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Metal plating is a well-assessed and widespread technology. Though being a mature process (Ag 

plating is in fact the first known application of Volta's battery in 1801, Al electrolysis was used to 

fabricate Napoleon III's tableware for very special occasions at the imperial French court, present-day 

decorative- and hard- Cr electrodeposition thrive on a patent dating back to 1860), its successful 

implementation in many cutting-edge technologies seems the only viable approach to certain material 

fabrication issues, especially in the nanoscale (e.g. state-of-the-art and next-generation ULSI 

technologies). Curiously, in most cases, industrial success of this class of processes is achieved at the 

cost of using extremely toxic and polluting additives. This is essentially due to the poor fundamental 

knowledge of the physico-chemical basis of electrochemical metal growth and, in particular, of its 

dynamics. In this study we wish to highlight, from both the mathematical and the experimental points 

of view, the fact that - owing to the peculiarities of the coupled morphological and chemical dynamic 

processes going on at the electrochemical interface during metal plating at controlled potential - the 

application of a small sinusoidal forcing term is able to drive the morphology of the growing film 

towards the industrially desirable surface finish in the way currently achieved only by non-green  

additives. 
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1. INTRODUCTION 

Metal electroplating is ubiquitous in surface treatment technologies and has wide-ranging 

applications from biomedical to electronics and from energy production and conversion to aerospace. 

http://www.electrochemsci.org/
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Unfortunately - notwithstanding many academic and industrial efforts to improve both products and 

process chemistries - electroplating can be regarded as one of the most polluting industries. Apart from 

the plating of intrinsically environmentally unfriendly metals, such as: Cd, Cr and Ni, essentially all 

industrially viable processes for the electrodeposition of non-toxic metals, such as: Ag, Au and Zn, 

contain extremely poisonous additives, some among which are also able to attract the worried attention 

of the general public, exposed to famous crime novels, such as: arsenic (for bright gold), strichnin (for 

nickel free of pinholes) and cyanide (for gold, silver, copper, zinc and cadmium). The authors of this 

paper have been active for a long time in both fundamental and applied studies of additives for metal 

plating and wish to communicate a novel approach that may help in the effort of getting rid of 

obnoxious metal plating additives by judicious use of the electrical variables, playing in this case the 

role of an additive that can be regarded as green indeed. In particular, we have found that - during 

potentiostatic (constant applied electrodic potential, the single most common industrial situation) 

plating, superposition of a small sinusoidal perturbation can yield notable levelling effects. It is 

immediately worth stressing the utter difference between the dynamic approach we are proposing in 

this research with respect to traditional pulse plating. Pulse plating is based on sequences of potential 

or current rectangles, aiming at an improved control of mass transport at the electrode, in turn giving 

rise to some degree of levelling (e.g. [1] and references therein contained). Our approach, instead, is 

based on some peculiarities of the coupling of morphological and surface chemical dynamics - that we 

have highlighted in a series of recent papers [2—6] - that allow for control of the 3D 

electrocrystallisation process. Such dynamics exhibits some subtle interactions with an applied forcing 

frequency, giving rise to intriguing effects that are likely to have a bearing on the development of 

green metal plating chemistries. 

 

 

 

2. A MATHEMATICAL MODEL FOR ELECTRO-PLATING  

The modelling basis for our idea of applying an electrochemical forcing term is an extension to 

the electrochemical realm of a class of continuum models (CM) originally devised for crystal growth 

by Molecular Beam Epitaxy (MBE), giving a theoretical description of such processes on lengthscales 

ranging from some tens of atomic distances to a few microns. An accurate presentation of the 

mathematical background can be found in [7, 8]. At variance with the conventional literature approach 

to CM, we are also coupling surface chemistry to the profile dynamics. In this approach, we describe 

the evolution of the electrodeposit surface profile obtained as the solution of a balance equation. The 

flow terms describe inflow and outflow of material contributing to the build-up of the morphology, 

while the source terms account for generation (deposition) and loss (corrosion, desorption) of the 

relevant material. CMs of this type can be regarded as an acceptable description of profile dynamics, 

provided certain conditions on length and timescales are defined, that are summarised in the Appendix. 

Apart from the original electrochemical source term, the equation for the proposed morphological 

dynamics is based on Villain's pseudo-diffusion model [8]. In the absence of desorption, at sufficiently 

low temperatures, diffusion of adatoms is anisotropic on long lengthscales, because it is biased by 

reflections against terrace edges; if the Schwobel effect is operative, such reflecting edges are 



Int. J. Electrochem. Sci., Vol. 6, 2011 

  

4555 

downwards-steps. By a polynomial expansion approach, the mathematical model studied in [3—6] 

exhibited a surprisingly rich phenomenology (e.g. the initiation of spatial patterns induced by diffusion 

and the existence of travelling wave solutions) and was able to capture the essential features of pattern 

development observed in experiments. Here we present the effect of a periodic external forcing both 

on the impact of roughness in electrodeposition experiments and on the Turing patterns found in [5]. 

For compactness of presentation, we briefly derive the model with a forcing, on the basis of the 

original model fully explained in [5]. We consider one chemical species - modelling an additive able to 

control morphology, such as, e.g., a leveller - adsorbed at the surface of the growing cathode, so that 

we deal with a system of two reaction-diffusion equations, one for the morphology and one for the 

chemistry. The equation for the  morphological dynamics in the presence of external periodic forcing 

is given by:  
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 . Here (x,y,) is the dimensionless electrode shape (i.e. the 

dimensionless intersection of the electrodeposit surface with a plane normal to the substrate), x and y 

are the dimensionless space coordinates,  is the dimensionless time and 
*

sD  is the dimensionless 

surface diffusion coefficient of adatoms. In the source term S*, (x,y,) is the surface coverage with the 

adsorbed chemical species, the parameters and are strictly positive and weight the two terms in S* 

accounting for: (i) localization of the ECD process and (ii) effects on the ECD rate of the presence of 

adsorbates, respectively. The term 
*

forcS  instead accounts for the presence of the periodic external 

forcing which is here assumed to be sinusoidal.  

The presence of adsorbable species in the ECD bath gives rise to the fact that (x,y,) develops 

at a growing electrochemical interface as a function of space and time, as well as to the nature of the 

adsorbable species and of the surface active sites. The surface coverage dynamics can be described, as 

customary in chemical kinetics, in terms of a material balance with a source term containing positive 

and negative contributions related to adsorption and desorption. More precisely, the dimensionless 

form for the surface chemical dynamics can be expressed as: 

 

**

csc SD 








,                          (2) 

 

where 
*

scD  is the surface diffusion coefficient of the additive and 
*

cS  is the chemical source 

term given by  

 

,),()1)(,( ***  DESADSc KKS   

 

where 
*

ADSK and 
*

DESK  represent the adsorption and desorption rate constants, respectively. 
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By coupling equations (1) and (2),  and by defining  
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one obtains the following model in dimensionless form: 
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where ,



   and the forcing term is specialised as  

 

)sin(
~
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where 0

~
AKA  and    are dimensionless. The parameter  K [V

-1
]  is a constant 

assembling the electrokinetic Butler-Volmer parameters in the form: 

 

naiK  02 ,                                                                                                              (6) 

 

where i0 [Am
-2

]  is the exchange current density, a (adimensional) is the anodic and cathodic 

Tafel slope, n [m
2
A

-1
V

-1
] is a normalization factor. The term A0[V] represents the forcing amplitude 

and  represents the adimensional forcing frequency, such that     secexpexp THz   , exp  

is the experimental frequency imposed,  expT  is a representative time for electrodeposition. 

Since typically, adsorption and desorption are controlled by electrochemical conditions, it is 

possible to express the respective rates in Eq. (4)  as [9] 

 

)exp(),exp( 111

**  baAKbaAK DESADS                                                (7) 

 

where A, A1, a, a1, b, b1 are positive parameters. These expressions essentially amount to the 

linearisation of an activation energy term, depending on both electrode potential and surface chemistry, 

thus accounting for electrocapillary effects as well as lateral interaction among adsorbates. 

The reaction-diffusion system (3) is defined for ],0[),,( Ttyx   with ],0[],0[ 21 LL   

and L1, L2 characteristic lengths of the electrode, T  a characteristic time of the electrodeposition 

process. We also require (3) to be equipped with zero-flux boundary conditions and the following 

initial conditions at time t=0:  
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(x,y,0) =  (x,y)   and   (x,y,0) = (x,y),       ),( yx  

 

2.1. Morphological  pattern formation 

Chiefly motivated by the technological requirement of obtaining smooth metallic films, we 

concentrate on the influence of the periodic driving force in pattern suppression, the modelling 

correlate of smoothing in practical metal plating. For this reason, we study the effect of the periodic 

external forcing on the solutions of  model (3)-(5).  The unforced case - obtained by setting F(t) = 0  in 

(3) - has been insightfully analysed in [5], where the existence of Turing spatial patterns has been 

shown through the destabilisation of the spatially uniform steady state. The mathematical analysis has 

been performed by considering some constraints on the parameters of the model and a set of conditions 

on them has in fact been obtained, ensuring the initiation of spatial patterns. In particular, the diffusion 

parameter d has been shown to be essential for the arising of instability and the appearance of spatial 

patterns. With regard to pattern selection, the peculiar role of the parameter a has been stressed, 

representing the inverse of the energy barrier that has to be overcome by electrons tunneling from the 

electrode into the electrolyte to reduce metal adatom precursors (e.g. [10]). A detailed discussion on 

these points is provided in the Appendix. 

In two space dimensions, the most typical patterns for Turing systems turn out to be stripes - 

corresponding to the formation of ridges of correlated crystallites in electrodeposits – or exagonally 

arranged spots - corresponding to the outgrowth of isolated crystallites in actual metal film plating -, 

even if in some cases different types have been observed as rhombic or labyrinthine patterns [11]. To 

predict the spatial characteristics of the resulting patterns, linear analysis is not enough, since pattern 

selection is governed by complicated nonlinear dynamics. To this aim, theoretical investigations must 

rely on nonlinear bifurcation analysis and on the use of the amplitude equations formalism, see i.e 

[12—15]. For this reason, we approach the pattern selection problem numerically, focussing on the 

following morphological features of the patterns: (i) stationary pattern type, i.e  spots or spots and 

worms; (ii) transient pattern type. 

Setting the diffusion parameter d near the threshold value dc responsible for pattern initiation 

and by properly varying the parameter a,  two different types of patterns – actually encountered in 

experiments - are qualitatively reproduced as stationary Turing patterns. On the other hand, for 

representative values of the parameter  a, interesting transient patterns can arise, able to account for 

several observed morphological peculiarities, such as the presence of holes in films [5]. As far as the 

feature (i) is concerned, we find that very low values of  a, i.e. a = amin , lead to a stationary Turing 

pattern in which coexistence between spots and worms is clearly established [5]. By increasing the 

value of  a up to amax, only spots survive. This kind of phenomenology corresponds to the relevant 

physical chemistry in a straightforward way. In fact, relatively high a values correspond (under 

otherwise identical chemical and polarisation conditions) to a high surface density of adatoms, ending 

up incorporated into high-energy sites and thereby causing unstable growth, eventually yielding 

isolated outgrowth features, such as: stalks, dendrites or piles of spheroidal crystallites, according to 

the specific system [16,17]. Such outgrowth features, viewed in plane, would correspond to a pattern 
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of isolated spots [5]. To the contrary, relatively low  a  values correspond to the possibility for adatoms 

to reach low-energy crystal sites, where they contribute to the formation of more correlated 

morphologies, such as terraces and islands, tending to outgrow into ridges.  On the other hand, fixing  

a=amin, the effect of increasing d from dc, is to obtain only spots at the stationary pattern. To explore 

how the presence of an external driving force can affect the morphological features of the above-

discussed patterns, we consider the model given by Eqs. (3)-(5) with the periodic forcing term F(t) of 

Eq. (5). 

 

 

 

 

3. NUMERICAL STUDY OF THE IMPACT OF FREQUENCY ON MORPHOLOGY 

In the adimensional model (3), the only forced equation is the first one for the morphology 

(x,y,t). For our study, we consider the forcing term in Eq.(5) with a fixed amplitude 
0

~
AKA  and  

variable frequency . In particular, by fixing i0  = 1[Am
-2

] the exchange current density and n = 0.98 

[m
2
A

-1
V

-1
] the normalization factor, by Eq.(6)  K = 1.76 [V

-1
] holds. Moreover, the fixed amplitude for 

the sinusoid is given by A0 = 0.01 [V].  The (adimensional) frequency  will be varied in the range     

0    f. Recall in fact that   =exp[Hz]  100[sec], and the range  exp  [10
-3

, 10
5
]Hz is obtained 

for experimental considerations that can be easily derived with common electrochemical 

instrumentation. 

In the dynamics, a key role is played by the equilibria obtained in correspondence of the 

maximum and the minimum of the imposed sinusoid, that is F(t)=  A
~

, where according to the above-

reported discussion, a fixed value  is chosen as: A
~

=K  A0 = 1.76   0.01= 0.0176  ([K]=1/V, [A0]=V). 

With this choice, three equilibria exist as real zeros of the equations 

 

0),(0
~

),(   gAf , 

 

which are given by ),( 111

  E ,  ),( 222

  E ,  ),( 333

  E , whereas one equilibrium 

may be found as real zero of the equations 

 

0),(0
~

),(   gAf , 

 

that is ),( 111

  E . By using the classical stability method for nonlinear dynamical systems, 

we get insight on the stability properties of such equilibria: 

1E  is a stable node; 

2E  is a saddle; 

3E is a 

stable focus and 

1E is a stable node. For our purpose, only the stable equilibria have a relevant role for 

the scenarios in the time-dependent regimes. We decide to discuss the scenarios regarding only the 

morphology, that is the 's values of the relevant equilibria 

1E , 

1E , 

3E . Hence, our study will 

investigate the behaviours of model solutions when the frequency  varies in a range corresponding to 

classical experimental situations. The other parameters of the model are fixed in correspondence of the 

worst morphological instability situation of the unforced case [5], namely we focus on spatial patterns 
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exhibiting only spots. The related parameter values are given in the Appendix, in particular  a=0.9 

holds. 

For the chosen parameter values and for the above value of the amplitude A
~

,  the numerical 

values of the three equilibria  

1E , 

2E , 

3E  are given by: 

 

)3553.0,2812.2(),2523.0,8655.0(),2063.0,1132.0( 321   EEE  

 

The numerical value of  

1E  is instead: 

 

).1958.0,0745.0(1 E  

 

To solve the forced reaction-diffusion system on the rectangular spatial domain for the time 

],0[ Tt , we employ the Comsol Multiphysics package [18], based on the finite element method in 

space. Numerical simulations, have been performed in the domain  = [0, 100]  [0, 70], by 

considering a spatially distributed random infinitesimal perturbation around the non-trivial stationary 

unforced equilibrium )3/1,2(),(2  eeE   as starting surface profiles for the time evolution. 

To achieve accurate simulations both in space and time, able to capture the main features of the 

expected spatial patterns, we use a sufficiently fine mesh (almost 35000 degrees of freedom) and we 

select as time integrator the BDF (implicit) schemes of high order (up to five), with variable stepsize. 

Moreover, in order to obtain accurate results, time steps less than  ht  1/  could be used. It is worth 

noting that, since we are interested in tracking and check long time asymptotic behaviour of the 

oscillatory solutions, this choice could imply sometimes time-consuming runs of the program 

(especially for high frequency values), even if iterative methods and preconditioning techniques are 

used to solve the linear systems involved. In our simulations, we use a variable stepsize strategy in 

time, such that ht  0.01. The numerical results obtained by our simulations for long-time 

approximations identify four qualitatively different ―asymptotic‖ scenarios, corresponding to four 

ranges of frequency  . We classify them as follows: 

(A) - low-frequency scenario 0 ≤ ≤ A : only spots;  

(B)  - lower intermediate frequency scenario A ≤ ≤ 
: smooth nearly-homogeneous surface.  

In this case the ―asymptotic‖ solution oscillates between the two spatially homogeneous values 


1  and 


1  

(C) - upper intermediate frequency scenario 
  < < C:  beat or pulsating spots 

(D) - high-frequency scenario  C ≤ ≤ D :  only spots as in (A). 

In Fig.1 these qualitative scenarios are shown for the morphology solutions ),,( Tyx  at the 

―asymptotic‖ time T. 

As already observed in [5], the actual morphologies found in electrodeposited metal samples, 

typically do not correspond to asymptotic conditions, but rather to transients interrupted after a given 

electroplating time, ideally corresponding to the target film thickness, has been reached. For this 

reason, it is interesting to investigate also the types of morphological behaviour developing during the 

transients. In all cases, the numerical solution moves away from the initial condition and the following 
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transient behaviours are observed, evolving towards one of the four asymptotic scenarios described 

above.  

 

 
 

 

Figure 1. Dependence of morphology on frequency. Numerical simulations of the asymptotic 

morphologies ),,( Tyx  at the final integration time T. For increasing values of the forcing 

frequency   (adimensional)( exp [Hz] =  /100sec), the four scenarios (A)--(D) are shown 

corresponding to distinct frequency ranges. To highlight the pulsating behaviour in the scenario 

(C), also the time evolution along an horizontal section starting from a flat initial condition 

towards an isolated spot is depicted. The numerical values of the frequency ranges are given 

by: [0, 10
-3

 ] case (A);  ]10
-3

, 2.57] case (B); ] 2.57, 50] case (C) and ]50, 10
5
 ] case (D). 

 

Hence, for purposes of comparisons especially in the transient regions, we postprocess the 

numerical solutions obtained for the morphology ),,( Tyx , ),( yx  and ],0[ Tt  to estimate the 

time behaviour of its mean value defined as dxdyTyxt 



 ),,(

1
)(  . 

To outline the transient behaviours, corresponding to the four asymptotic scenarios listed 

above, in Fig.2  we report the time evolution of  )(t  from the perturbed unstable equilibrium to 

the stable one. In such time evolution, a well defined transient time tTR can be identified in all cases. 
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From the plots reported in Fig. 2, for different frequencies  , it can be noted that tTR = tTR () exhibits 

a minimum value that corresponds to homogeneous morphology (see Fig. 1B). 

 

 
Figure 2. Insights on time evolution of morphology. Numerical simulations of the time evolution of 

the mean value of morphology  )(t  corresponding to representative values of the forcing 

frequency  (adimensional) in the four scenarios (A)--(D). Between panels (B) and (C) we 

show a plot pinpointing the effects of the existence of a critical frequency * = 2.57 (red line, 

 = 2.58 blue line) for the transition between morphologies (B) (homogeneous), and (C) 

(spots). In case (B) plots are shown for  = 0.2,  = 2, in case (C) plots are shown for  =3 and 

 =6. The numerical values of the frequency ranges are given by:  [0, 10
-3

]  case (A);  ]10
-3

, 

2.57] case (B);  ] 2.57, 50]  case (C) and    ] 50, 10
5
 ] case (D). 

 

 In scenario (A), there is a relatively fast transient, after which the spotty asymptotic 

surface is rapidly attained. In fact, the function  )(t   reaches a constant steady state in a 

comparatively short (adimensional) time, with respect to the other transients found in this study. 

 In scenario (B), the numerical solution initially moves towards the spatially 

homogeneous equilibrium 


3 , but soon the solution leaves it, eventually attaining an oscillating 

behaviour between two quasi-homogeneous surfaces, corresponding to the stable equilibria 


1  

and


1 . 
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 In scenario (C), during the transient, the solution oscillates around the starting value and 

then, for a critical time t*, a spotty pattern develops, in which the spots pulsate with the forcing 

frequency, giving rise to a frequency-locking phenomenon. It is worth noting that the transition from 

the smooth patterns, characteristic feature of scenario (B), to the  beat patterns typical of (C), takes 

place for a critical frequency  *. Moreover, we also note that the critical time  t*= tTR(*) for this 

transition, corresponds to that time when the phase difference between the frequency-locked process 

and the forcing term becomes significant (See Fig. 2C). We note that smooth morphologies are found 

when the forcing and the response are in phase, while dephasing correlates with unstable growth. 

 Scenario (D) can be understood as a limiting case of scenario (C). In fact - as far as the 

pulsating behaviour is concerned - for highest frequencies investigated in this work, the pulsating spots 

exhibit such a fast beat and a small amplitude that they appear constant in time. 

 

 

 

4. EXPERIMENTAL VALIDATION OF THE MODEL 

4.1 Methods and materials 

Our modelling work is systematically accompanied by experimental studies of metal-plating 

dynamics. In particular, we concentrated on some prototypical cases of Au - and Au-alloy 

electrodeposition [3—6]. 

We considered three types of cyanide-based baths for the electrodeposition of 18 and 24 kt Au-

alloys: (i) AuCu, more suitable for red gold and Hamilton decorative finishes, (ii) AuCuCd, a typical 

electroforming bath and (iii) neutral KAu(CN)2 solutions without added free cyanide: still a cyanide-

based chemistry, but representing a notable step forward in terms of safety, with respect to free 

cyanide based chemistries. These baths consist in a metal source, in this case cyanide salts of the three 

relevant metals and two types of additives: (i) free complexing agent (CN ¯, EDTA), typically used to 

extend the bath life, that can be jeopardised by loss of the complexing agent by environmental 

oxidation and (ii) organic levellers, in our case cetylpyridinium chloride (CPC) and benzyl-phenyl 

polyethylene imine (BPPEI) (for details, see [19]). 

The composition and operating conditions of the alloy electrodeposition baths are reported 

below. (i) AuCu bath: Au+ (as KAu(CN)2) 7.5 g L
-1

, Cu
2+

 (as CuO) 2.5 g L
-1

, EDTA 11.5 g L
-1

, citric 

acid 40 g L
-1

, ammonium citrate 40 g L
-1

, pH 6, room temperature, current density 20 mAcm
-2

. As a 

leveller we added CPC 100 ppm. (ii) AuCuCd bath : Au
+
 (as KAu(CN)2), 2.5 g L

-1
, Cu

+
  (as 

K2Cu(CN)3) 60 g L
-1

, Cd
2+

 (as KCd(CN)3 ) 2.5 g L
-1

, pH 11, T=70°C, current density 10 mA cm
-2

. (iii) 

KAu(CN)2 10 mM, NaClO4 0.1M, pH 7. 

In the case of the free cyanide bath, KCN 25 g L
-1

 was added. As a leveller we added 10 ppm of 

BPPEI. 

These two additives have two chief types of effect on interfacial electrochemistry. Cyanide is 

strongly adsorbed at the growing surface, thus affecting adatom diffusivity (see, e.g. [20]). In terms of 

our model, higher CN¯ concentrations in the bath give rise to a reduction of 
*

scD , that - if constDs 
*

 

- of course implies a reduction of d. The leveller typically forms an interfacial organic film between 
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the metallic surface and the aqueous electrolyte, generally (some exceptions are related to the existence 

of resonance tunneling processes [21] providing an additional barrier - with respect to a compact layer 

of water - to electron tunneling from the metal to the electroactive metal cation. Within the framework 

of quantum chemical kinetics, this can be viewed as a decrease of the phenomenological electrokinetic 

parameter a. 

Both parameters  d  and  a are relevant for the presence of morphological patterns, as explained 

in the Section 2. 

 

4.2 Microscopy and roughness measurements 

 
 

Figure 3. Experimental validation of the model. Top row: numerical simulations of the asymptotic 

morphologies ),,( Tyx  at the final integration time T corresponding to the unforced model 

(left panel) and to the model with forcing frequency  ] 0, 10
-3

] corresponding to the scenario 

(A) (right panel). Bottom row: SEM micrographs of Au electrodeposits obtained 

potentiostatically with a bias of -1.6V vs. Ag/AgCl without (left panel) and with added sinusoid 

of frequency 1Hz and amplitude 0.01V (right panel) (deposition time: 30 min; for further 

chemical and electrochemical details, see Section 4). 
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Figure 4. Electrodeposit roughness as function of frequency. SEM micrographs of Au electrodeposits 

obtained potentiostatically with a bias of -1.6V vs. Ag/AgCl with added sinusoid of amplitude 

0.01V and corresponding rms roughness estimates obtained by laser interferometry. 

Frequencies in Hz are shown in the abscissae of the rms roughness function. (deposition time: 

30 min). For further electrochemical details, see Section 4. 

 

In order to assess the effects of frequency on the morphology of electrodeposits, we used a 

classical electroplating system, well known from the literature (see, e.g. [22] and references therein 

contained) and insightfully investigated in our group: electrodeposition of Au from a neutral 

KAu(CN)2 solution without additives. This system exhibits largely suboptimal properties in terms of 

deposit quality - especially as far as roughness is concerned – and can be regarded as a benchmark for 

levelling efficiency. In this research we carried out electrodeposition with a cathodic bias of -1.6V vs. 

Ag/AgCl - that has been proved to give rise to typical unstable growth morphologies [23] - to which a 

sine wave of amplitude 0.01V has been added, of frequencies in the range 0 ÷ 50 kHz. SEM 

micrographs of the corresponding Au deposits are shown in Figs. 3 and 4 - corresponding to 

electrodeposition for 30 min - as well as in Fig. 5, showing the surface of films grown under otherwise 

identical conditions for 2 hours. 

From Fig. 3 one can conclude that the application of low frequencies does not essentially 

change the deposit morphology with respect to conventional potentiostatic conditions that, with the 
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relevant electroplating parameters, yield an unstable growth morphology of the type (A), that is spots 

[5]. Numerical simulations corresponding to these conditions are also shown in the same figure. 

 

 
 

Figure 5. Frequency effect on Au electrodeposition. SEM micrographs of Au electrodeposits: bias -

1.6 V vs. Ag/AgCl, deposition time: 2 hours; sine amplitude: 0.01V. Frequencies: 0 Hz, in 

panels (A, C, E) and  500 Hz in panels (B, D, F). Magnifications are : 100 x in panels (A, B), 

500 x in panels (C, D) and 1500 x in panels (E, F). Micrographs in (D) and (F) are 

enlargements of the area highlighted in (B). 
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Fig. 4 shows that there exists a range of frequencies - centered at a few hundred Hz - where, 

under otherwise identical conditions, a smoothing effect is obtained. Instead, at the highest frequencies 

investigated – in the range of some tens of kHz - the smoothing effect is no longer present and the 

morphology is again essentially the same as with DC plating. 

These experimental results are consistent with the asymptotic computations reported in Fig.1, 

predicting the existence of an intermediate frequency range (scenario (B)) where more homogeneous 

morphologies develop. It is also worth noting that our transient computations (see Fig. 2) have shown 

that such a critical frequency range also give rise to a special dynamic behaviour, leading to fast 

relaxation from the unstable equilibrium to the stable one. 

Three-dimensional surface roughness data were acquired with a Rodenstock RM-600 optical 

setup with non-contact laser interferometric transducer - based on [24] -, by means of a dynamically 

focussed infrared laser with a 2m focal point. The Rodenstock readings were digitised and the raw data 

elaborated with suitable routines developed by us. The most significant roughness estimator can be 

proved to be the  rms (root mean square) roughness, in the case of electrodeposits [24,25]. 

These results has been further confirmed by plating for a longer time in DC conditions and with 

a superimposed sinewave of 500Hz: the corresponding micrographs are shown in Fig. 5 highlighting 

the stabilising effects of frequency within the smoothing range. 

As far as the experimental confirmation of scenarios (B) and (C) are concerned, it is worth 

noting that it seems not currently possible to detect the oscillating planes and the frequency-locking 

process found numerically. In fact, essentially all electrochemical microscopies are sensitive to time-

integrated morphological dynamics. Instantaneous morphological changes can be tracked by in situ 

electrochemical STM, but it does not seem possible to perform this type of investigation in the case of 

3D growth morphologies. In principle, it would be possible to image by STM a location of a given 3D 

feature and follow its evolution, but present-day fast-scanning devices would be unable to track 

morphological fluctuations at the frequency required in this study. Recent advances in X-ray 

microscopy exhibit some capability of dynamic 3D imaging [26], but the currently achievable image 

acquisition rate, even in the case of synchrotron-base techniques, is insufficient for the present case. 

Indirect methods, such as the tracking of optical enhancing effects by in situ spectroelectrochemical 

methods, currently lack the required lateral resolution for an appropriate microscopy [23]. Tip-

enhanced versions of these approaches are still in their infancy and, in principle, would exhibit the 

same drawbacks as in situ STM. 

 

 

 

5. CONCLUSIONS 

In this research we have shown that smoothing effects can be achieved in potentiostatic metal 

electroplating processes if a small-amplitude (ca. 10mV) potential sinusoid - of frequency contained in 

an appropriate range (a few hundred Hz) - is summed to the applied DC bias. Similar smoothing 

effects are obtained in the industrial practice with the addition of toxic chemicals to the process 

solutions. On the basis of mathematical modelling, this effect  has been explained in terms of  the 
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coupling between the dynamics of processes controlling the time evolution of metal morphology and 

interfacial chemistry. 

Nonlinear dynamical system theory and numerical simulations have been used to explore the 

effect of a periodic external forcing on the Turing patterns found in the unforced case, focussing on the 

influence of the periodic driving force in pattern suppression. We discussed the interesting 

mathematical aspects of (i) morphological asymptotic scenarios and (ii) morphological transient 

behaviours. The mathematical work is complemented by the experimental validation of the modelling 

predictions for the case of Au electrodeposition. Our results show that an insightful understanding of 

the dynamics of reacting systems can offer green solutions to problems that are traditionally attacked 

with the use of non-sustainable chemistries. 
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APPENDIX 

Continuous modeling of electrodeposition dynamics: motivation and mathematical details 

In the electrochemical context, electrodeposition of Au alloys from cyanocomplex baths has 

been shown to exhibit electrokinetic instabilities that can lead to compositional heterogeneity in the 

electrodeposit bulk [27]. Such instabilities typically derive from hysteretic current-voltage 

characteristics, related to the buildup of CN¯ concentration in the catholyte and attending variations of 

surface coverage with adsorbed CN¯ as well as to cyanocomplex  nobility [28]. This phenomenon is a 

special case, original within the realm of metal electrochemistry, of a more general, well-known type 

of chemical and electrochemical dynamics (electrocatalysis [29], corrosion of Cu [30], Fe-group 

metals [29] and Ag [31]). 

In the past, we considered a reaction-diffusion approach to model metal growth processes 

within the electrodeposition context (ECD), focussing on morphological pattern formation in a finite 

two-dimensional spatial domain [2--5]. Thus we developed a model coupling the surface morphology 

and additive surface concentration. 

In [5] the nonlinear dynamics of the system  was studied both theoretically and numerically and 

the problem of diffusion-driven pattern formation and pattern selection was addressed. System analysis 

has revealed the crucial role of specific parameters for stability and selection of solutions. We obtained 

a set of conditions – in terms of the system parameters - ensuring the initiation of spatial pattern 

induced by diffusion. To this aim - according to its chemical meaning - the diffusion parameter d was 

shown to be essential for the arising of instability and the appearance of spatial patterns. Our previous 

studies also revealed the peculiar role in tuning pattern selection, played by the parameter a - 

representing the inverse of the barrier that has to be overcome by electrons tunneling from the 

electrode into the electrolyte to reduce metal adatom precursors (e.g. [10]). Fixing d ≈ dc where dc is 

the threshold value of diffusion in order to produce diffusion-driven spatial pattern initiation -, we have 

found that lower values of the parameter a caused a coexistence between different pattern types, i.e. 

spotty and worm-like patterns, whereas higher values of the parameter a resulted only in spotty 

patterns. 

We found that such a phenomenology is in close agreement with experimental physico-

chemical evidence. 

As mentioned in the main text of this paper, Continuous Modelling (CM) of crystalline film 

growth can be regarded as an acceptable description of profile dynamics, provided the following 
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conditions on length- and timescales are met. If a crystal is made to grow some way, in particular by 

electrodeposition, steps are present on its surface, either because they are implied by the preparation 

conditions - in which case they play the role of an initial condition -, or because they form in 

nucleation events occurring during the growth process itself. If sl is the average distance between 

steps, CMs are suitable to study morphological features that are >> sl . Studying features with typical 

lengthscales >> sl , implies that mechanisms are operative, able to heal the surface on a distance sl , in 

the relevant case, chiefly surface diffusion. This means that the morphologies that are going to be 

considered - in particular, the roughness as measured e.g. in terms of statistical estimators - derive 

from the averaging of several random processes, such as source intensity, sticking, diffusion and 

nucleation of rate of formation of new crystal terraces. In practice, even though different models are 

more appropriate for other - tendentially subnanometric or atomic - lengthscales, CMs are found to 

give a simple theoretical description of crystal growth on the mesoscopic scale (say nm to several tens 

of  m) and in general beyond ca. 50 atomic distances [8]. 

As far as the timescale is concerned, CM is a suitable dynamic description for times longer than 

those necessary to complete an atomic layer. In addition, it is a common assumption that temperatures 

are low enough not to bring about thermal smoothing of the surface: this is a very reasonable 

hypothesis in the case of electrochemical growth. 

 

A.1  Conditions for diffusion-driven pattern formation in the unforced model 

The mathematical model proposed in this paper to study the dynamics of the morphology 

),,( tyx  and of the chemistry ),,( tyx  in presence of a forcing voltage is the reaction-diffusion PDE 

system in Eq. (3) of the main text. In the first equation, the source term for the morphology evolution 

is 

 

,
1

),(
2





 


f          (8) 

 

)sin(
~

)( tAtF            (9) 

 

where F(t) corresponds to the forcing voltage of (adimensional) amplitude 0

~
AKA  . The 

parameter naiK  02  (see Eq. (6) of main text), assembles the electrokinetic Butler-Volmer 

parameters ([K]= 1/V) and A0[V] is the amplitude of the imposed sinusoid. 

In the second equation for the chemistry, the reaction term is given by 

 

,),()1)(,(),( **  DESADS KKg       (10) 
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On the basis of very reasonable physico-chemical assumptions, we reduced the dimensionality 

of the parameter space of the reaction-diffusion model by considering the following constraints on the 

system parameters: 
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As a consequence, the reaction term (10)-(11) specializes as: 
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An extensive presentation of this subject matter is available in [2, 3, 5] with regard to the 

unforced model (F(t) ≡ 0). In this case, as comprehensively exposed in [5], the spatially uniform steady 
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E  may undergo diffusion-driven instability. Initiation of spatial patterns 

induced by diffusion is shown to occur in a suitable region of the parameter space, defined by the 

following set of conditions: 
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These inequalities allow us to locate a region in the parameter space such that E2 is stable to 

small perturbations in the absence of diffusion, but it can be unstable to small spatial perturbations 

when the diffusion parameter d is non-zero and greater than a critical value dc. When the other 

parameters are fixed, dc. can be determined by combining the third and fourth conditions in the set of 

inequalities (13). 

For example, fixing 1,1,2,40,5.0  ba  and considering A and d as 

bifurcation parameters, it is easy to show that conditions (13) are verified for A > Ac= 0.07183 and for 

d verifying: 
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where 2=4.93827,  1= 243.72524,  0 = 957.08407. Hence, by choosing the parameter A so 

that A=0.2 > Ac, for spatial patterns to arise, the diffusion parameter d has to be greater than dc=9.1. 

The physical meaning of the choice of specific sets of numerical values has been thoroughly 

discussed in [2, 3, 5]. 

Numerical results in [5], have been obtained by fixing the parameters of the system such that: 

 

10,2.0,1,2,40,5.0  dAb         (15) 

 

and varying a in order to outline its role in pattern selection. The motivation for this choice is 

based on both structural and experimental evidence. In order to verify conditions (13), a must vary in 

the range a  [amin, amax], where, for the chosen parameter values, amin =0.4879 and  amax =1.05209. 

Under the physico-chemical approximations adopted to write the model (and in particular as far 

as the source term for the morphology equation (3)1 is concerned),  the variable   - having primarily 

the meaning of dimensionless morphology - is essentially proportional to the local overvoltage, driving 

the electrodeposition process out of equilibrium. 

According to the physical meaning of the parameter a, low values of a correspond to inhibited 

electron tunneling resulting in a lower rate of adatom formation, eventually giving rise to a lower 

surface concentration  of adatoms that have a better chance to diffuse to low-energy sites, giving rise to 

a more stable morphology, exhibiting less singularities. From the experimental point of view, lower a 

values can be obtained by adding special chemicals to the electrodeposition solutions: more physico-

chemical details and experimental results are reported in [5]. High values of a corresponding to higher 

growth rates are related to more unstable morphologies (see, e.g. [16, 19]). 

 


