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Corrosion inhibition performance of thiophene and its derivatives were studied using potentiodynamic 

polarization. The study used the artificial neural network analysis effectively generalized correct 

responses that broadly resemble the data in the training set. The neural network can now be put to use 

with the actual data, this involves feeding the neural network values for Hammett constants, dipole 

moment, HOMO energy, LUMO energy and energy gap. The analysis produced instantaneous results 

of corrosion inhibitor efficiency. The predictions were reliable, provided the input values are within 

the range used in the training set. 
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1. INTRODUCTION 

Owing to the increasing ecological awareness, as well as the strict environmental regulations, 

and consequently the need to develop environmentally friendly processes, attention is currently 

focused on the development of “green” alternatives to mitigating corrosion. Green approaches to 

corrosion mitigation entail the use of substances, techniques, and methodologies that reduce or 

eliminate the use of generation of feedstocks, products, by-products, solvents, reagents, and so forth 

that are hazardous to human health or the environment in combating corrosion. 

Thiophene based compounds have been a constant matter of investigation due to their wide 

range of applications. They are the precursors of many drugs with high therapeutical potential, being 

http://www.electrochemsci.org/
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used in the treatment of cancer [1–3], osteoporosis [4], hypertension [5], Alzheimer‟s disease [6], 

human immunodeficiency virus (HIV-1) [7–9], and others. 

Heterocyclic compounds represent a potential class of corrosion inhibitors. There is a wide 

range of studies regarding corrosion inhibition by nitrogen–containing heterocyclic compounds [10–

17]. Heterocyclic compounds containing both nitrogen and sulfur atoms are of particular importance as 

they often provide excellent inhibition compared with compounds containing only nitrogen or sulfur 

[18–24]. The corrosion-inhibiting property of these compounds is attributable to their molecular 

structure.  

Being used in chemistry during the second half of 20
th

 century as an extended statistical 

analysis [25-32], the quantitative structure-activity relationship (QSAR) method had attained in recent 

years a special status, officially certified by European Union as the main computational tool (within 

the so called “in silico” approach) for the regulatory assessments of chemicals by means of non-testing 

methods [33-38]. 

Actually, the chemical-physical advantage of QSAR stands in its multi-linearity correlation that 

resembles with superposition principle of quantum mechanics, which allow meaningful interpretation 

of the structural (inherently quantum) causes associated with the latent or unobserved variables 

(sometimes called as common factors) into the observed effects (activity) usually measured in terms of 

50%-effect concentration (EC50) [39,40]. 

Although undoubtedly useful, the “official” trend in employing QSAR methods is to classify, 

over-classify and validate through (external or molecular test set) prediction, a gap between the 

molecular computed orderings and the associate mechanistic role in corrosion inhibition assessment 

remains as large as the QSAR strategy has not turned into a versatile tool in identifying the structural 

properties and its role in corrosion inhibition process by means of structurally selected common 

variables; that is to use QSAR information for internal mechanistic predictions among training 

molecules to see their inter-relation respecting the whole class of observed efficiencies employed for a 

specific correlation.  

The present work aims to start filling this gap by deepening the modeling of structural 

properties of the inhibitor molecules and their inhibition efficiencies through extending the main 

concepts of recent developed in QSAR, developed the fully algebraic version of traditional statistically 

optimized QSAR picture, targeting the quantification of the competition between molecular structure 

properties and their inhibition efficiencies . Also, the aim of this study is to present a predictive model 

for corrosion inhibition of mild steel by thiophene and its derivatives using artificial neural network. 

The proposed model obtains predictions of inhibition efficiencies based on several quantum chemical 

variables and comparing these predicted values with the experimental inhibition efficiencies. 

 

 

2. EXPERIMENTAL DETAILS 

The structures of the thiophene and its derivatives are presented in Table 1. All the investigated 

compounds were obtained from Aldrich chemical co., they were put in 0.5 M H2SO4 (Fisher Scientific) 

without pre-treatment at concentrations of 0.01M. 
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Table 1. Molecular structures of thiophene and ten of its derivatives. 

 

# Inhibitor name Structure 

1 2-hydroxymethylthiophene 

 

2 2-methylthiophene 

 

3 3-methylthiophene 

 

4 Thiophene 

 

5 2-chlorothiophene 

 

6 2-bromothiophene 

 

7 2-thiophenecarboxylic acid 

 

8 3-bromothiophene 

 

9 2-acetylthiophene 

 

10 2-thiophenecarboxaldehyd 

 

11 2-thiophenecarboxylic acid methyl ester 
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All dc electrochemical measurements were performed in a typical three-compartment glass cell 

consisted of the mild steel rod (C = 0.10 wt.% ' Cu= 0.1 wt.% Cr=0.12 wt.%, Si=0.05 wt.%,  Mn= 0.9 

wt.% ,  Fe = Balance) its surface area 0.28 cm
2
 as working electrode (WE) (prepared using emery 

papers of different grit sizes up to 4/0 grit, polished with Al2O3 (0.5 μm particle size), platinum mesh 

as counter electrode (CE), and a saturated calomel electrode (SCE) as the reference electrode. 

Solutions were prepared from bidistilled water. The electrode potential was allowed to stabilize for 

60 min before starting the measurements. All experiments were conducted at 25 °C. The electrolyte 

solution was made from analytical reagent grad H2SO4. 

The electrodes were arranged in such a way that one-dimensional potential field existed over 

the WE surface in solution. To get an impression about the process occurred at the mild steel/acid 

interface, Tafel curves were obtained by changing the electrode potential automatically from (−750 to -

280 mVSCE) versus open circuit potential with scan rate of 5 mV/s. Measurements were performed 

with a Gamry Instrument Potentiostat/Galvanostat/ZRA. This includes a Gamry Framework system 

based on the ESA400, Gamry applications that include DC105 for dc corrosion measurements, Echem 

Analyst 5.58 Software was used for plotting, graphing and fitting data. 

 

 

 

3. COMPUTATIONAL METHOD 

Geometrical parameters of all stationary points for the investigated thiophene and its 

derivatives are optimised by employing analytic energy gradients. The generalised gradient 

approximation (GGA) within the density functional theory was conducted with the software package 

DMol
3
 in Materials Studio of Accelrys Inc [41]. All calculations were performed using the Becke–

Lee–Yang–Parr (BLYP) exchange correlation functional and the double numerical with polarization 

(DNP) basis set [42-44], since this was the best set available in DMol
3
. A Fermi smearing of 0.005 

hartree and a real space cutoff of 3.7 Å was chosen to improve the computational performance. All 

computations were performed with spin polarization. 

The phenomenon of electrochemical corrosion takes place in the liquid phase, so it is relevant 

to include the effect of solvent in the computations. Self-Consistent Reaction Field (SCRF) theory 

[45], with Tomasi‟s polarised continuum model (PCM) was used to perform the calculations in 

solution. These methods model the solvent as a continuum of uniform dielectric constant ( =78.5) and 

define the cavity where the solute is placed as a uniform series of interlocking atomic spheres. Frontier 

orbital distribution was obtained, at the same basis set level, to analyse the reactivity of inhibitor 

molecules. 

 

3.1. Artificial Neural Networks 

Neural network analysis is an artificial intelligence (AI) approach to mathematical modeling. It 

is a sophisticated model-building technique capable of modeling data may be better represented by 

non-linear functions. Corrosion phenomena is a complex , non- linear that are too complex to be 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TFN-4XK45FW-3&_mathId=mml50&_user=5413195&_cdi=5231&_pii=S0009261409013773&_rdoc=1&_ArticleListID=1187069760&_issn=00092614&_acct=C000052544&_version=1&_userid=5413195&md5=b711b3646c87d1feb18219be6a1c66fc
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TFN-4XK45FW-3&_mathId=mml50&_user=5413195&_cdi=5231&_pii=S0009261409013773&_rdoc=1&_ArticleListID=1187069760&_issn=00092614&_acct=C000052544&_version=1&_userid=5413195&md5=b711b3646c87d1feb18219be6a1c66fc
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described by analytical methods or empirical rules which make it an ideal phenomena to be studied 

using artificial neural networks. 

Neutral networks are inspired by the way the human brain works. The brain consists of billions 

of neurons, which are linked together into a complex network. A neuron communicates with another 

by sending an electrical signal along an axon, which is a long nerve fibre that connects to the second 

neuron at a synapse. Each neuron acts an information processing element because the electrical signals 

sent out by one neuron depend on the strength of the incoming signals at its synapses. 

 

3.2. The structure of a neural network 

The structure of the artificial neural network is presented in Fig. 1.  

 

 
 

Figure 1. Structure of artificial neural network 

 

The lower layer represents the input layer. The input layer is used to introduce the input 

(predictor) variables to the network. The upper layer is the output layer. The outputs of the nodes in 

this layer represent the predictions made by the network for the response variables. This network also 

contains a single hidden layer with four nodes. Each node (other than those in the input layer) takes as 

its input a transformed linear combination of the outputs from the nodes in the layer below it. This 

input is then passed through a transfer function to calculate the output of the node. The transfer 

function used by QSAR is an s-shaped sigmoid function. This function is chosen because it is smooth 

and easily differentiable, features that help the algorithm that is used to train the network [46]. 

 

3.3. Training process and topology of the neural network 

Training is the process whereby the connection weights and biases are set so as to minimize the 

prediction error for the network. For a particular set of weights and biases, each of the training cases 
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are introduced to the network and an error function is used to determine how well the calculated 

outputs match the expected output values. 

It has been found empirically that a single hidden layer is sufficient for modeling most data sets 

and it is recommended that we first try to model our data with a single hidden layer. Additional hidden 

layers allow the neural network to model more complex functions. There is a formal proof, the 

Kolmogorov theorem which states that two hidden layers are theoretically sufficient to model any 

problem, though it is possible that, for some data sets, a network with more hidden layers might be 

able to find a good model more easily [46]. 

Each connection weight and node bias is a parameter that can be adjusted during network 

training. Hence, each connection and node corresponds to one degree of freedom of the model 

represented by the neural network. As a general rule, we should aim to have at least twice as many 

observations as there are degrees of freedom. If we have too many nodes in the hidden layer(s), then 

the model will tend to overfit our data. If we have too few, then the model may not have sufficient 

power to fit our data. 

 

 

 

4. RESULTS AND DISCUSSION 

4.1. Inhibition study 

Evaluation of the inhibition efficiencies can be performed through electrochemical experiments 

which consist of the determination of current density/potential curves. Figure 2 shows the dc 

polarization curves of mild steel in 0.5 M sulfuric acid without and with thiophene and its derivatives 

in concentration of 0.01M at 25 °C. The extrapolation of the Tafel straight line allows the potential 

(Ecorr), cathodic, anodic Tafel slopes and inhibition efficiency ( % ) as a function of thiophene and its 

derivatives are given in Table 2. The inhibition efficiency ( % ) is given in equation 1 

 

corr

corr

% (1 ) 100
o

i

i
          (1) 

 

where o

corri and corri  are corrosion current densities in absence and presence of thiophene and its 

derivatives.  

From Fig. 2, it does not appear definite shift of the corrosion potential (Ecorr) which depends on 

inhibitor type. At the examined inhibitors concentration a cathodic plateau seems to be formed. 

Thiophene and its derivatives excerted inhibitive action both on anodic dissolution of metal and on the 

cathodic oxygen reduction reaction. In each case the whole curves shifted towards lower corrosion 

current density values compared to that of the blank solution. In anodic domain, it is noted in the 

presence of thiophene and its derivatives, a change in Tafel anodic coefficient compared to mild steel 

without inhibitors. This effect is attributed to the modification of the reactional process due to the 

formation of a protective film on the electrode surface rather than a simple adsorption on the active 

sites. This would result in a reduction of the current densities. In the cathodic domain, a diffusional 
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mechanism was observed characterized by a plateau which does not change when thiophene and its 

derivatives molecules are added to the corrosive medium. This suggests that thiophene and its 

derivatives do not modify the mechanism or the nature of the electrochemical reaction involved. 
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Figure 2. Cathodic and anodic polarization curves recorded for the mild steel electrode in aerated 

stagnant 0.5 M H2SO4 solutions, at a scan rate of 5 mV s
-1

 at 25
o
C1, without and with various 

thiophene and its derivatives 

 

The analysis of the results obtained in Table 2 shows that the reduction of the corrosion current 

density and consequently an increase of inhibition efficiencies depend on the structure of the studied 

derivatives. The reduction of anodic and cathodic currents by adding thiophene derivatives can be 

explained by the blocking of active sites with the formation of a protective film on the mild steel 

surface. 
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Table 2. Electrochemical polarization parameters for mild steel in absence and presence of 0.01 M of 

thiophene and ten of its derivatives in 0.5 M sulfuric acid at 25
o
C1. 

 

 icorr /µA cm
-2

 -Ecorr 

/mV 
a / mV 

dec
-1

 

c / mV 

dec
-1

 

C.R./mpy %  

0.5 M H2SO4 20.52 514.6 49.4 187.1 33.5 --- 

2-hydroxymethylthiophene 6.47 520.3 48.5 208 2.95 68.4 

2-methylthiophene 8.159 518.9 52.8 214.3 3.73 60.2 

3-methylthiophene 9.13 520.9 51.9 193.7 4.2 55.5 

thiophene 13.22 519.4 55.18 217.3 6.1 35.5 

2-chlorothiophene 8.116 520.8 53.12 209.7 3.71 60.4 

2-bromothiophene 5.439 518.3 50.4 211.3 2.48 73.5 

2-thiophenecarboxylic acid 7.771 519.3 52.12 192.2 3.55 62.1 

3-bromothiophene 6.366 520.6 49.0 192.0 2.91 68.9 

2-acetylthiophene 4.444 518.7 48.35 205.5 2.03 78.3 

2-thiophenecarboxaldehyd 6.743 523.9 53.56 211.8 3.08 67.1 

2-thiophenecarboxylic acid methyl ester 4.157 516.8 48.44 208.2 1.9 79.7 

 

Table 3. (Study Table). Descriptors for thiophene and its derivatives calculated using quantum 

chemical methods 

 
Inhibitor 

number 

�Experimental 

Inhibition 

Efficiencies 

Hammett 

Constant 

Total 

Dipole 

Moment 

(e Å) 

HOMO 

(eV) 

LUMO 

(eV) 

Energy 

gap 

(LUMO-

HOMO), 

eV 

Surface 

Area 

(Å
2
) 

Molecular 

Volume 

(Å
3
) 

Neural 

Network 

Prediction 

for 

Experimental 

Inhibition 

Efficiencies 

1 68.4 -0.200
(a)

 1.861 -8.747 -0.4148 8.3322 138.161 106.289 66.39 

2 60.2 -0.170 0.453 -8.497 -0.1543 8.3427 128.185 97.2008 62.38 

3 55.5 -0.069 0.812 -8.55 -0.167 8.3830 128.348 97.4409 58.94 

4 35.5 0.000 0.376 -8.709 -0.1924 8.5166 105.265 80.0180 43.57 

5 60.4 0.226 1.428 -8.809 -0.5235 8.2855 120.939 93.7375 59.26 

6 73.5 0.232 1.370 -8.8307 -0.5859 8.2448 125.685 98.0379 69.22 

7 62.1 0.265 4.073 -9.3557 -1.439 7.9167 145.912 111.034 78.28 

8 68.9 0.395 1.082 -0.922 -0.5507 0.3713 126.392 98.1291 68.32 

9 78.3 0.516 4.450 -9.1452 -1.2978 7.8474 154.133 118.573 76.703 

10 67.1 0.570
(a)

 4.587 -9.1906 -1.412 7.7784 132.910 101.803 69.23 

11 79.7 0.630
(a)

 3.135 -9.298 -1.3407 7.9573 166.886 128.453 79.7 

 

Many workers have attempted to establish a quantitative correlation between the electronic 

configuration, particularly the charge distribution within the molecule, and the inhibitor efficiency of 

the given organic compound. Special consideration was devoted to the electron density on the atom or 

group responsible for adsorption [47]. 

Thiophene, with pyrrole and furan, belong to heterocyclic five-membered aromatic compounds. 

In this group the position of thiophene is peculiar, since its aromatic character is much closer to 

benzene than that of the other two compounds [48]. Another reason for the choice of thiophene follows 
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from its comparatively high adsorptivity due to the presence in its molecule of the sulphur atom with 

two pairs of free electrons able to form coordinate bonds [47]. 

To establish a quantitative structure and activity relationship, QSAR , we have changed the 

electron density in defined position caused by introduction of substituents to the thiophene molecule. 

For nucleophilic substituents such as 2-CH2OH, 2-CH3, or 3- CH3, which increase the electron density 

in the aromatic ring, the Hammett constants are negative (Table 3). For electrophilic substituents such 

as 2-CO CH3, 2-CHO, or 2-COO CH3, which withdraw electrons from the thiophene ring, the 

Hammett constants are positive. The values of the Hammett constants [47] calculated by Hammett [49] 

and Jaffe [50]. Data marked (a) were calculated from the shift of the NMR spectrum for hydrogen 

atoms in positions 2, 3 and 4 in the thiophene [51]. Several structural parameters have been calculated 

and presented in Table 3. 

 

4.2. QSAR study using artificial neural network 

In this work, a neural network training set was used to predict the corrosion inhibition 

efficiencies for thiophene and ten of its derivatives used to inhibit the corrosion of mild steel in 0.5 M 

sulphuric acid solutions. 

 

Table 4. Univariate analysis of the experimental inhibition efficiencies data 

 

 
B : Experimental Inhibition 

Efficiencies 

Number of sample points 11 

Range 44.2 

Maximum 79.7 

Minimum 35.5 

Mean 64.51 

Median 67.1 

Variance 136.98 

Standard deviation 12.27 

Mean absolute deviation 8.88 

Skewness -0.898 

Kurtosis 0.251 

 

A study table presented in Table 3 contains the calculated descriptors and properties for the 

studied thiophene and its derivativess for developing quantitative structure activity relationships and 

property prediction. 

Before searching for potential QSAR, it is worth assessing the quality and distribution of data 

in the study table (Table 3). Most forms of multivariate analysis assume that the input variables have a 

normal distribution, and are a representative sample. To examine data in Table 3, a univariate analysis 

which is a technique used for generating statistics independently for the experimental inhibition 
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efficiencies. Table 4 shows accepted normal distribution which enables us to start building a 

correlation matrix. The normal distribution behavior of the studied data was confirmed by the values of 

standard deviation, mean absolute deviation, variance, skewness and kurtosis, description of these 

parameters have been reported elsewhere [52]. 

 

Table 5. Correlation matrix of the studied variables 

 

 �Experimental 

Inhibition 

Efficiencies 

Hammett 

Constant 

Total 

Dipole 

Moment (e 

Å) 

HOMO 

(eV) 

LUMO (eV) Energy gap 

(LUMO-

HOMO), eV 

Surface 

Area (Å2) 

Molecular 

Volume (Å3) 

�Experimental 

Inhibition 

Efficiencies 

1 0.5793 0.5516 0.0549 -0.5832 -0.1870 0.78214 0.81727 

Hammett Constant 0.5793 1 0.7099 0.0966 -0.8283 -0.2848 0.53425 0.56117 

Total Dipole 

Moment (e Å) 

0.5516 0.7099 1 -0.324 -0.9560 0.11902 0.69946 0.69617 

HOMO (eV) 0.0549 0.0966 -0.324 1 0.23198 -0.9759 -0.2297 -0.2021 

LUMO (eV) -0.583 -0.828 -0.956 0.2319 1 -0.0145 -0.7316 -0.7348 

Energy gap 

(LUMO-HOMO), 

eV 

-0.187 -0.2848 0.1190 -0.9759 -0.0145 1 0.07236 0.04323 

Surface Area (Å2) 0.7821 0.5342 0.6994 -0.2297 -0.7316 0.0723 1 0.99736 

Molecular Volume 

(Å3) 

0.8172 0.5612 0.6962 -0.2021 -0.7348 0.0432 0.99736 1 

 

Table 5 shows a correlation matrix which is a table of all possible pairwise correlation 

coefficients for a set of variables. It can be help to identify highly correlated pairs of variables, and 

thus identify redundancy in the data set. 

Each cell of the matrix corresponds to the correlation between two columns of study table data. 

The correlation coefficients lie between -1.0 and +1.0. A value approaching +1.0 indicates that the two 

columns are highly correlated and a value approaching -1.0 also indicates a high degree of correlation, 

except that the data changes values in opposite directions. A correlation coefficient close to 0.0 

indicates very little correlation between the two columns. The diagonal of the matrix always has the 

value 1.0. To aid in visualizing the results, the cells in the correlation matrix grid are colored according 

to the correlation value in each cell. A standard color scheme is used when the correlation matrix is 

generated: +0.9 ≤X≤+1.0 (orange), +0.7≤ X<+0.9 (yellow), -0.7<x>+0.7 (white), -0.9 <x>-0.7 

(yellow) and -1.0 ≤x≤-0.9 (orange). 

After constructing the correlation matrix in Table 5 , now it is ready to perform a regression 

analysis of the descriptor variables compared against the measured corrosion inhibition values. There 

are two separate issues to consider. First, there are many more descriptor variables than measured 
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inhibition values, so we should reduce the number of descriptors. Typically, a ratio between two and 

five measured values for every descriptor should be sought in order to prevent overfitting. Secondly, 

we are aiming to obtain a parametric representation of the regression, producing a simple equation 

which can be validated against our scientific knowledge[46]. 

The cross validation data for the neural network model operates by repeating the calculation 

several times using subset of the original data to obtain a prediction model and then comparing the 

predicted values with the actual values for the omitted data. The key measure of the predictive power 

of the model is the correlation coefficient r
2
. The closer the value is to 1.0 the better the predictive 

power. For a good model r
2
 value should be fairly close to 1.0. the correlation coefficient r

2
 for this 

study is equal to 0.958 which is reasonably high that indicates the predictive power of the model. 

Investigation of the neural network analysis in QSAR study shows that the network has too 

many degrees of freedom (usually the number of network connections between nodes) for the number 

of observations (rows of data) for which the network is being trained. In this study there is one hidden 

layer with three nodes. 
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Figure 3. Plot of predicted inhibition and residuals versus measured corrosion inhibition 

 

Applying the neural network prediction model, generates a model containing predictions 

corresponding to each output of the neural network. The neural network model adds a new column 

containing a calculation of the model to the study table (Table 3). Also, residual values of the 

predictions corresponding to each output of the neural network. 

Figure 3 shows a relation between the predicted values, residual values and the experimental 

data in Table 3. A residual can be defined as the difference between the predicted value in the 

generated model and the measured value for corrosion inhibition. To test the constructed QSAR 

model, potential outliers have been identified in Fig. 4. An outlier can be defined as a data point whose 
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residual value is not within cross validated r
2
 values, is also, high, even though the regression is 

significant according to F-test.  
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Figure 4. Outlier analysis for inhibition efficiency 

 

Fig. 4 contains two charts. One contains the residual values plotted against the corrosion 

inhibition measurements and the other displays the residual values plotted against Table 3 raw number. 

Each chart contains a dotted line that indicates the critical threshold of two standard deviations beyond 

which a value may be considered to an outlier. Inspection of Fig. 4 shows that there is no points 

appeared outside the dotted lines which make the QSAR model acceptable. 
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5. CONCLUSIONS 

In spite of the huge success that has been attributed to the use of computational chemistry in 

corrosion studies, most of the ongoing researches on the inhibitory potentials of organic inhibitors are 

restricted to laboratory work. DC polarization method used to ascertain the instantaneous inhibition 

efficiency of the thiophene derivatives. QSAR approach is still an effective method that can be used 

together with the experimental techniques to predict inhibitor candidates for corrosion process. The 

study has demonstrated that the neural network can effectively generalize correct responses that only 

broadly resemble the data in the training set. The neural network can now be put to use with the actual 

data, this involves feeding the neural network the values for Hammett constants, dipole moment, 

HOMO energy, LUMO energy, energy gap, molecular area and volume. The neural network will 

produce almost instantaneous results of corrosion inhibitor efficiency. The predictions should be 

reliable, provided the input values are within the range used in the training set. 
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