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A Mathematical model of amperometric enzyme electrodes is re-studied using variational iteration 

method. In this paper, He’s variational iteration method is implemented to give an approximate and an 

analytical solution of nonlinear differential equations describing the transport and kinetics of the 

enzyme and of the mediator in the diffusion layer of the electrode. The variational iteration method 

produces a simple analytical solution for an enzyme electrode where electron transfer is accomplished 

by a mediator reacting in a homogeneous solution. These analytical results are compared with 

available limiting case results and are found to be in good agreement. 
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1. INTRODUCTION 

Recently, there has been much interest in the use of mediators to effect electron transfer 

reactions between biological molecules (enzymes or reduced form of Nicotinamide Adenine 

Dinucleotide  (NADH)) and electrodes [1]. The importance for this work has been focused on two 

major areas. First the successful transduction of the rate of an enzymatic reaction into a current 

provides the basis of a selective amperometric enzyme electrode. Second the study of such system 

provides information about the mechanism of electron transfer in biological system [2 - 14]. 

John Albery’s et al [1] presented a complete theoretical treatment for an enzyme electrode 

where electron transfer from the enzyme to the electrode is achieved by a mediator reacting in 

homogeneous solution. John Albery’s et al [1] solved the second-order differential equations 

describing the transport and kinetics of the enzyme and of the mediator in the diffusion layer of the 

electrode only for the various limiting values of the dimensionless parameters  E , κγ  and  Mκ . These 
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parameters are defined below the eqn. (13). Recently Lyons described the mathematical model of 

transport and kinetics of substrate and redox mediator within chemically modified electrodes 

comprising of redox enzymes immobilized in dispersed carbon nanotube meshes dispersed on support 

electrode surfaces [15].To our knowledge, no general analytical expressions of the concentration of the 

mediator and the enzyme and current have been reported for all values of parameters [1]. The purpose 

of this paper is to derive the concentration of the mediator and enzyme for all values of reaction 

parameters  E , κγ  and  Mκ  using variational iteration method [16, 17]. 

 

 

2. MATHEMATICAL FORMULATION OF THE BOUNDARY-VALUE PROBLEM AND 

ANALYSIS 

 

In biological system, at the electrode  
                                                                MM →'  

homogeneous solution may be expressed by 

'

  ''

EE

EMEM

Ek

Mk

→

+→+
 

On the electrode, the mediator redox couple '/ MM  is converted and reacts with the enzyme in 

the solution. Ek  is the rate constant with which the enzyme reacts with its substrate S. Mk  is the rate 

constant with which the enzyme reacts with the  mediator. The enzyme is saturated when substrate 

concentration is sufficiently large. Now the rate constant Ek  will be equal to catk . If the system is 

unsaturated, 

])[/( SKkk McatE =                                                                 (1) 

Here we assume that [S] is sufficiently large that there is no concentration polarization of S in the 

diffusion layer of the electrode. MK  denotes the Michaelis-Menten constant. Within the diffusion 

layer of thickness DZ , the diffusion and kinetics of the four species EMM  ,' ,  and 'E  are given by the 

following differential equations, 

 

0/ '22 =−∂∂ mekzmD MM                                                            (2)                                                                         

0/ '2'2 =+∂∂ mekzmD MM                                                            (3) 

                         0/ '2'2 =+−∂∂ ekmekzeD EME                                                    (4) 

0/ '22 =−+∂∂ ekmekzeD EME                                                      (5) 

where eemm  , , , ''  represent the concentrations of the various species. MD  is the diffusion coefficient 

of  M and 'M . ED  is the diffusion coefficient of E and 'E . z is the distance between the electrode and 

the species. When the electrode is the source of the mediator, on the electrode surface where 0=z , the 

boundary conditions are given by 

      0mm = , 0'=m  and 0)/()/( 0
'

0 =∂∂=∂∂ == zz zeze                                 (6) 
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0m  denote the initial concentration of the mediator. The boundary conditions at the outside edge of the 

diffusion layer where  DZz =  are 

0' == mm , 0=e  and ∑= ee'                                                (7) 

where ∑e  denotes the total concentration of enzyme species. The flux j of electrons from the 

conversion of 'M  to M at the electrode surface involving n electrons is given by 

0)/'( =∂∂= zM zmnDj                                                              (8) 

Integrating the sum of eqns. (2) and (3) gives 

)/1(' 0 DZzmmm −=+                                                              (9) 

Similarly, integrating the sum of eqns. (4) and (5) gives 

                                       ∑=+ eee '                                                                           (10) 

We make the nonlinear differential equations dimensionless by defining the following parameters: 

                           ;/;/ ;/' ;/''  ;/ 2

00 MDMMD DeZkZzeevmmummu ∑∑ ===== κχ          

                         EDME DZk / 2=κ  and EM kmk /0=γ .                                                                        (11)                                                                                                                         

Here the typical concentration profiles are denoted as vuu  , , '  and 1-v for ' ,' , EMM  and E   

respectively. χ  is the normalized distance from the electrode / membrane interface. Now the given 

two differential equations reduce to the following dimensionless form [1] : 

                               uvu Mκχ =∂∂ 22 /                                                               (12) 

)1(/ 22 vuvv EE −−=∂∂ κγκχ                                                    (13) 

The parameter Mκ  describes the chances of the mediator M escaping from the diffusion layer before it 

reacts with the enzyme. The parameter Eκ  describes the chances of the conversion of enzyme E and 
'E  by substrate within the diffusion layer. The parameter γ  describes the local steady state between 

the two enzyme forms at the electrode surface. From eqn. (9) 
χ−=+ 1'uu                                                                 (14)                                        

These equations must obey the following boundary conditions: 

        0'   ,1 == uu   and 0/ =∂∂ χv   for  0=χ                                         (15)    

                                                   0'  == uu  and 1=v                  for 1=χ                                          (16)                                        

The flux of electrons is given by 

    00 )/')(/( =∂∂= χχuZmnDj DM                                                 (17)  

The dimensionless current is given by  

                             0

'

0

)/(
)/(

=∂∂== χχu
ZmnD

j
I

DM

                                           (18) 

From eqn. (14) we get 

1)/()/'( 00 −∂∂−=∂∂= == χχ χχ uuI                                           (19) 
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When 1=v  the eqn. (12) reduces to a simple first order case [18, 19]. However, to the best of 

author’s knowledge no purely complete analytical solution of this problem has been published. In this 

paper the nonlinear eqns. (12) and (13) are solved for the boundary conditions given by the eqns. (15) 

and (16) using variational iteration method, proposed by He [16, 17]. 

 

3. VARIATIONAL ITERATION METHOD 

The Variational iteration method [16, 17, 20, 21] has been extensively worked out over a 

number of years by numerous authors. Variational iteration method has been favorably applied to 

various kinds of nonlinear problems [20, 21]. The main property of the method is in its flexibility and 

ability to solve nonlinear equations [17]. Recently Rahamathunissa and Rajendran [22] implemented 

variational iteration method to give approximate and analytical solutions of nonlinear reaction 

diffusion equations containing a nonlinear term related to Michaelis-Menten kinetic of the enzymatic 

reaction. Besides its mathematical importance and its links to other branches of mathematics, it is 

widely used in all ramifications of modern sciences [23]. In this method the solution procedure is very 

simple by means of variational theory and only few iterations lead to high accurate solution which are 

valid for the whole solution domain. The basic concept of variational iteration method is given in 

Appendix A. 

 

4. ANALYTICAL SOLUTION OF THE CONCENTRATION AND CURRENT USING 

VARIATIONAL ITERATION METHOD 

 

Using variational iteration method [16, 17] (refer Appendix A), the concentration of the 

mediator and the enzyme are  
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where      

                   (22)            
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The numerical values of a and b for various values of  E, κγ  and  Mκ  are given in Table-3. From eqn. 

(19), we get dimensionless current  

a
uu

I =−








∂

∂
−=











∂

∂
=

==

1
00

'

χχ
χχ

                                          (24)                                                                                                                         

Eqns. (20) and (21) represent the new approximate analytical expressions of the typical 

concentration profiles for the mediator and the enzyme for all values of   E , κγ  and  Mκ . The 

dimensionless current is given by the eqn. (24). 

 

 

5. VARIOUS SPECIAL CASES OF JOHN ALBERY’S WORK  [1] 

Albery’s et al. [1] have derived the analytical expressions of concentration of u and v for 

number of special cases only. Various expressions of u and v are given in Table 1. Table 2 indicates 

the dimensionless current for different limiting cases. 

 

 

6. RESULTS AND DISCUSSION 

Equations (20) and (21) are the new and simple analytical expressions of concentration profiles 

for the mediator u and enzyme v. The approximate solutions of second order differential equations 

describing the transport and kinetics of the enzyme and the mediator in the diffusion layer of the 

electrode are derived. Albery and co-workers [1] derived the different approximate solutions (eqns. 

(25)-(36)) for various limiting cases (refer Table. 1) only. By finding the values of constants a and b 

(refer Table. 3), we can plot the concentration profiles. 

The concentration of mediator in most cases is in the linear form where as the concentration of 

the enzyme is in the parabolic type. In Figures 1-6 and Table 4-9, our analytical results (eqns. (20) and 

(21)) are compared with previously available limiting case results. The average relative error between 

our results and limiting case results [1] are given in Table 10. Since the eqns. (33) and (34) are not 

satisfying the boundary condition (eqn. (16)), the maximum error 14.43% and 35.12% occurs when 

1>Eκ  and 1>Mκ . Also in Albery et al [1], equation (31) does not satisfy the boundary condition 

0=u  when 1=χ . 

Equations (37)-(40) derived in Albery et al [1] (refer Table. 2) for current are compared with 

eqn. (24). Figures 7-10 show the dimensionless current I  for various values of Mκ  and γ . From 

Figures 7-10,  it is inferred that, the value of the current decreases when γ  increases. From the Figures 

7- 8, it is known that the value of the current increases when Mκ  increases. From the Figures 8- 9 ,it is 

inferred that the value of the current decreases when Eκ  increases. 
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Table 1. Different analytical approximations proposed in Albery et al [1] for the concentration of u and v 

 

S. 

No 

Cases Conditions U v Fig. No. 

 

1. 

 

I & II 

 

1

,1

<

<<

Eκ

γ
 

 

)coth()sinh()cosh( 2/12/12/1
MMMu κχκχκ −=         (25)       

 

1=v                                                                                                           (26) 

 

Fig. 1 

01.0,1.0,1.0 === ME κκγ  
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 χ−= 1u                                                                        (27) 
)0()()0()(

)()()()(
''
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BiAiAiBi

BiAiAiBi
v

ϕϕ

ϕχϕϕχϕ

−

−
=                                    (28) 

where
3/1)( Eγκϕ = , χχ −= 1'

 

 

Fig. 2 

1.0,01.0,100 === ME κκγ  

  

 

3. 

 

 

V & VI 

 

1>>γ , 

1>>Eκ  

γκ 2<M

 

 

γχκχγκ 2/)2/1(1 2
MMu ++−=            (29) 

 

 

)1(

1

u
v

γ+
=                                                                                           (30) 

 

Fig. 3 

1,100,2 === ME κκγ  

 

 

4. 

 

 

 

I & IV 

 

1

,1

>
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E
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[ ]χκ 2/1

0 )(exp vu M−=                                         (31) 

Where  

)42)(2/1( 2222

0 βκκβκβ MMMv +±+=
 

EM γκκβ /=  

 

 

v )42)(2/1( 2222 βκκβκβ MMM +±+=                  (32) 

 

 

Fig. 4 

5,01.0,01.0 === ME κκγ  

 

 

 

5. 
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NMLvv /}){1(1 0 −−−=                                                        (34)   

where ])(exp[ 2/1

0

2/1 χκκ vL ME −= , 

)exp()( 2/12/1

0 χκκ EM vM −= , ])([ 2/1

0

2/1
vN ME κκ −=  

 

 

Fig. 5 

10,2,2 === ME κκγ  

 

6. 

 

II & V 
1

,1

<<

>>

M

E

κ

κ
 

 

 

χ−= 1u                                                                         (35) 

 

) 1/(1 uv γ+=                                                                                     (36) 

 

Fig. 6 

01.0,10,1.0 === ME κκγ  
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Table 2. Different analytical approximation of dimensionless current derived in Albery et al [1]. 

 

Table 3. The numerical values of the constants a and b for corresponding values of ,, Eκγ and Mκ   

calculated using eqns. (22) and (23). 
 

γ  Eκ  Mκ  a b 

0.1 0.1 0.01 0.0033 -0.0032 

100 0.01 0.1 0.0255 -0.2543 

2 100 1 0.1362 -0.6385 

0.01 0.01 5 1.1765 -0.00002 

2 2 10 1.4654 -0.3197 

0.1 10 0.01 0.00315 -0.0609 

 

 

7. CONCLUSIONS 

The studies observed in this paper are of theoretical nature. The simple analytical expressions 

of the concentration of the mediator and the enzyme are reported, for all values of reaction parameters 

ME  and  , κκγ  using variational iteration method. These values are compared with previously available 

limiting case results. A satisfactory agreement with available data for limiting cases is noted. The 

 

S.No. 

 

Cases 

 

  Conditions  

              

Current 

 

Fig. No. 

 

  1.  

 

 I & II 

 

1,1 <<< Eκγ  

 

1)coth( 2/12/1 −= MMI κκ                                           (37) 

 

Fig.  7 

1.0,1.0 == Eκγ  
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Fig. 8 

1.0,100 == Eκγ  
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Fig. 9 
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9.0,10 == ME κκ  
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extension of this procedure to other reaction mechanism apart from the study of mediated enzyme 

reaction mechanism in biosensor [24] with complex boundary condition seems possible. 

 

 

Table 4. Comparison of our results with Albery et al [1] results for the values of 

01.0,1.0,1.0 === ME κκγ  (Cases I and II) 

 

 

 

Table 5. Comparison of our results with Albery et al [1] results for the values of  

1.0,01.0,100 === ME κκγ   

 (Cases II and III) 

 

χ  u  %  deviation 

of  eqn. (20) 

v  % deviation 

of  eqn. (21) This work  

eqn. (20) 

Albery 

eqn. (25) 

This work 

eqn. (21) 

Albery 

eqn. (26) 

0 1 1 0 0.9968 1 0.3210 

0.2 0.7995 0.7995 0 0.9970 1 0.3009 

0.4 0.5994 0.5994 0 0.9975 1 0.2506 

0.6 0.3994 0.3994 0 0.9982 1 0.1803 

0.8 0.1997 0.1997 0 0.9991 1 0.0901 

1.0 0 0 0 1 1 0 

 Average deviation 0 Average  deviation 0.1905 

χ  u  %  deviation 

of  eqn. (20) 

v  %  deviation 

of  eqn. (21) This work 

eqn. (20) 

Albery 

eqn. (27) 

This work 

eqn. (21) 

Albery 

eqn. (28) 

0 1 1 0 0.7457 0.7421 0.4828 

0.2 0.7963 0.8 0.4646 0.7596 0.7560 0.4739 

0.4 0.5950 0.6 0.8403 0.7975 0.7942 0.4138 

0.6 0.3955 0.4 1.1378 0.8539 0.8513 0.3045 

0.8 0.1974 0.2 1.1317 0.9235 0.9220 0.1624 

1.0 0 0 0 1 1 0 

 Average  deviation 

  

0.5957 Average  deviation 

 

0.3062 
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Table 6. Comparison of our results with Albery et al [1] results for the values of   

1,100,2 === ME κκγ   

 (Cases V and VI) 

 

 
 

 

 

Table 7. Comparison of our results with Albery et al [1] results for the values of  

5,01.0,01.0 === ME κκγ   (Cases I and IV) 

 

 

 

 

χ  u  %  deviation 

of  eqn. (20) 

v  %  deviation 

of  eqn. (21) This work 

eqn. (20) 

Albery 

eqn. (29) 

This work 

eqn. (21) 

Albery 

eqn. (30) 

0 1 1 0 0.3615 0.3333 7.8008 

0.2 0.7795 0.7600 2.5016 0.4453 0.3908 12.2389 

0.4 0.5712 0.5400 5.4622 0.5182 0.4668 9.9190 

0.6 0.3733 0.3400 8.9204 0.5617 0.5725 1.9227 

0.8 0.1840 0.1600 13.0435 0.7023 0.7310 4.0866 

1 0 0 0 1 1 0 

 Average  deviation 4.9880 Average  deviation 

 

5.9947 

χ  u  %  deviation 

of  eqn. (20) 

v  %  deviation 

of  eqn. (21) This work 

eqn. (20) 

Albery 

eqn. (31) 

This work 

eqn. (21) 

Albery 

eqn. (32) 

0 1 1 0 1 1 0 

0.2 0.6510 0.6394 1.7819 1 1 0 

0.4 0.4259 0.4088 4.0150 1 1 0 

0.6 0.2659 0.2614 1.6924 1 1 0 

0.8 0.1310 0.1672 27.6336 1 1 0 

1.0 0 0.1069 _ 1 1 0 

 Average  deviation 

 

7.0246 Average  deviation 

 

0 
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Table 8. Comparison of our results with Albery et al [1] results for the values of  

10,2,2 === ME κκγ  

(Cases I and VII) 

 

 

 

Table 9. Comparison of our results with Albery et al [1] results for the values of  

01.0,10,1.0 === ME κκγ     (Cases II and V) 

 

 

χ  u  %  deviation 

of  eqn. (20) 

v  %  deviation 

of  eqn. (21) This work 

eqn. (20) 

Albery 

eqn. (33) 

This work 

eqn. (21) 

Albery 

eqn. (34) 

0 1 1 0 0.6803 0.4202 38.2331 

0.2 0.6223 0.6637 6.6527 0.7137 0.4383 38.5876 

0.4 0.4039 0.4405 9.0616 0.7865 0.4947 37.1011 

0.6 0.2603 0.2923 12.2935 0.8679 0.5653 34.8658 

0.8 0.1346 0.1940 44.1308 0.9403 0.6371 32.2450 

1.0 0 0.1287 _ 1 0.7032 29.6800 

 Average  deviation 

 

14.4277 Average  deviation 

 

35.1188 

χ  u  %  deviation 

of  eqn. (20) 

v  %  deviation 

of  eqn. (21) This work 

eqn. (20) 

Albery 

eqn. (35) 

This work 

eqn. (21) 

Albery 

eqn. (36) 

0 1 1 0 0.9391 0.9091 3.1945 

0.2 0.7995 0.8 0.0625 0.9445 0.9260 1.9587 

0.4 0.5994 0.6 0.1001 0.9568 0.9435 1.3911 

0.6 0.3995 0.4 0.1252 0.9715 0.9616 1.0190 

0.8 0.1997 0.2 0.1502 0.9862 0.9804 0.5881 

1.0 0 0 0 1 1 0 

 Average  deviation 

 

0.0730 Average  deviation 

 

1.3586 



Int. J. Electrochem. Sci., Vol. 5, 2010 

  
337

Table 10. Value of average relative error when our eqns. (20) and (21) are compared with limiting 

case results (eqns. (25) to (36)) 

 

S. No. Cases Conditions Numerical values taken for 

M and , κκγ E  

Mediator 

concentration (u) 

Percentage error 

Enzyme 

concentration (v) 

Percentage error 

 

1. 

 

I & II 

 

1 ,1 <<< Eκγ  

 

 

 

01.0,1.0,1.0 === ME κκγ

 

 

 

0 

 

 

 

0.1905 

 

 

 

2. 

 

 

II & III 

 

1~ ,1

,1 ,1

EM

E

γκκ

κγ

<<

<<>>
 

 

 

1.0,01.0,100 === ME κκγ

 

 

 

 

0.5957 

 

 

 

0.3062 

 

 

3. 

 

V & VI 

 

 

1>>γ , 1>>Eκ , 

γκ 2<M  

 

 

1,100,2 === ME κκγ  

 

 
4.9880 

 

 

 
5.9947 

 

 

4. 

 

 

I & IV 

 

1 ,1 >< ME κκ  

 
 

5,01.0,01.0 === ME κκγ  

 
 

7.0246 

 

 
 

0 

 

 

5. 

 

I & VII 

 

1 ,1 >>> ME κκ  

 

10,2,2 === ME κκγ  

 

14.4277 

 

 

35.1188 

 

6. 

 

II & V 

 

1 ,1 <<>> ME κκ  

 

01.0,10,1.0 === ME κκγ  

 

0.0730 

 

 

1.3586 

 

 

 

 
Figure 1. Comparison of dimensionless concentration u and  v for cases I and II. 
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Figure 2. Comparison of dimensionless concentration u and  v for cases II and III. 

 

 

 

 
 

Figure 3. Comparison of dimensionless concentration u and  v for cases V and VI. 

 
 

 

 
Figure 4.  Comparison of dimensionless concentration u and  v for cases I and IV. 
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Figure 5.  Comparison of dimensionless concentration u and v for cases I and VII. 

 
 

 
 

Figure 6. Comparison of dimensionless concentration u and  v for cases II and V. 

 

 

 
 

Figure 7. Comparison of current for cases I and II. 
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Figure 8. Comparison of current for cases II and III. 

 

 
 

 
Figure 9. Comparison of current for cases V and VI. 

 

 

 

 
Figure 10. Comparison of current for cases II and  V. 
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Appendix A 

In this appendix we outline the basic concept and solution of equations (12) and (13) using 

variational iteration method. To illustrate the basic concept of variational iteration method [16]
 
we 

consider the following nonlinear partial differential equation: 

                  L [u(x)] + N [u(x)] = g(x)                                                  (A1)         

where L is a linear operator, N is a nonlinear operator and  g(x) is a given continuous function. 

According to the variational iteration method, we can construct a correction functional as follows 

dssgsuNsuLxuxu

x

nnnn ∫ 












−++=+

0

~

1  )()]([)]([)()( λ                               (A2) 

where λ   is a general Lagrange multiplier which can be identified optimally via variational theory, nu  

is the nth approximate solution, nu
~

 denotes a restricted variation, i.e., 0
~

=nuδ . Using variational 

iteration method, we can write the correction functional of eqn. (12) as follows  
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                     (A3) 

and eqn. (13) as follows 
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Taking variation with respect to the independent variable nu  in (A3) and nv in (A4), we get 
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               (A6) 

where 1λ  and  2λ  are general Lagrange multipliers, 0u and 0v  are initial approximations or trial 

functions, 
4484476 ~

)()( svsu nnMκ , 
44 844 76 ~

)()( svsu nnEγκ  and 
4484476 ~

))(1( svnE −κ  are considered as restricted variations [17]  

i.e 0~ =nvδ  and 0~~ =nnvuδ . Making the above correction functional (A5) and (A6) stationary, noticing 

that 0)0( =nvδ  and 0)0()0( =nn vuδ , we obtain 

0|)(1: 
'

1 =− =χλδ sn su                                                   (A7) 

          0|)(: 1

' ==χλδ sn su                                                         (A8) 

                     0|)(: "
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The Lagrange multiplier can be identified as   

χλ −= ss)(1                                                           (A10) 
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Similarly we can obtain the Lagrange multiplier χλ −= ss)(2  for eqn. (A6). Assuming the initial 

approximate solution of eqn. (12) and eqn. (13) has of the form 

                              2

0 )1(1)( χχχ aau ++−=                                                   (A12)   

                         2

0 1)( χχ bbv −+=                                                            (A13) 

where a and b are constants which are to be determined using the boundary conditions. Substituting the 

Lagrange multiplier in the iteration formula eqns. (A5) and (A6) we get the approximations, 
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and 
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              (A15) 

respectively. By using the boundary conditions at  ,1=χ 0=u  and 1=v  in the eqns. (A14) and (A15), 

we obtain two nonlinear equations. By solving these non linear equations using Scilab software, we 

obtain the values of a and b (eqns. (22) and (23)). First iteration is enough. Furthermore the obtained 

result is of higher accuracy. Therefore by considering 1uu =  and 1vv =  we get the eqns. (20) and (21) 

in the text.  
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