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As strategies to contribute to the concrete industry sustainability, reinforced concrete was fabricated 

using recycled concrete coarse aggregate and replacing partially portland cement with supplementary 

cementing materials as fly ash and silica fume. On test specimens, partially immersed in 3.5% Na2SO4 

aqueous solution, the effect of the recycled and supplementary materials against sulfate attack and 

reinforcement corrosion was evaluated. For such aim, weight loss of concrete and corrosion potentials, 

corrosion current density of reinforcement were determined by means of electrochemical techniques as 

open circuit potential and linear polarization resistance, respectively. 
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1. INTRODUCTION 

Concrete exposed to sulfate solutions can be attacked and suffer deterioration by expansion. 

The deterioration of reinforced concrete by sulfate attack causes the reinforcing steel to be exposed to 

the action of aggressive agents starting the corrosion of the reinforcement [1]. It is known that the 

concrete resistance to sulfates can be significantly improved producing a dense waterproof concrete. 

However, with the urgent need of using recycled materials to contribute in sustainability, from the year 
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2000 the number of studies of Recycled Aggregate Concrete (RAC) has significantly increased [2-11], 

with the purpose of using it in the construction of structures of plain concrete and reinforced concrete. 

By the nature of the recycled concrete aggregates, RAC is more permeable and has a lower density 

than conventional concrete and therefore, sulfates attack on RAC could be more aggressive than on 

conventional concrete. It is necessary to know the characteristics of RAC exposed to sulfates, so that 

necessary precautions can be taken to minimize the deterioration to insignificant levels. Unlike 

conventional concrete, there is little research [12-16] about the performance of RAC with 

Supplementary Cementing Materials (SCM) but no of these investigations approaches the subject of 

external sulfate attack. This phenomena is well known and is described in other works [17,18].  

The objective of this work was to evaluate the behavior of RAC with SCM exposed to sulfate 

solution.  The deterioration of concrete (weight loss) and corrosion rate of reinforcement by means of 

electrochemical techniques were evaluated. 

 

 

 

2. EXPERIMENTAL PART 

It was produced three sets of specimens with water-cementing material ratio of 0.48: one series 

made with 100% recycled coarse concrete aggregate (RCA) and 100 % Compound Portland Cement 

(CPC) [19], series made with 100% RCA and 30% FA as a partial replacement of the CPC, and finally, 

series made with 100% RCA and 10% SF as a partial replacement of the CPC. These specimens were 

cured for 28 days in a chamber with temperature of 23  2 °C and 98  1% of RH. Characteristics and 

proportions of mixtures are presented in Table 1.  

 

Table 1. Characteristics and proportion of the test mixtures (by 1m
3
 of concrete). 

 

Materials  

(Kg) 

Mixtures identification 

RA 100% CPC RA 30% FA RA 10% SF 

Water 213.31 213.31 213.31 

RCA 870.58 870.58 870.58 

Sand 915.35 915.35 915.35 

Cement 444.44 311.11 400.00 

SCM 0.000 133.33 44.44 

 

2.1. Materials 

RCA comes from the crushing of concrete specimens made with natural aggregates, CPC with 

a water-cement ratio of 0.50 and curing for a 28-day period with controlled temperature and relative 

humidity (RH) of 23  2 ºC and 98  1%. Natural aggregates come from quarry crushed rock (coarse) 

and river sand (fine). Table 2 shows some of the physical properties of these aggregates. 
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Table 2. Physical properties of the aggregates used in concrete mixtures 

 

Type of 

aggregate 

Relative 

density 

(g/cm
3
) 

Absorption 

(%) 

Humidity 

(%) 

Fineness 

module 

(%) 

Maximum 

size 

(mm) 

Recycled 

coarse 

2.19 6.55 2.14 - 19 

Natural 

coarse 

2.50 0.44 0.28 - 19 

Natural 

fine 

2.43 4.08 6.66 2.73 4.76 

      

As SCM, Mexican Class F FA according to ASTM C618 [20] and SF North-American with the 

requirements of ASTM C1240 [21] were used. Table 3 shows the physical and chemical properties of 

these materials. 

 

Table 3. Physico-chemical properties of cementing materials. 

 

Chemical composition (% of weight) 

Material SiO2 Al2O3 Fe2O3 CaO SO3 K2O Na2O MgO 

CPC 19.94 4.40 2.97 63.50 3.08 0.42 0.12 - 

FA 58.84 16.72 3.52 7.35 0.13 0.79 0.94 1.76 

SF 95.22 0.08 2.37 0.26 0.11 0.56 0.30 0.24 

Physical properties 

 Density (g/cm
3
) Specific surface, BET (m

2
/kg) Average size (µm) 

CPC 3.15 1400 15-25 

FA 2.35 1200 5-15 

SF 2.27 19600 0.1-0.2 

 

2.2 Methods 

Concrete cylinders, 15 cm in diameter and 30 cm in height, with two centrally-embedded 

reinforcing bars, were used to study the effect of sulfate environment on the weight loss of concrete 

and rebar corrosion of reinforcing steel. The test specimens were exposed in a 3.5% of Na2SO4 

aqueous solution and the reduction/increase in weight of the reinforced concrete specimens was 

evaluated periodically, whereby the specimens were retrieved, air-dried for one day in a laboratory 

environment (21 ± 2°C) and weighed. The weight loss (WL) was determined using the following 

relationship: 

 

(%) 100i t

i

W W
WL x

W

 
  
 
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Where Wi = average initial weight of triplicate specimens (g); and Wt = average weight of 

triplicate specimens after a prescribed exposure period (g). 

Reinforcement corrosion of the embedded steel was monitored by measuring the corrosion 

potentials and polarization resistance at regular intervals. The corrosion potentials (Ecorr) were 

measured using a high impedance voltmeter and recording the potentials with respect to a 

copper/copper sulfate (Cu/CuSO4) reference electrode. The linear polarization resistance (LPR) 

technique was used to measure the polarization resistance (Rp) in a Potentiostat/Galvanostat of ACM 

Instruments. Details of the electrochemical techniques can be found in another work [22]. The test 

parameters were a potential scan of ±20 mV to a scan speed of 10 mV/min. The basics principles of 

electrochemical corrosion of reinforced concrete is well known [23,24] and the experimental testing is 

shown in Figure 1. 

 

 
 

Figure 1. Experimental scheme for testing LPR. 

 

From the curves potential against current density the Rp of the systems in study was obtained, 

same that was used to calculate the corrosion current density (icorr) of the systems through Equation 1 
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[25], where B is a Tafel constant with recommended value [26-29] of 0.052 V for the passive corrosion 

of steel in concrete. 

 

corr

p

B
i

R
                                                   (1) 

 

 

 
 

3. RESULTS AND DISCUSSION 

3.1. Concrete weight loss 

The data on the weight loss of reinforced concrete specimens exposed to sulfate solution are 

schematically presented as a function of the exposure time in Figure 2. These data indicate that the 

weight loss of concretes initially decreased due to an increase in the weight of specimens upon 

exposure to the test solution compared with their initial weights. Thereafter, the weight loss increased 

considerably after four months in the RA 100% CPC concrete. For the specimens with SCM the 

increase of weight loss is not considerable and it appears after four months. This behavior obeys to that 

at the beginning the capillary pore system is filled by little expansive reaction products compacting the 

cementing matrix and increasing the weight. Immediately, the expansion of these products is increased 

to a great extent generating fractures in the cementing matrix, loosening of material and therefore the 

weight of specimen decreases. 
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Figure 2. Weight loss of concrete in sulfate environment. 

 

The maximum weight loss was 2.8% after six months of exposure in the RA 100% CPC 

concrete specimens followed by a weight loss of 0.37% in the RA 30% FA concrete, and the minimum 

weight loss (0.14%) was in RA 10% SF concrete. From these results is evident the contribution of 

SCM in pore refinement of cementing matrix, which prevents the easy penetration of sulfate ions 
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towards and within concrete. Another probable cause of the effectiveness of the SCM in decrease the 

deterioration by sulfate attack is the calcium hydroxide [Ca(OH)2 or CH] consumption during the 

pozzolanic reaction, which means that the amount of formed gypsum can be smaller in the mixtures 

with SCM with respect to mixtures with 100% CPC. 

 

3.2. Corrosion potentials 

In Figure 3 the results of corrosion potentials of evaluated test specimens are shown. The 

horizontal broken lines show the limits corresponding to the corrosion probability criterion suggested 

in the norm ASTM C876 [30].  
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Figure 3. Variation of Ecorr of the reinforcement steel as a function of the exposure time. 

 

In Figure 3 it can be observed that in the six months of exposure the corrosion potentials, of all 

the reinforced concrete systems, show fluctuation ranging from -550 to -400 mV / Cu-CuSO4 with a 

slight decrease during the months, towards more noble values; according ASTM C 876 these Ecorr 

values indicate that exists a 90% probability of active corrosion during all the exposure period; 

however, the criterion is based on partially saturated specimens and in this study the specimens were 

totally saturated, indicating that the ASTM C 876 criterion is not applicable to evaluate the corrosion 

of reinforcement in these concrete specimens. Therefore, it can be concluded that all steel bars were in 

a passive state during the six months of immersion in the sulfate solution. 

However, it can be observed that the SCM that could have a greater efficiency against 

corrosion is SF since the system with this material presented the most noble corrosion potentials during 

the exposure period. The RA 30% FA system presented corrosion potentials similar to the RA 100% 

CPC system, which could indicate that FA does not contribute significantly to inhibit the corrosion of 

the reinforcement. It is necessary to clarify that the corrosion potential technique provides qualitative 

information on reinforcement corrosion. Therefore, quantitative information on reinforcement 
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corrosion was developed by determining the polarization resistance using the linear polarization 

resistance technique. 

 

3.3. Polarization resistance 

From the curves potential against current density Rp was obtained for all the systems in study 

and icorr was calculated representing the results in Figure 4; the horizontal broken line point out the 

threshold of active to passive corrosion [31]. 
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Figure 4.Variation of icorr of the reinforcement steel as a function of the exposure time 

 

In Figure 4 it can be observed that the system steel-concrete that presents a highest corrosion 

resistance induced by sulfates is RA 10% SF, because its corrosive activity was the lowest in the 

exposure time and decreased significantly until it reached a low level of corrosion (0.008 µA/cm
2
) at 

the end of the period. The RA 30% FA system showed levels of corrosion between 0.06 and 0.02 

µA/cm
2
, slightly superiors to the system RA 100% CPC, which means that FA does not contribute 

significantly to inhibit the corrosion of the reinforcement in the initial six months.  

The negligible effect of FA on corrosion current density at initial months is mainly attributed to 

the delay of the kinetics of texturing of the cementing paste due to the slowness of the pozzolanic 

reaction of the FA with CH by the curing conditions which the test specimens were exposed.  As to the 

RA 10% SF system, its significantly effect on corrosion is due to the SF accelerating effect during the 

hydration process of the cementing paste, as well as the possible dense structure of pores formed. 

Previous researches [32-35] reported that FA hydration produces a compact texture of calcium-silicate-

hydrated glass (CSH) result of the reaction of the silica of the pozzolan with the hydrated phases 

contained in the mixture interstitial solution. This pozzolanic reaction delays the cement hydration 

speed because of the difficulty to dissolve the crystalline phase, which could be achieved at early ages 
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increasing considerably the cure temperature. Other researchers [36-39] define SF as a high reactivity 

pozzolan that has an accelerating effect in the hydration of the cement paste, besides that for the 

fineness of its particles, creates very dense pore structures. Table 3 shows that the SF is approximately 

100 times finer than cement and FA, providing much SiO2. Because hydration and pozzolanic 

reactions are surface phenomena, it is deduced that the microstructure of concrete with SF becomes 

denser than the rest of the systems due to the production of more CSH which replaces CH and 

generates pore refinement, and therefore, it reports a decrease in both, sulfate ion penetrability and 

corrosion current density. 

 

 

 

4. CONCLUSIONS 

With the results obtained in the concrete test specimens made with 100% recycled coarse 

aggregate, the following can be concluded: fly ash and silica fume contribute in increase the resistance 

of recycled aggregate concrete to sulfate attack. The addition of 10% of SF as a partial replacement of 

cement, reduces around 20 times the weight loss, whereas the addition of 30% of FA as a partial 

replacement of cement, reduces around 8 times the weight loss by sulfate attack; with respect to the 

concrete without supplementary cementing materials. Silica fume contribute significantly in increase 

the steel corrosion resistance, due to cementing matrix densification and pore refinement. Therefore, 

the durability of the reinforced recycled aggregate concrete structures exposed to underground water or 

filtrations with high sulfate content can increase significantly using supplementary cementing 

materials, as a partial replacement of cement, contributing to the concrete industry sustainability. 
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