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A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel 

cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that 

of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated 

temperature range (30°-70°C). Generally,  Sn promotes ethanol oxidation by adsorption of OH species 

at considerably lower potentials compared to Pt, allowing the occurrence of a bifunctional mechanism. 

The bimetallic catalyst was physico-chemically characterized by X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS) analyses. The presence of SnO2 in the bulk and surface of the 

catalyst was observed. It appears that SnO2 can enhance the ethanol electro-oxidation activity at low 

potentials due to the supply of oxygen-containing species for the oxidative removal of CO and CH3CO 

species adsorbed on adjacent Pt active sites. 
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1. INTRODUCTION 

The main prerequisite of a liquid fuel for polymer electrolyte fuel cell applications is a high 

electrochemical reactivity at relatively low temperatures. Furthermore, the fuel should be reasonably 

cheap, non-toxic and largely available. At present, mainly methanol is actively investigated as an 

alternative to hydrogen in fuel cells [1-3]. Among other possible candidates, ethanol appears to fulfill 

many of the above requirements. Although the oxidation of ethanol to carbon dioxide requires the 

cleavage of the C-C bond, previous studies have shown interesting electrochemical reactivity at 

temperatures  ≥ 80 °C [4-9]. Lamy et al. observed that the main products in the electrochemical 
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oxidation of ethanol were CO2, acetaldehyde and acetic acid [5]. The occurrence of CH3CHO and 

CH3COOH causes low electrical energy yield and environmental concerns. Therefore, in order to 

obtain a complete oxidation of ethanol to carbon dioxide, it is important to develop highly selective 

catalysts and/or to increase the operation temperature to enhance the electrochemical reaction rate at 

the anode side [4,6,10-14]. Pt has a higher activity in the electrocatalytic oxidation of organic 

molecules, but this material suffers of a progressive loss of catalytic activity due to a strong adsorption 

of intermediate species on the surface of the electrode [15]. In order to improve the electrocatalytic 

activity of platinum for ethanol oxidation, platinum was often modified by adding a second metal like 

Ru [16-19], Ni [20], Mo [21], Sn [22-26], thus promoting the electrocatalytic activity of pure platinum. 

Tsiakaras showed that Sn, Ru, Pd and W can enhance ethanol electro-oxidation activity over Pt in the 

following order: PtSn/C>PtRu/C>PtW/C≥PtPd/C>Pt/C. Thus, Sn plays an important role in the 

ethanol electrooxidation and consequently improves DEFC performance [27]. The PtSn/C 

electrocatalyst performance also depends greatly on preparation procedures and Pt:Sn atomic ratios 

[28-35]. 

Concerning with the oxidation state of Sn that is preferable for ethanol oxidation, there is a 

large debate in the literature. However, most considerations are based on bulk analysis of the catalysts 

and, if one excludes cyclic voltammetries, in general, limited efforts have been devoted on the study of 

the outermost layers by surface sensitive analytical tools.  The presence of Sn oxides as well as 

metallic tin on the catalyst surface can supply oxygen-containing species for the oxidative removal of 

CO and CH3CO species adsorbed on adjacent Pt active sites, enhancing in this way the ethanol electro-

oxidation activity at low potentials. Moreover, the electronic effect ascribed to a second metal on the 

neighbouring Pt atoms may modify the adsorption characteristic of the reacting species on the surface 

of bimetallic catalysts [36].  

The development of direct ethanol fuel cell depends on the progress in the electrocatalytic 

materials for ethanol electrooxidation to a great extent. Ethanol adsorption, dissociation and oxidation 

are mainly affected by the composition and structure of catalysts and the catalyst preparation 

procedure plays a crucial role in electrocatalysts composition and structure, especially in the 

interaction between different components [37-40].  

In this study, a Pt–Sn/C catalyst, with a nominal Pt:Sn ratio of 3:1, was prepared by the formic 

acid method (FAM). It was physico-chemically characterized both in terms of bulk and surface 

properties, and investigated in a direct ethanol fuel cell operating in the range 30-70°C for a potential 

application in portable electronic devices. No many attempts have been made to assess DEFC 

performance in the low temperature range useful for portable applications as well as in the presence of 

air feed at the cathode which is appropriate for practical uses. 

 

 

2. EXPERIMENTAL PART  

2.1 Catalyst preparation 

The Pt–Sn/C electrocatalyst was prepared by the formic acid method [29], consisting in the  

addition of a formic acid solution on a high surface area carbon (Vulcan XC-72, Cabot, 240 m
2
 g

−1
). 
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An appropriate amount of the carbon powder substrate was suspended in 0.5M formic acid solution 

and the suspension was heated to 80 °C. Chloroplatinic acid (H2PtCl6 
.
 6H2O, Johnson Matthey) and tin 

chloride (SnCl2
.
2H2O, MERCK) solutions were slowly added to the carbon suspension. The slurry was 

maintained at 80 °C for 5h. The suspension was left to cool at room temperature, and the solid was 

filtered, washed thoroughly with water, and finally dried in an oven at 90 °C for 2 hours. The catalysts 

consisted of 20% (w/w) metal (Pt + Sn) on carbon with a nominal Pt:Sn atomic ratio of 3:1.  

 

2.2 Structural and chemical characterization 

The crystalline structure of the supported catalyst was determined by using the powder X-ray 

diffraction (XRD) technique. An XRD pattern of the electrocatalyst was obtained by a universal 

diffractometer Rigaku Model Ultima IV" (Rigaku Corp., Japan) operating with Cu kα radiation (λ= 

0.15406nm) generated at 40 kV and 20 mA. Scans were carried out at 2° min
−1

 for 2θ values between 

15 and 100 degrees. X-ray fluorescence (XRF) analysis of the catalyst was carried out to confirm the 

Pt/Sn atomic ratio for the electrocatalyst and to verify the absence of impurities. The XRF analysis was 

made by a Bruker AXS S4 Explorer spectrometer operating at a power of 1 kW and equipped with a 

Rh X-ray source, a LiF 220 crystal analyzer and a 0.12 degree divergence collimator.  

 

2.3 Surface characterization 

X-ray photoelectron spectroscopy (XPS) measurements were performed by using a Physical 

Electronics (PHI) 5800-01 spectrometer. A monochromatic AlKa X-ray source was used at a power of 

350 W. Spectra were obtained with pass energies of 58.7 eV for elemental analysis (composition) and 

11.75 eV for the determination of the oxidation states. The pressure in the analysis chamber of the 

spectrometer was 1·10
-9

 Torr during the measurements. The Ag 3d5/2 peak of an Ag foil was taken, 

after argon sputtering, for checking the calibration of the binding energy (BE) scale. The quantitative 

evaluation of each peak was obtained by dividing the integrated peak area by atomic sensitivity 

factors, which were calculated from the ionization cross-sections, the mean free electron escape depth 

and the measured transmission functions of the spectrometer. XPS data have been interpreted by using 

the on-line library of oxidation states implemented in the PHI MULTIPAK 6.1 software and the PHI 

Handbook of X-ray photoelectron spectroscopy [41]. 

 

2.4 Eletrochemical studies 

All experiments were conducted with a Fuel Cell Technologies, Inc. test station. In order to test 

the electrochemical behaviour in a single DEFC fed with ethanol and oxygen or air, the electrodes 

were composed of diffusion and catalytic layers [42].  

The electrocatalyst was applied on the diffusion layer (E-TEK), in the form of an homogeneous 

dispersion of Pt–Sn/C, 33wt.% Nafion solution (5 wt. %, Aldrich) and isopropanol (Merck). A 30 % 

Pt/C (E-TEK) was used at the cathode. The electrodes contained 2 mg Pt cm
-2

 at the anode and 2 mg Pt 
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cm
-2

 at the cathode. These were hot pressed onto a Nafion 117 membrane and installed into a single 

cell test fixture [43]. A commercial 20% Pt/C E-TEK catalyst was also investigated at the anode for 

comparison. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1 Structural analysis 

Table 1 reports the bulk composition of the catalyst as determined by XRF analysis and the 

nominal one calculated from the amount of precursors used in the preparation of the catalyst. 

Structural characteristics of the catalyst are also reported in Table 1 and compared to the commercial 

catalyst. 

 

Table 1. Composition and physico-chemical characteristics of the in-house prepared Pt3Sn/C catalyst 

and a commercial Pt/C (E-TEK) catalyst.  

 

Nominal 

Composition 

Bulk  

Composition 

(XRF)  

Lattice 

Parameter  

nm  

Crystallite 

Size (XRD)  

nm 

Degree of 

Alloying  

% 

20% Pt/C (E-TEK)  - 0.3928 3.0 - 

20%Pt3Sn1/C (FAM)  Pt73Sn27/C  0.3943 3.6 7.0 
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Figure 1. X-ray patterns of the in-house Pt3Sn/C and Pt/C (E-TEK) catalysts. 
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A reasonable agreement between the nominal composition and the effective bulk composition 

determined by XRF is observed. The presence of other species (impurities) was not detected. 

Figure 1 shows the X-ray diffraction pattern for the catalyst Pt73Sn27/C  prepared with formic 

acid compared to the commercial 20% Pt/C. The XRD patterns show the characteristic peaks of the 

face-centered cubic (fcc) crystalline structure associated to platinum. The metal crystallite size, 

calculated from the (220) reflection of Pt according to Scherrer formula, and lattice parameters are 

listed in Table 1. 

The lattice parameter of the Pt3Sn/C catalyst prepared by reduction with formic acid was 

slightly larger than that of the commercial Pt/C catalyst, i.e. 0.3943 nm for Pt3Sn/C compared to 

0.3928 nm for Pt/C, as revealed by the shift of Pt (220) peak to lower Bragg angles. The larger lattice 

parameter indicates that there is an incorporation of Sn atoms into the lattice of Pt. A clear evidence of 

SnO2 in the X-ray pattern of Pt3Sn/C is observed in Figure 1. Probably, this is the cause of the reduced 

degree of alloying (see Table 1). 

 

3.2 Surface  analysis  

Figure 2 shows the XPS survey analysis of the Pt3Sn/C catalyst. The atomic Pt/Sn ratio on the 

surface shows a surface composition slightly different from the nominal composition. In fact, the 

relative tin content on the surface is larger than in the bulk indicating a clear enrichment of Sn in the 

outermost layers. 
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Figure 2. XPS survey analysis of the Pt3Sn/C catalyst. 
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This could be explained in terms of the different kinetics of the reduction process of the 

platinum and tin. As previously mentioned, platinum is more easily reduced than tin, leading to a Pt-

enriched core, and hence, a Sn-enriched shell particle.  

XPS spectrum of the Pt3Sn/C catalyst (Figure 3) shows that Pt is mainly metallic in the sample 

(B.E. 71.4 eV for Pt 4f7/2 and 74.7 eV for Pt 4f5/2), whereas tin is mainly oxidized on the surface (B.E. 

487.6 eV for Sn 3d5/2 and 495.9 eV for 3d3/2) denoting the prevailing occurrence of Sn
4+

 in the 

outermost layers of the catalyst nanoparticles. However, a proper fraction of metallic tin is also 

observed (485.5 eV for Sn 3d5/2 and 494.3 eV for 3d3/2).  
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Figure 3. XPS spectrum of Pt 4f and Sn 3d lines for the Pt3Sn/C catalyst. 
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3.4 Electrochemical Measurements 

3.4.1. Polarization curves 

The results obtained in the direct ethanol fuel cell in terms of polarization and power density 

curves for Pt3Sn/C-based MEA operating in a temperature range from 30°C to 70°C under oxygen and 

air feed are shown in Figures 4 and 5, respectively.  
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Figure 4. Polarization (a) and power density (b) curves for the Pt3Sn/C catalyst at different 

temperatures under oxygen feed.  

 

As expected, a higher performance was recorded at higher temperatures due to the increase of 

reaction kinetics for ethanol oxidation with temperature. The power density increased from 5 mW cm
-2
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up to 13 mW cm
-2

 passing from 30°C to 70°C. The modest performance is attributable mainly to the 

slow ethanol oxidation reaction rate at these temperatures and a possible poisoning effect of the 

cathode due to the ethanol cross-over. It is pointed out that a moderate Pt content (2 mg cm
-2

) was used 

in both electrodes in the present investigation in order to evaluate the catalysts under viable conditions. 

Moreover, in order to assess the catalysts under practical conditions, same polarization measurements 

were carried out feeding air at the cathode (Figure 5). Under these conditions, a decrease of 

performance of about 30-35% was recorded compared to oxygen feed; whereas, the open circuit 

voltage (OCV) decreased of about 100 mV passing from oxygen to air. The latter effect appears to be 

related to the increase of cathode poisoning by the ethanol cross-over in the presence of air compared 

to O2 feed. Pure Oxygen allows a faster oxidation of adsorbed ethanolic residues. 
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Figure 5. Polarization (a) and power density (b) curves for the Pt3Sn/C catalyst at different 

temperatures under air feed.  
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To confirm the beneficial effect of Sn in enhancing the catalytic activity of Pt towards ethanol 

electro-oxidation in particular at low temperatures, a 20% Pt/C E-TEK was investigated at the anode in 

a direct ethanol fuel cell under the same conditions of the previous experiments using 20% Pt3Sn/C. A 

comparison at 30°C between Pt and PtSn anodic-catalyst-based cells is reported in Figure 6. When 

Pt3Sn/C was used as the anode catalyst, the single cell at 30°C showed a higher performance, in 

particular in the activation region. The OCV was larger for PtSn-based cell, whereas at higher current 

density, due to a lower cell resistance,  the Pt-based cell showed similar characteristics. 
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Figure 6.  Comparison of polarization and power density curves obtained with Pt3Sn/C and Pt/C (E-

TEK) anode catalysts at 30°C and oxygen feed.   

 

It was reported that the addition of transition metals, such as Sn, to Pt based catalysts promotes 

ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, 

allowing the occurrence of a bifunctional mechanism [5,16,17]. Moreover, the electronic effect caused 

by a second metal on the neighbouring Pt atoms may lead to a weakening of adsorbed species in the 

bimetallic catalyst [36].  Delime et al. [28] prepared bimetallic non-alloyed Pt–Sn catalysts and 

observed that the presence of tin leads to an increase of current density for the electro-oxidation of 

ethanol, with an optimum Sn content of 20 at%. Lamy et al. [8] studied in half-cell experiments the 

electro-oxidation of ethanol on Pt–Sn catalysts at room temperature. A large enhancement of 

electrocatalytic activity was observed for non-alloyed Pt–Sn with 10 at.% Sn. However, limited 

attention was devoted to the investigation of PtSn/C catalysts in a fuel cell under practical conditions 

for portable applications, i.e. low temperature and low Pt loading (also in conjunction with the use of 

air as the oxidant). At 70°C the trend in the electrochemical behaviour of Pt- and PtSn-based cells is 

similar to that reported at 30°C (Figure 7). At high current density the Pt/C-based cell performs 
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comparally to the PtSn/C catalyst-based DEFC probably due to the fact that the presence of SnO2 in 

the bimetallic catalyst produces a higher cell resistance.  
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Figure 7. Comparison of polarization and power density curves obtained with Pt3Sn/C and Pt/C (E-

TEK) anode catalysts at 70°C and oxygen feed.   

 

 

 

5. CONCLUSIONS 

A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct 

ethanol fuel cell at low temperatures. Such a composition was selected to provide an optimum balance 

between the amount of tin and platinum present on the surface, and to promote electronic and 

structural effects. The amount of tin oxides should be sufficient to provide –OH groups without 

decreasing excessively the conductivity of the catalytic layer due to the occurrence of SnO2. This 

bimetallic catalyst was compared to a commercial 20% Pt/C catalyst showing better results in the 

investigated temperature range. However, the performance of the PtSn-based cell appears at the 

moment not sufficiently high for a practical application of direct ethanol fuel cells in portable 

electronic devices. 
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