x10

-8
, 0.00055x10

-8
, 0.001x10

-8
 

φc0(mV) 100,150,200 

βc(mV/dec) 100,150,200 

iL(A/mm
2
) 0.2x10

-8
,30x10

-8
,60x10

-8
 

 

 
Figure 5. Variation of Root-Mean-Square error with γ. 

 

In order to find the optimal value of γ, the variation of Root-Mean-Square error, defined in Eq. 

14, with γ is plotted in Fig. 5. 
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where exact

ci  and proposed

ci  are current densities determined by the exact and proposed relations, 

respectively, and n is the number of data points (n=891).  

It is clearly evident from Fig. 5 that the optimal value of γ is 3, and hence the proposed relation 

becomes 
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a) Changing iL 

 

b) Changing ic0 

 

c) Changing φc0 

 

d) Changing βc 

Figure 6. The current density-potential curves for cathodic reaction. 
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The validity of this proposed relation is further demonstrated by the following illustration. 

Let’s consider a typical base case (Table 1) of ic0 of 0.001x10
-8

 (A/mm
2
), φc0 of 160 (mV), βc of 180 

(mV/dec), and iL of 10x10-8 (A/mm2). Each of these parameters is varied in turn within its common 

range (Table 1), while the others remain unchanged. The resulting potential-current density curves are 

presented in Fig. 6. In all cases, the prediction by the proposed relation correlates very well with the 

exact solution, confirming the capability of the new relation between current densities and potentials 

for cathodic reaction. 

 

 
 

4. CONCLUSIONS 

In this paper, a new inverse relation that relates the current density with potential for the 

cathodic reaction has been proposed. Besides its desirable simple nature, the proposed inverse relation 

has been clearly shown to correlate very well with the exact solution. 

The significantly improved inverse relation proposed enables the current densities to be 

determined accurately from the measured potentials. Equally importantly, the proposed inverse relation 

also enables the efficient and straight-forward nonlinear algorithm for modeling of steel corrosion in 

concrete structures to be developed. Such an algorithm is presented in the companion paper of this. 
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