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In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF6-EC-

CNT), which has been produced using solution cast technique, is obtained using artificial neural 

networks approach. Several results have been recorded from experiments in preparation for the 

training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium 

hexafluorophosphate (LiPF6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at 

various ratios to obtain the highest ionic conductivity. The effects of chemical composition and 

temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical 

tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical 

compositions and temperatures. In neural networks training, different chemical compositions and 

temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are 

used as outputs. The experimental data is used to check the system‟s accuracy following the training 

process. The neural network is found to be successful for the prediction of ionic conductivity of 

nanocomposite polymer electrolyte system. 

 

 

Keywords: Polymer Nanocomposite Electrolytes; Carbon Nanotubes; Neural Networks, Differential 

Scanning Calorimetry 

 

 

1. INTRODUCTION 

Polymer electrolytes are of technological interest due to their possible applications in various 

electrochemical devices such as energy conversion units (batteries or fuel cells), electrochromic 

display devices, photochemical solar cells, supercapacitors and sensors [1–3]. Among the various 

applications, the use of polymer electrolytes in lithium batteries has been most widely studied. It shall 

be noted that much initial work on polymer electrolytes were focused on the complexes of 
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poly(ethylene oxide) (PEO) with inorganic salts [4–5]. 

Poly (ethylene) oxide (PEO) has been a popular choice of polymer matrix for lithium-ion conductors 

[6]. Studies have proved that in PEO based polymer electrolytes systems, conductivity will increase as 

the salts concentrations increases [7-11]. 

 LiPF6 is the most common lithium salt employed in lithium-ion batteries because it offers good 

electrolyte conductivities and film forming. Unfortunately, high lithium ionic conductivity cannot be 

attained at ambient temperature with the pristine PEO matrix. Thus, considerable efforts have been 

devoted to improve the ionic conductivity of polymer electrolytes. A common approach is to add low 

molecular weight plasticizers to the polymer electrolyte system [12]. The plasticizers impart salt-

solvating power and high ion mobility to the polymer electrolytes. However, plasticizers tend to 

decrease the mechanical strength of the electrolytes, particularly at a high degree of plasticization [13, 

14]. Alternatively, inorganic fillers are used to improve the electrochemical and mechanical properties 

[15]. The fillers affect the PEO dipole orientation by their ability to align dipole moments, while the 

thermal history determines the flexibility of the polymer chains for ion migration. They generally 

improve the transport properties, the resistance to crystallization and the stability of the 

electrode/electrolyte interface. The conductivity enhancement depends on the filler type and size. In 

1999, the addition of carbon to improve the conductivity and stability of polymer electrolytes was 

proposed by Appetecchi and Passerini [16]. However, the room temperature conductivities for various 

weight percent of carbon are within the range of 10
-6

 S cm
-1

. The successful employment of polymer 

electrolytes in engineering applications relies on the ability of the polymer electrolytes to meet design 

and service requirements, which are determined by physical properties of the polymer electrolytes. 

These properties can be precisely obtained with relevant tests and experiments as stated in the 

standard. Also other mathematical functions can be employed for modelling of these materials 

behaviour. But all materials behaviour may not be modelled properly with mathematical functions due 

to the complexity of the composition dependence. The neural network model has been developed and 

it was successful to predict the role of salt, plasticizer and filler for the ionic conductivity enhancement 

in the nanocomposites polymer electrolyte system [17, 18]. 

Recently, with the developments in artificial intelligence, researchers focused a great deal of 

attention to the solution of non-linear problems in materials science [19, 20]. In this study, Bayesian 

neural-networks [21 - 23] are employed to predict the ionic conductivity of nanocomposite polymer 

electrolyte system (PEO - LiPF6 - EC - CNT). 

 

 

 

2. EXPERIMENTAL 

Polymer electrolytes were prepared by standard solution-casting techniques [16]. PEO (MW = 

600,000, Acros Organics) was used as host polymer matrix, lithium hexaflurosphosphate (LiPF6) 

(Aldrich) as the salt for complexation and ethylene carbonate (EC) (Alfa Aesar) as plasticizer. 

Amorphous carbon nanotube (αCNT) was prepared by chemical route at low temperature [24] . Prior 

to use, PEO was dried at 50 
o
C for 48 hours. Appropriate quantities of PEO, LiPF6, EC and αCNT 

were dissolved separately in acetonitrile (Fisher) and stirred well for 24h at room temperature to form 
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a homogeneous solution. All samples were stored under dry conditions. An electronic digital caliper 

was used for measuring films thickness and average thickness for films is 0.76mm. The ionic 

conductivities of the samples were measured at temperature ranging from 298 to 373 K using HIOKI 

3531 LCR Hi-Tester with frequency range of 50 Hz to 5 MHz.  

 

 

 

3. BAYESIAN NEURAL NETWORK 

Neural network are parallel-distributed information processing systems used for empirical 

regression and classification modelling. Their flexibility enables the discovery of  complex 

relationships in data compared with traditional linear statistical models.  A neural network consists of a 

number of highly interconnected processing elements operated into layers, whereby the geometry and 

functionality of the network is quite similar to the human brain as shown in Fig. 1. 

 

 
 

Figure 1. The structure of three layered neural network used in the present study 

 

A neural network is trained on a set of examples of input and output data. The outcome of this 

training is a set of coefficients (called weights) and a specification of the functions, which in 

combination with the weights, relate the input to the output. The training process involves a search for 

the optimum non-linear relationship between the inputs and the outputs. Once the network is trained, 

the estimation of the outputs for any given inputs is very rapid. The neural network used has been 

developed in a statistical framework, and is able to infer automatically the appropriate complexity of 
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the model [21 - 23]. This helps to avoid problems of over-fitting the very flexible equations used in the 

neural network models. The output variable is expressed as a linear summation of activation functions 

ih with weights iw and bias  : 
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i

ii hwy                                         (1) 

 

and the activation function for a neuron i in the hidden layer is given by: 
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with weights ijw and biases i . The weightings are simplified by normalising the data within  

the range ±0.5 using the normalisation function 
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where x  is the value of the input and jx is the normalised value. In the Bayesian neural 

network [21 - 23], training is achieved by altering the parameters by back-propagation to optimise an 

objective function which combines an error term in order to assess how good the fitting is, and 

regularisation term to penalise large weights: 
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where   and  are complexity parameters which greatly influence the complexity of the 

model, 
 it and  

 iy are the target and corresponding output values for one example input from the 

training data 
 ix . The Bayesian framework for neural network has two further advantages. Firstly, the 

significance of the input variables is quantified automatically. Consequently, the significance 

perceived by the model of each input variable can be compared against existing theory. Secondly, the 

network‟s predictions are accompanied by error bars which depend on the specific position in input 

space. These quantify the model‟s certainty about its predictions.  

 

 

4. RESULTS AND DISCUSSION 

4.1. Various of LiPF6 salt concentrations 

Fig. 2 shows the plot of conductivity dependence temperature at various weight percent of 

LiPF6. The temperature dependence of the ionic conductivity is not linear and obeys the VTF (Vogel-
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Tamman-Fulcher) relationship. The conductivity of salted polymer electrolytes is found to increase 

with temperature, from 303 to 373K. At higher temperature, the thermal movement of polymer chain 

segments and the dissociation of salts were enhanced the ionic conductivity [25]. 

 

 
 

Figure 2. Conductivity dependence temperature of polymer electrolytes at various wt% of LiPF6 (a) 5 

; (b) 10 ; (c) 15 ; (d) 20.  

 

4.2. Various of EC plasticizer concentrations 

 

 

 

Figure 3. Conductivity dependence temperature of complexes at various wt% of EC (a) 5 ; (b) 10 ; (c) 

15. 
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Fig. 3 shows the plot of ionic conductivity temperature dependence at various wt% of EC. The 

temperature dependence of the ionic conductivity is not linear and obeys the VTF (Vogel-Tamman-

Fulcher) relationship.  

The conductivity increases with increasing temperature upon the addition of 5 and 10wt% of 

EC, as shown in Fig. 3. It is evident that the ionic conductivity increases with an increase in plasticizer 

content and temperature. This can be explained in terms of two factors, first: an increase in the degree 

of interconnection between the plasticizer-rich phases due to an increase in the volume fraction of 

these phases; and second, increase in the free volume of the plasticizer rich phase due to an increase in 

the relative amount of the plasticizer compared with that of PEO. At higher concentrations of 

plasticizer, the transport of ions may be expected to take place along the plasticizer-rich phase.  

Although the improvement in conductivity in certain electrolyte systems has been interpreted in 

terms of plasticization of the polymer structure [26] or an alteration in the ion transport mechanism 

[27], other effects related to the viscosity of the ionic environment may also contribute. As the amount 

of plasticizer is increased, an optimum composition is reached whereby ion interactions between the 

solubilizing polymer and the plasticizer are such that ion mobility is maximized.  A further increase in 

plasticizer content may eventually cause displacement of the host polymer by plasticizer molecules 

within the salt complexes and a decrease in ionic mobility.  

 

4.3. Various of CNT filler concentrations  

Fig. 4 shows the temperature dependence of conductivity for polymer electrolytes between 298 

to 373K. It is evident that the room temperature conductivity increases with different wt% of αCNTs. 

When the organic filler was added to the polymer electrolytes, new interfaces were connected with the 

filler surface such as the αCNTs/polymer spherulite interfaces, which provide more effective paths for 

the migration of the conductivity ions [28]. Moreover, the nanosize αCNTs improve the conduction of 

the mobile ions due to their extremely high surface energy [28-33]. This, prevents local PEO chain 

reorganization with the result of freezing at ambient temperature and a high degree of disorder, which 

in turn favours fast ionic transport. As the αCNTs concentration increases, the conductivity also 

increases due to more mobile ions which can be transported in nanocomposite polymer electrolytes. 

The conductivity values at room temperature for 1wt% of αCNTs is 2.2 х 10
-4

 Scm
-1

 and increases to 

1.3 х 10
-3

 Scm
-1

 when 5wt% of αCNTs were added into polymer complexes. The conductivity value 

increases by an order of magnitude with the increase of αCNTs concentrations. However, there is a 

possibility of increased proton conductivity with increases αCNTs concentrations. It is well known that 

αCNTs are very good electronic conductors [34, 35], but the effect on proton conductivity is less 

studied. It is also suggested that structural modifications occuring at the αCNT surface due to the 

specific action of the polar surface groups of the organic filler act as Lewis acid-base interaction 

centers with the electrolyte ionic species [34]. Thus, it is expected that lowering ionic coupling 

promotes salt dissociation via a sort of ion-filler complex formation. 
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Figure 4. Temperature dependence conductivity for polymer electrolyte at different wt% of αCNTs of 

(a) 1 and (b) 5. 

 

4.4. Optimum concentration of polymer electrolytes. 

Fig. 5 shows the temperature dependence of conductivity for various electrolytes between 298 

and 373K. It is evident that the room temperature conductivity increases with different chemical 

composition. The conductivity increases by 5 orders of magnitude with the addition of LiPF6, 4 orders 

of magnitude with the addition of EC and 3 orders of magnitude with the addition of αCNTs. The 

sudden increase of conductivities is due to the role of lithium ions in the PEO, the increase in 

flexibility of the polymer chain due to the EC and high electrical conductivity properties of αCNTs on 

polymer electrolytes. 

There is a sudden increase in conductivity for pure PEO electrolyte at 313 – 323K (Fig. 5(a)). 

However, the ionic conductivity increases linearly beyond 323K. With the addition of  LiPF6, EC and 

αCNTs, the thermal effects are clearly observed in Fig. 5(b) – (d), which show a slight increase in 

conductivity in a wide temperature range. When EC was added into the system, more salts are 

dissociated into ions, which have low viscosity and therefore increases ionic mobility. The addition of 

αCNTs increases the conductivity by inhibiting recrystallization of the PEO chains and providing Li
+
 

conducting pathway at the filler surface through Lewis Acid base interaction among different species 

in the electrolytes [36]. A transportation lithium ion within the polymer matrix requires low energy and 

hence increases the conductivity. This is possibly due to size of the filler and  plasticizer molecule 

compared to the polymer molecule, which can penetrate easily into the polymer matrix [37]. The 

sample, which consists of LiPF6, EC and αCNTs, shows lower activation energy at ambient 

temperature (298K ~ 373K). A transportation lithium ion within the polymer matrix requires low 

energy and hence increases the conductivity. This is possibly due to size of the filler and plasticizer 

molecule compared to the polymer molecule, which can penetrate easily into the polymer matrix [37]. 
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Figure 5. Conductivity dependence temperature of nanocomposite polymer electrolytes at optimum 

compositions (a) PEO; (b) PEO -20 wt%  LiPF6;  (c) PEO -20 wt %  LiPF6 - 15 wt % EC (d) 

PEO -20 wt%  LiPF6 - 15 wt% EC -5 wt% αCNTs. 

 

4.5. Differential Scanning Calorimetry (DSC) studies 

 
 

Figure 6.  DSC curves of (a) PEO; (b) PEO-5wt% LiPF6; (c) PEO-10wt% LiPF6; (d) PEO-15wt% 

LiPF6; (e) PEO-20wt% LiPF6; (f) PEO-20wt% LiPF6-5wt%EC; (g) PEO-20wt% LiPF6-

10wt%EC; (h) PEO-20wt% LiPF6-15wt%EC; (i) PEO-20wt% LiPF6-5wt%EC-1wt% αCNTs; 

(j) PEO-20wt% LiPF6-5wt%EC-5wt% αCNTs. 
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DSC was utilized to examine the thermal behaviour of PEO based polymer complexed systems. 

The DSC thermograms of various compositions of (PEO), LiPF6, EC, αCNTs systems are shown in 

Fig. 6. Table 1 compiles the values of glass transition temperature (Tg), melting temperature (Tm), 

percentage of crystallinity and conductivity values at 298K. The  glass transition temperature (Tg) 

provides insight regarding the miscibility of strength of molecular interactions within the complex. 

Below the Tg the polymer chains are considered to be static, whereas the chains are dynamic above the 

Tg. A sharp endothermic peak was observed at a temperature near 69 
o
C for pure PEO during the 

heating process, as shown in Fig. 6a. The decrease in Tg and Xc will increase the flexibility of the PEO 

chains and the ratio of amorphous PEO, respectively. It is observed that the addition of salt into the 

PEO results in an increase in Tg, which suggests a significant reduction in PEO chain mobility. It is 

seen that the Tm of the PEO phase within the salt complex decreases significantly compared with pure 

PEO. The decrease in Tg and Tm of the PEO upon the addition of LiPF6 also indicates the complexation 

between LiPF6 and PEO.  

 

Table 1. Thermal parameters and conductivity values  of PEO-xLiPF6-xEC-xαCNTs 

 

____________________________________________________________    

Sample   Tg (
o
C)    Tm (

o
C)     Xc(%) σ (Scm

-1
)   

        at 298K 

____________________________________________________________ 
 

Pure PEO   -66.01       68.8           84.87 3.25 x 10
-10

  

PEO-5wt% LiPF6  -67.98       67.4           67.82 1.20 x 10
-6

 

PEO-10wt% LiPF6  -68.00     65.1           58.46 9.03 x 10
-6

   

PEO-15wt% LiPF6  -70.05     64.4           55.03 1.82 x 10
-5

 

PEO-20wt% LiPF6  -72.00     63.5           47.52 4.10 x 10
-5

 

PEO-20wt% LiPF6-5wt% EC -72.01     63.2           59.47 5.93 x 10
-5

   

PEO-20wt% LiPF6-10wt% EC -74.01     63.1           51.27 1.43 x 10
-4

 

PEO-20wt% LiPF6-15wt% EC -76.03     62.9           47.35 2.06 x 10
-4

 

PEO-20wt% LiPF6-15wt% EC -78.03     62.0           46.21 2.20 x 10
-4

 

-1wt% αCNT 

PEO-20wt% LiPF6-15wt% EC -80.04     61.0           27.12 1.30 x 10
-3

 

-5wt% αCNT 

________________________________________________________________ 

 

The Tg and Tm further decrease with the addition of plasticizer (EC). The plasticization effect is 

related to a weakening of the dipole-dipole interaction due to the presence of ion clusters between the 

PEO chains. The decrease in glass transition temperature (Tg) facilitates softening of the polymer 

backbone and increases its segmental motion. Such segmented motion produces voids, which 

facilitates flow of ions through the polymer chain network in the presence of an applied electric field. 

Ferry et al. [38] reported a similar plasticizing effect of LiClO4 in TPU-LiClO4 polymer electrolytes. 

Similar plasticizing effect of ion pairs and ion multiplets were also reported by Silva et al. [39] and 

Chiodelli et al. [40] for poly(trimethylenecarbonate) with LiBF4 and PEO–LiBF4 polymer electrolytes, 
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respectively. The curves show that the addition of αCNTs influences the Tg and Tm of polymer 

electrolytes.  

The peaks broaden and shift slightly towards lowers temperatures. The nanosized αCNTs 

interact with the PEO polymer matrix to suppress the crystallization of PEO. This leads to an increase 

in ionic conductivity, especially at temperatures lower than its melting point [41]. A similar behaviour 

was also observed in PEO polymer electrolytes containing fillers such as SiO2 and TiO2 [41, 42]. The 

conductivity enhancement is contributed by the structural modifications associated with the polymer 

host caused by the filler. A dominant contribution to the conductivity enhancement by the filler at 

temperatures below Tg and Tm should possibly be due to this effect.  

 

4.6. Neural Network Model 

The database compiled from experimental data consists of 5 inputs including the chemical 

compositions and temperature, as shown in Table 2.  

 

Table 2. Conductivity values of different composition polymer electrolyte samples at elevated 

temperature 

 

PEO (wt%) LiPF6 (wt%) EC (wt%) CNT (wt%) Temp (K
-1

) Conductivity (S cm
-1

) 

100  0  0  0  3.35402 -21.8472 

100  0  0  0  3.29870 -21.3619 

100  0  0  0  3.24517 -20.3656 

100  0  0  0  3.19336 -19.9035 

100  0  0  0  3.14317 -16.5504 

100  0  0  0  3.09454 -16.2984 

100  0  0  0  3.04739 -15.8950 

100  0  0  0  3.00165 -15.6734 

100  0  0  0  2.95727 -15.2018 

100  0  0  0  2.91418 -14.9211 

100  0  0  0  2.87233 -13.7957 

100  0  0  0  2.83166 -13.6085 

100  0  0  0  2.79213 -13.4302 

100  0  0  0  2.75368 -13.3027 

100  0  0  0  2.71628 -12.7967 

100  0  0  0  2.67989 -12.7717 

100  5  0  0  3.35402 -13.6310 

100  5  0  0  3.29870 -13.3716 

100  5  0  0  3.24517 -12.5725 

100  5  0  0  3.19336 -11.6943 

100  5  0  0  3.14317 -9.47620 

100  5  0  0  3.09454 -8.87486 

100  5  0  0  3.04739 -8.32398 

100  5  0  0  3.00165 -5.51057 

100  5  0  0  2.95727 -5.44313 

100  5  0  0  2.91418 -5.43535 

100  5  0  0  2.87233 -5.49597 
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100  5  0  0  2.83166 -5.48116 

100  5  0  0  2.79213 -5.48859 

100  5  0  0  2.75368 -5.49597 

100  5  0  0  2.71628 -5.48859 

100  5  0  0  2.67989 -5.48116 

100  10  0  0  3.35402 -11.6154 

100  10  0  0  3.29870 -10.8729 

100  10  0  0  3.24517 -9.93411 

100  10  0  0  3.19336 -9.12474 

100  10  0  0  3.14317 -8.11720 

100  10  0  0  3.09454 -7.62530 

100  10  0  0  3.04739 -7.47011 

100  10  0  0  3.00165 -7.21983 

100  10  0  0  2.95727 -7.07010 

100  10  0  0  2.91418 -7.04993 

100  10  0  0  2.87233 -5.91742 

100  10  0  0  2.83166 -5.20805 

100  10  0  0  2.79213 -5.16630 

100  10  0  0  2.75368 -5.13286 

100  10  0  0  2.71628 -5.10347 

100  10  0  0  2.67989 -5.15405 

100  15  0  0  3.35402 -10.9114 

100  15  0  0  3.29870 -9.81122 

100  15  0  0  3.24517 -9.15581 

100  15  0  0  3.19336 -7.60044 

100  15  0  0  3.14317 -6.92684 

100  15  0  0  3.09454 -4.93584 

100  15  0  0  3.04739 -4.90384 

100  15  0  0  3.00165 -4.86741 

100  15  0  0  2.95727 -4.86234 

100  15  0  0  2.91418 -4.84352 

100  15  0  0  2.87233 -4.84352 

100  15  0  0  2.83166 -4.84179 

100  15  0  0  2.79213 -4.83658 

100  15  0  0  2.75368 -4.82257 

100  15  0  0  2.71628 -4.84179 

100  15  0  0  2.67989 -4.81727 

100  20  0  0  3.35402 -10.1023 

100  20  0  0  3.29870 -9.30859 

100  20  0  0  3.24517 -8.50518 

100  20  0  0  3.19336 -6.87561 

100  20  0  0  3.14317 -5.10705 

100  20  0  0  3.09454 -5.06966 

100  20  0  0  3.04739 -5.06966 

100  20  0  0  3.00165 -5.05043 

100  20  0  0  2.95727 -5.05043 

100  20  0  0  2.91418 -5.05043 

100  20  0  0  2.87233 -5.06966 

100  20  0  0  2.83166 -5.06009 

100  20  0  0  2.79213 -5.06009 
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100  20  0  0  2.75368 -5.09783 

100  20  0  0  2.71628 -5.09783 

100  20  0  0  2.67989 -5.16929 

100  20  5  0  3.35402 -9.73212 

100  20  5  0  3.29870 -9.07921 

100  20  5  0  3.24517 -8.18058 

100  20  5  0  3.19336 -7.84160 

100  20  5  0  3.14317 -7.57361 

100  20  5  0  3.09454 -7.40133 

100  20  5  0  3.04739 -7.22931 

100  20  5  0  3.00165 -7.16757 

100  20  5  0  2.95727 -7.11998 

100  20  5  0  2.91418 -7.11998 

100  20  5  0  2.87233 -7.11817 

100  20  5  0  2.83166 -7.21463 

100  20  5  0  2.79213 -7.28898 

100  20  5  0  2.75368 -7.20970 

100  20  5  0  2.71628 -7.10544 

100  20  5  0  2.67989 -7.00130 

100  20  10  0  3.35402 -8.85455 

100  20  10  0  3.29870 -8.08584 

100  20  10  0  3.24517 -7.53347 

100  20  10  0  3.19336 -7.30017 

100  20  10  0  3.14317 -6.97964 

100  20  10  0  3.09454 -5.56302 

100  20  10  0  3.04739 -5.36315 

100  20  10  0  3.00165 -5.33624 

100  20  10  0  2.95727 -5.37196 

100  20  10  0  2.91418 -5.36315 

100  20  10  0  2.87233 -5.35426 

100  20  10  0  2.83166 -5.36315 

100  20  10  0  2.79213 -5.35426 

100  20  10  0  2.75368 -5.37196 

100  20  10  0  2.71628 -5.36315 

100  20  10  0  2.67989 -5.40645 

100  20  15  0  3.35402 -8.48561 

100  20  15  0  3.29870 -7.96573 

100  20  15  0  3.24517 -7.76506 

100  20  15  0  3.19336 -7.57437 

100  20  15  0  3.14317 -7.39641 

100  20  15  0  3.09454 -7.30940 

100  20  15  0  3.04739 -7.23554 

100  20  15  0  3.00165 -7.17852 

100  20  15  0  2.95727 -7.13254 

100  20  15  0  2.91418 -7.09931 

100  20  15  0  2.87233 -6.95413 

100  20  15  0  2.83166 -6.91266 

100  20  15  0  2.79213 -6.89292 

100  20  15  0  2.75368 -6.79894 

100  20  15  0  2.71628 -6.75986 
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100  20  15  0  2.67989 -6.67681 

100  20  15  1  3.35402 -8.42083 

100  20  15  1  3.29870 -7.69855 

100  20  15  1  3.24517 -7.38929 

100  20  15  1  3.19336 -7.19753 

100  20  15  1  3.14317 -7.04879 

100  20  15  1  3.09454 -7.00047 

100  20  15  1  3.04739 -6.93712 

100  20  15  1  3.00165 -6.85699 

100  20  15  1  2.95727 -6.72915 

100  20  15  1  2.91418 -6.69749 

100  20  15  1  2.87233 -6.65784 

100  20  15  1  2.83166 -6.72264 

100  20  15  1  2.79213 -6.77112 

100  20  15  1  2.75368 -6.69480 

100  20  15  1  2.71628 -6.65364 

100  20  15  1  2.67989 -6.59004 

100  20  15  5  3.35402 -6.64774 

100  20  15  5  3.29870 -6.39311 

100  20  15  5  3.24517 -6.21264 

100  20  15  5  3.19336 -6.04334 

100  20  15  5  3.14317 -5.95460 

100  20  15  5  3.09454 -5.87469 

100  20  15  5  3.04739 -5.81026 

100  20  15  5  3.00165 -5.76295 

100  20  15  5  2.95727 -5.74536 

100  20  15  5  2.91418 -5.73145 

100  20  15  5  2.87233 -5.72543 

100  20  15  5  2.83166 -5.79537 

100  20  15  5  2.79213 -5.81946 

100  20  15  5  2.75368 -5.86073 

100  20  15  5  2.71628 -5.90204 

100  20  15  5  2.67989 -5.89866 

 

The network model for the ionic conductivity consists of 5 input nodes, a number of hidden 

nodes and an output node representing the ionic conductivity. The complexity of the model is 

controlled by the number of hidden units (Fig. 1) and the values of the the 7 regularisation constants 

w , one associated with each of the 5 inputs, one for biases and one for all weights connected to the 

output. Fig. 7 shows that the inferred noise level decreases as the number of hidden units increases. 

However, the complexity of the model also increases with the number of hidden units. A high degree 

of complexity may not be justifiable. To select the correct complexity, it is necessary to examine how 

the model generalises on previously unseen data in the test data set using the test error. The latter is 

defined as: 

 

  
n

2

nne 5.0 tyT                                 (5) 
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where yn is the predicted ionic conductivity and tn is its measured value. Fig. 8 shows that the 

test error first decreases, but begins to increase again as a function of the number of hidden units. Figs. 

9 – 10 show the behaviour of the training and test data which exhibit a similar degree of scatter in both 

graphs, indicating that the complexity of this particular model is optimum. The error bars in Figs. 9 – 

10 include the error bars of the underlying function and the inferred noise level in the dataset v . The 

test error is a measure of the performance of a model. Another useful measure is the “log predictive 

error”, for which the penalty for making a wild prediction is accompanied by an appropriately large 

error bar. Assuming that for each example n, the model gives a prediction with error  2

nn ,y , the log 

predictive error(LPE) as shown in equation 6: 

 

 
 






















n

n2

n

2

nn

2log2

1




n

yt

LPE                (6) 

 

Fig. 9 shows the log predictive error as a function of hidden units. 

 

 
 

Figure 7. A variation in   (the model perceived level of noise in the data) as function of number of 

hidden units 
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Figure 8. Test error as a function of the number of hidden units 

 

 
 

Figure 9. Log predictive error as a function of the number of hidden units 
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Figure 10. Typical performance of the trained model on training data 

 

 
 

Figure 11. Typical performance of the trained model on test data 
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Figure 12. Test error as a function of the number of members in a committee 

 

When making predictions, MacKay [9 - 11] recommended the use of multiple good models 

instead of just one best model. This is called „forming a committee‟. The committee prediction 
_

y is 

obtained using the expression: 

 


i

i

_ 1
y

L
y                                                               (7) 

 

where L is the size of the committee and yi is the estimate of a particular model i. The optimum 

size of the committee is determined from the validation error of the committee‟s predictions using the 

test dataset. In the present analysis, a committee of models is used to make more reliable predictions. 

The models are ranked according to their log predictive error. Committees are then formed by 

combining the predictions of best M models, where M gives the number of members in a given 

committee model. The test errors for the first 120 committees are shown in Fig. 12. A committee of the 

best three models gives the minimum error. Each constituent model of the committee is therefore 

retrained on the entire dataset, beginning with the weights previously determined. Fig. 13 shows the 

results from the new training on the entire dataset. Consistent with the reduction in test error illustrated 

in Fig. 12, it is evident that the committee model outperforms the single best model. The retrained 

committee is then used for all further work. 
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Figure 13.  Training data for the best committee model (training is carried out on whole dataset) 

 

A comparison of the measured and predicted conductivity is presented in Figs. 14 - 19. In these 

cases it can be seen that the measured values lie completely within the predicted values. The model is 

found to be capable of generalising sufficiently to reproduce the general trends in the data and is 

capable of making useful predictions of unseen composition and temperature. 

 

 

 

Figure 14. Experimental and neural network curves of pure PEO conductivity according to 

temperature 
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Figure 15. Experimental and neural network curves of pure PEO - Salt  conductivity according to 

temperature 

 

 
 

Figure 16. Experimental and neural network curves of PEO-Salt-EC conductivity according to 

temperature 
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Figure 17. Experimental and neural network curves of PEO-Salt-EC-CNT conductivity according to 

temperature 

 

 

 
 

Figure 18. Temperature-dependent conductivity of polymer electrolyte system from experimental data 
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Figure 19. Temperature-dependent conductivity of polymer electrolyte system obtained from neural 

network‟s prediction 

 

 

 

5. CONCLUSION 

Novel composite solid polymer electrolytes were synthesized successfully via solution-casting 

technique. It has been demonstrated in this paper that the addition of various weight percent of salt, 

plasticizer and filler into the PEO matrix enhances conductivity. DSC thermographs exhibit a decrease 

in Tm, Tg and Xc values, which leads to increased conductivity for composite polymer electrolytes at 

298K. A neural networks model has been developed, which can predict the ionic conductivity of 

nanocomposite polymer electrolyte systems (PEO - LiPF6 - EC - CNT). The generalized capability of 

the neural network is the primary consideration of this paper. The Bayesian neural network is found to 

be successful in predicting of experimental results rather that of time-consuming studies.  
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