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In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiCF3SO3-

DBP-ZrO2), which has been produced using solution cast technique, is obtained using artificial neural 

networks approach. Several results have been recorded from experiments in preparation for the 

training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium triflate 

(LiCF3SO3), dibuthyl phatalate (DBP) and zirconia oxide (ZrO2) are mixed at various ratios to obtain 

the highest ionic conductivity. The effects of chemical composition on the ionic conductivity of the 

polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the 

polymer electrolyte system varies with different chemical compositions. In neural networks training, 

different chemical compositions are used as inputs and the ionic conductivities of the resultant polymer 

electrolytes are used as outputs. The experimental data is used to check the system’s accuracy 

following the training process. The neural network is found to be successful for the prediction of ionic 

conductivity of nanocomposite polymer electrolyte system. 
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1. INTRODUCTION 

Polymer electrolytes have gained importance due to their vast number of potential applications 

such as solid state batteries or fuel cells, photochemical solar cells, supercapacitors, sensors and 

electrochemical display devices [1]. Much interest is devoted to solid polymer electrolytes (SPE) 

compared with conventional systems containing liquid electrolyte. Other advantages of SPE include 

their ability to form thin films, they are light weight, they posses good electrode-electrolyte contact due 

to their flexibility, they posses high ionic conductivity [2]. 

http://www.electrochemsci.org/
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Most studies are centered primarily on using polyethylene oxide (PEO) as a polymer host 

because of its ability to solvate ionic salts to form solid electrolytes. The complexes of PEO with a 

number of alkali salts have been recorded such as LiBF4, LiB(C6H5), NaSCN and KYF4 [3], AgNO3 

and NaNO3 [4]. However, the main drawback is the high degree of crystallization of PEO which 

causes low cation mobility. One of the approaches to overcome this drawback is to use plasticizer. The 

plasticizer enhances the power of salt-salvation and increases ion mobility of the polymer electrolyte 

[5]. Alternatively, inorganic fillers are used to improve the electrochemical and mechanical properties 

[6]. The fillers affect the PEO dipole orientation by their ability to align dipole moments, while the 

thermal history determines the flexibility of the polymer chains for ion migration. They generally 

improve the transport properties, the resistance to crystallization and the stability of the 

electrode/electrolyte interface. 

The successful employment of polymer electrolytes in engineering applications relies on the 

ability of the polymer electrolytes to meet design and service requirements, which are determined by 

the physical properties of the polymer electrolytes. These properties can be precisely obtained with 

relevant tests and experiments as stated in the standard. Also, other mathematical functions can be 

employed for modeling of these materials behavior. However, it may be possible that all the materials’ 

behavior may not be modeled properly with mathematical functions due to the complexity of the 

composition dependence. 

Recently, with the developments in artificial intelligence, researchers focused a great deal of 

attention to the solution of non-linear problems in materials science [7-8]. In this study, Bayesian 

neural-networks [9-10] are employed to predict the ionic conductivity of nanocomposite polymer 

electrolyte system (PEO - LiCF3SO3 – DBP - ZrO2). 

 

 

 

2. MATERIALS AND EXPERIMENTAL PROCEDURES 

Films of PEO were used as host polymer electrolytes, and were prepared by standard solution-

casting techniques. The materials used in this work were PEO (MW = 600,000, Acros), lithium triflate 

(LiCF3SO3) (Aldrich), dibutyl phatalate (DBP) (Alfa Aesar, 99% purity) and zirconia oxide (ZrO2). 

Prior to use, the PEO was dried at 50 
o
C for 48 hours. All components were added and dissolved in 

acetonnitrile. The solutions were stirred for 24 hours at room temperature until homogenous solutions 

were obtained. The solutions were cast onto glass petri dishes and were left to evaporate slowly to 

form films. All samples were prepared at room temperature and stored under dry conditions. The ionic 

conductivities of the samples were measured at temperatures ranging from 298 to 373 K using HIOKI 

3531 LCR Hi-Tester with a frequency range of 50 Hz to 5 M Hz. 

 

 

 

3. BAYESIAN NEURAL NETWORK 

Neural networks are parallel-distributed information processing systems used for empirical 

regression and classification modeling. Their flexibility enables the discovery of complex relationships 
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in data compared with traditional linear statistical models. Neural networks consist of a number of 

highly interconnected processing elements operated into layers, which the geometry and functionality 

similar to that of the human brain is shown in Fig. 1. 

 

 
 

Figure 1. The structure of three-layered neural network used in the present study. 

 

A neural network is trained on a set of examples of input and output data. The outcome of this 

training is a set of coefficients (called weights) and a specification of the functions, which in 

combination with the weights; relate the input to the output.  

The training process involves a search for the optimum non-linear relationship between the 

inputs and the outputs. Once the network is trained, the estimation of the outputs for any given inputs 

is very rapid. The neural network used has been developed in a statistical framework, as it is able to 

infer the appropriate complexity of the model automatically [11- 13].  

This helps to prevent the problems of over-fitting the very flexible equations used in neural 

network models.  

The output variable is expressed a linear summation of activation functions hi 
with weights wi 

and the bias θ: 

 

 
i

iihwy                                                                               (1) 

 

The activation functions for a neuron i in the hidden layer given by: 
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with weights wij 
and biases θi. The weighting is simplified by normalizing the data within the 

range of 5.0  using the normalization function: 

 

 

 

 

 

where x is the value of the input and xj 
is the normalized value. In the Bayesian neural network, 

[9 - 11], training is achieved by altering the parameters by back-propagation to optimize an objective 

function which combines an error term to assess how good the fitting is and regularization term to 

penalize large weights: 

                                                                                                                                    

 

 

 

 

where β and α are complexity parameters which greatly influence the complexity of the model, 

t(i) and y(i) are the target and corresponding output values for one example input from the training data 

x(i).  

The Bayesian framework for neural networks has two further advantages. Firstly, the 

significance of the input variables is quantified automatically. Consequently, the significance 

perceived by the model of each input variable can be compared against existing theory. Secondly, the 

network’s predictions are accompanied by error bars which depend on the specific position in input 

space. These advantages quantify the model’s certainty about its predictions.

                                                                                                                                                                   

 

 

 

 

4. RESULTS AND DISCUSSION 

The database compiled from the experimental data consists of 5 inputs, which include the 

chemical compositions and temperature, as shown in Table 1.  

 

Table 1. Conductivity values of different composition polymer electrolyte samples at elevated 

temperature 

 
PEO (wt%) Litriflate (wt%) DBP (wt%) ZrO2 (wt%) Temp (K-1 ) Ln Conductivity (Scm-1) 

100 0 0 0 3.354016 -19.2717 

100 0 0 0 3.298697 -18.063 

100 0 0 0 3.245173 -17.674 
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100 0 0 0 3.193358 -17.1852 

100 0 0 0 3.143171 -15.9783 

100 0 0 0 3.094538 -14.2205 

100 0 0 0 3.047387 -14.4928 

100 0 0 0 3.001651 -14.3082 

100 0 0 0 2.957267 -14.1637 

100 0 0 0 2.914177 -14.0225 

100 0 0 0 2.872325 -13.8795 

100 0 0 0 2.831658 -13.7202 

100 0 0 0 2.792126 -13.508 

100 0 0 0 2.753683 -13.2849 

100 0 0 0 2.716284 -13.1124 

100 0 0 0 2.679887 -12.9568 

100 12 0 0 3.354016 -11.5653 

100 12 0 0 3.298697 -9.86043 

100 12 0 0 3.245173 -9.01149 

100 12 0 0 3.193358 -8.36447 

100 12 0 0 3.143171 -7.96044 

100 12 0 0 3.094538 -7.8341 

100 12 0 0 3.047387 -7.71295 

100 12 0 0 3.001651 -7.50196 

100 12 0 0 2.957267 -7.44732 

100 12 0 0 2.914177 -7.38902 

100 12 0 0 2.872325 -7.31272 

100 12 0 0 2.831658 -7.24743 

100 12 0 0 2.792126 -7.22658 

100 12 0 0 2.753683 -7.19811 

100 12 0 0 2.716284 -7.17433 

100 12 0 0 2.679887 -7.11601 

100 12 28 0 3.354016 -9.95058 

100 12 28 0 3.298697 -8.85547 

100 12 28 0 3.245173 -7.78723 

100 12 28 0 3.193358 -7.28902 

100 12 28 0 3.143171 -7.14601 

100 12 28 0 3.094538 -7.01056 

100 12 28 0 3.047387 -6.91076 

100 12 28 0 3.001651 -6.81245 

100 12 28 0 2.957267 -6.76799 

100 12 28 0 2.914177 -6.70074 

100 12 28 0 2.872325 -6.64539 

100 12 28 0 2.831658 -6.60027 

100 12 28 0 2.792126 -6.5571 

100 12 28 0 2.753683 -6.53619 

100 12 28 0 2.716284 -6.52932 

100 12 28 0 2.679887 -6.47597 

100 12 28 2 3.354016 -8.32245 

100 12 28 2 3.298697 -7.69962 

100 12 28 2 3.245173 -7.57134 

100 12 28 2 3.193358 -7.48046 

100 12 28 2 3.143171 -7.39226 

100 12 28 2 3.094538 -7.32935 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

227 

100 12 28 2 3.047387 -7.26443 

100 12 28 2 3.001651 -7.23904 

100 12 28 2 2.957267 -7.217 

100 12 28 2 2.914177 -7.19945 

100 12 28 2 2.872325 -7.17563 

100 12 28 2 2.831658 -7.15622 

100 12 28 2 2.792126 -7.14474 

100 12 28 2 2.753683 -7.1309 

100 12 28 2 2.716284 -7.12467 

100 12 28 2 2.679887 -7.11478 

 

 

Figs. 2 – 3 show the behavior of the training and test data. It can be seen that both graph exhibit 

a similar degree of scatter, indicating that the complexity of this particular model is optimum. The 

error bars in Figs. 2 – 3 include the error bars of the underlying function and the inferred noise level in 

the dataset. When making predictions, MacKay [11 – 13] recommended the use of multiple good 

models instead of just one best model.  

 
 

Figure 2. Typical performance of the trained model on training data. 

 

This is called ‘forming a committee’. The committee prediction ӯ is obtained using the 

expression: 
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
i

iy
L

y
1_

                                                                      (5)

 

 

where L is the size of the committee and yi is the estimate of a particular model i. The optimum 

size of the committee is determined from the validation error of the committee’s predictions using the 

test dataset. In the present analysis, a committee of models was used to make more reliable 

predictions.  

The models were ranked according to their log predictive error. Committees were then formed 

by combining the predictions of best M models, where M gives the number of members in a given 

committee model. The test errors for the first 120 committees are shown in Fig. 4. A committee of the 

best four models gives the minimum error. Each constituent model of the committee was therefore 

retrained on the entire dataset, beginning with the weights previously determined. Fig. 5 shows the 

results from the new training on the entire dataset. Consistent with the reduction in test error illustrated 

in Fig. 3, it is evident that the committee model outperforms the single best model. The retrained 

committee was used for all further work. 

 

 
 

Figure  3. Typical performance of the trained model on test data. 
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Figure 4. Test error as function of number of members in committee 

 

 
 

Figure 5. Training data for best committee model (training was done on whole dataset). 
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Figs. 6 – 11 show the measured and predicted temperature dependence conductivity of the 

polymer electrolytes. As can be seen from these plots, there exist two temperature ranges above 

melting temperature for which the variation of conductivity differs. These are the typical of 

semicrystalline to amorphous phase transitions in the conductive polymeric films. The presence of the 

two distinct and well defined regions in the plots also suggests that the transport properties of Li
+
 are 

fundamentally controlled by two different mechanisms.  

 

 

 

Figure 6. Experimental and neural network curves of pure PEO conductivity as function of 

temperature. 

 

 
 

Figure 7. Experimental and neural network curves of pure PEO - Salt conductivity as function of 

temperature. 
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Figure 8. Experimental and neural network curves of PEO-Salt-DBP conductivity as function of 

temperature. 

 

 
 

Figure 9. Experimental and neural network results of PEO–Salt–DBP-Filler conductivity as function 

of temperature. 
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Figure 10. Temperature dependent conductivity of polymer electrolyte system obtained from 

experimental data. 

 

 
 

Figure 11. Temperature dependent conductivity of polymer electrolyte system obtained from neural 

network prediction 
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The temperature dependence of the conductivity follows the Arrhenius form at low temperature 

region and Vogel-Tammann-Fulcher (VTF) at the high temperature regions.  

In these cases, it can be seen that the measured values lie completely within the predicted 

values. The model is found to be able to generalize sufficiently to reproduce the general trends in the 

data, and is capable of making useful predictions of unseen composition and temperature. 

 

 

 

5. CONCLUSION 

A model has been developed which can predict the ionic conductivity of nanocomposite 

polymer electrolyte system (PEO - LiCF3SO3 – DBP - ZrO2). The generalization ability of the neural 

network is the basic consideration of this paper. It is concluded observed that Bayesian neural 

networks are successful in the prediction of experimental results rather than of time-consuming 

studies.  
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