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In2O3/C core-shell nanospheres have been synthesized via template-free hydrothermal approach at 200 

°C first, then treated in glucose aqueous solution and annealed at 500 °C. The products were around 

100 nm in dimension with carbon shell about 10 nm in thickness. Electrochemical tests demonstrated 

that the In2O3/C core-shell nanospheres had an initial discharge capacity as high as 1607 mAh g
-1

 and 

the discharge capacity of 569 mAh g
-1

 after 50 cycles at 0.1 C. Moreover, the products showed the 

discharge capacities of 578, 361, 279, 173 mAh g
-1

 at the rates of 0.1, 0.2, 0.5 and 1 C, respectively.  
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1. INTRODUCTION 

The core-shell nanostructure is now attracting more and more investigation interest for its wide 

potential applications in fuel cell[1], lithium-ion battery[2], catalytic synthesis[3], owing to its 

combination of the functions of both the core and the shell[4]. A series of core-shell nanostructures, 

including double-shelled coaxial nanocables[5], nanoparticles[6], nanowires[7], nanotubes[8] and 

hollow spheres[9] have been synthesized. Among these core-shell structures, carbon coating structures 

provide a useful strategy to improve the electrochemical performance of active materials with high 

electronic conductivity, good lithium permeability and flexible accommodation of volume change[10]. 

Indium oxide (In2O3), an important n-type transparent semiconductor with wide band gap (3.5-

3.75 eV)[11], high optical transparency[12], high electrical conductivity[13], and excellent 

luminescence[14] has received enormous interest for its extensive applications in optoelectronic 
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devices[15], transistors[16], solar cells[17], gas sensors[18] and electrode materials in lithium ion 

battery[19-21]. 

Since indium oxide nanobelts were reported in 2001[22], various kinds of In2O3 nanostructures, 

such as quasi-monodisperse In2O3 nanoparticles[23], nanowires[24], nanotubes[25], nanocubes[26], 

In2O3 octahedrons[27] and core-shell In2O3 nanoparticles[6] have been prepared via various methods. 

The core-shell In2O3 nanocomposites have been usually synthesized by solid-state reaction[28], 

physical vapor deposition[7], radio frequency sputtering technique[5]. 

Considering the large theoretical specific capacity of In2O3[21], electrochemical properties on 

In2O3 have been reported successively. For instance, nanostructured In2O3 thin films prepared by 

pulsed laser deposition method exhibited a large capacity of 1083 mAh g
-1

 in the first discharge, 

however, the capacity dropped to 504 mAh g
-1

 after 30 cycles[19]. By cathodic electrochemical 

synthesis in aqueous solution, the obtained In2O3 films, which were formed by agglomerate 

nanoparticles, delivered a discharge capacity of 1400 mAh g
-1

 in the first cycle and maintained a stable 

and reversible capacity of 195 mAh g
-1

 after 10 cycles between 0.2 and 1.2 V[20]. 

Herein, to synthesize the In2O3/C core-shell nanospheres, we use a template-free hydrothermal 

approach in the polyethylene glycol (PEG) 400 system at 200 °C for 24 h first, then treated in glucose 

aqueous solution and annealed at 500 °C for 3 h. Electrochemical performance of In2O3/C core-shell 

nanospheres showed the discharge capacities of 1607 mAh g
-1

 in the first cycle and 569 mAh g
-1

 in the 

fiftieth cycle, which exhibited improved cycling behavior performance and an obvious enhancement in 

discharge capacity compared with the electrochemical properties of In2O3 ever reported[19-21]. 

 

2.  EXPERIMENTAL 

2.1 Synthesis. 

All the reagents in analytic grade were purchased from Shanghai Chemical Reagents Co. and 

were used as-received without further purification. In a typical experimental synthesis, 1 mmol of 

In(NO3)3∙4.5H2O and 0.5 g of CO(NH2)2 were dissolved in 40 mL of PEG 400 under stirring. Then, 1 

mL of distilled H2O, 1.5 mL of NH3·H2O (25 wt%), and 4.5 mL of concentrated HNO3 were added to 

the above solution. The mixture was stirred until it became homogeneous and then was sealed in a 

Teflon-lined stainless steel autoclave (60 mL capacity). The autoclave was maintained in an oven at 

200 °C for 24 h. The raw products were washed with distilled H2O and anhydrous ethanol for several 

times to remove ions and possible remnants, and finally dried in a vacuum chamber at 60 °C for 6 h. 

The brown solid precursors were obtained. Then treated in glucose aqueous solution, dried in the 

vacuum chamber at 60 °C for 12 h, annealed at 500 °C for 3 h in argon atmosphere, the products were 

obtained. 

 

2.2 Characterization.  

The products were characterized by powder X-ray diffraction (XRD) performed on a Philips 

X’Pert diffractmeter with Cu Kα radiation (λ = 1.54178 Ǻ). Scanning electron microscopy (SEM) 

images were taken on a JEOL JSM-6700F scanning electron microscope. Transmission electron 
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microscopy (TEM) images and high-resolution TEM (HRTEM) images were obtained on the JEOL-

2010 transmission electron microscope operating at 200 kV. Raman spectrum was performed at room 

temperature with a LABRAM-HR laser spectrometer with an argon-ion laser at an excitation 

wavelength of 514.5 nm. The samples used for SEM, TEM and HRTEM characterization were 

dispersed in absolute ethanol and were slightly ultrasonicated before observation. The charge–

discharge measurements were conducted  on  a Land CT 2001A automatic battery tester (Wuhan, 

China). 

 

2.3 Electrochemical measurements. 

The electrochemical performance was tested by using coin-type cells (CR2016) at room 

temperature. The working electrodes were made by mixing the products, acetylene black and 

polyvinylidene fluoride (PVDF) in N-methylpyrrolidone (NMP) at a weight ratio of 8:1:1. The 

resulting paste was uniformly coated onto a Cu foil and dried in the vacuum chamber at 100 °C for 10 

h, before being cut into disks with a diameter of 8 mm. The coin-type cells were assembled in an glove 

box under argon atmosphere with the prepared disks as working electrodes, lithium metal as the 

counter electrodes, microporous membrane (Celgard 2300) as separators and1M LiPF6 mixed in a 

solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) (1:1) in volume as electrolyte. The 

charge–discharge measurements were conducted on a Land CT 2001A automatic battery tester 

(Wuhan, China). 

 

 

 

3. RESULTS AND DISCUSSION 

3.1  Phase  of the In2O3/C core-shell nanospheres.  

 

                                   Figure 1. (a) XRD pattern (b) Raman spectrum of the products 

 

Figure 1a shows the XRD pattern of the products. All the diffraction peaks can be also indexed 

as cubic In2O3 ( a0 =10.1170 Ǻ, space group: Ia3(206), JCPDS No. 71-2194). Raman spectrum was 

used to examine the shell composition of the obtained nanospheres. The Raman spectrum of the 
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products (Figure 1b) displays two strong peaks at 1353 and 1583 cm
-1

, which can be assigned to the 

disordered amorphous carbon (D band) and graphic carbon (G band), respectively[29]. The ID/IG 

value of  the sample is 0.89, indicating that the outer carbon shells of the obtained products possessed a 

mass of disorder and defects, according to a previous report[30]. 

 

3.2 Morphology of the In2O3/C core-shell nanospheres. 

Figure 2a provides a SEM overview image. It is clear that the products are nanospheres. Figure 

2b is the TEM image of the products, in which the dark/light contrast indicates the presence of the 

structure of core-shell nanospheres. The nanospheres are around 100 nm in overall dimension and the 

shell thicknesses are around 10 nm. It is also found that the carbon-framework connects the core-shell 

nanospheres together. Figure 2c is a high-magnification TEM image of the products, which presents 

that the cores of the products are consisted of many agglomerate nanoparticles. Figure 2d shows a 

HRTEM image of the adjacent regions between the core and the shell. The lattice fringe spacing of the 

core is 0.295 nm, corresponding to the (222) plane of cubic In2O3 (JCPDS Card File No. 71-2194). 

 

 

 

Figure 2. (a)SEM (b)TEM image and (c) high-magnification TEM image and (d) HRTEM image of 

the products. 

 

3.3  Electrochemical performance of the In2O3/C core-shell nanospheres.  

To investigate electrochemical performance of the In2O3/C core-shell nanospheres, the 

measurements of discharge capacity versus cycle number were carried out between 0.00V and 3.00V 

at the rate of 0.1 C. In the curve of Figure 3, it can be observed that the first discharge capacity of the 

In2O3/C core-shell nanospheres is 1607 mAh g
-1

, which corresponds to 16.7 Li per In2O3[19,21]. The 

second reversible capacity is found to be 1375 mAh g
-1

, corresponding to 14.3 Li per In2O3. The 
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capacity fade of the first cycle is about 14.4% However, the capacity remain stable at about 575 mAh 

g
-1 

after 20 cycles. After 50 cycles, the discharge capacity is still holding at 569 mAh g
-1

, which 

indicates good coulombic efficiency and high specific capacities. It should be noticed that these values 

are higher than the capacities in the previous reports[19-21]. In the Figure 4, the 10
th

, 20
th

, 30
th

, 40
th

, 

50
th

 discharge/charge curves of the In2O3/C core-shell nanospheres at 0.1C in the voltage of 0.00-

3.00V present the charge-discharge potential plateaus which agree well with the previous report[19]. It 

can be also found that the discharge potential plateaus remain stable after 20 cycles, which corresponds 

to the results in Figure 3.  

 

 

 
Figure 3. Profiles of the discharge capacity vs cycle numbers of the In2O3/C core-shell nanospheres. 

 

 
 

Figure 4. The charge-discharge curves of the In2O3/C core-shell nanospheres at the 10
th

, 20
th

, 30
th

, 

40
th

, 50
th

 at 0.1 C 
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Figure 5. Discharge capacity curve vs cycle number of the In2O3/C core-shell nanospheres at 0.1, 

0.2,0.5,1C. 

 

In Figure 5, the cycling performance of the In2O3/C core-shell nanospheres were measured at 

different rates from 0.1 C to 1 C in an ascending order, for 50 cycles each. The discharge capacities 

maintain at around 578, 361, 279, 173 mAh g
-1

 at the rates of 0.1, 0.2, 0.5 and 1 C, respectively.  

It can be found that both of the cycling behavior and discharge capacity have been greatly improved 

compared to the previous reports[19-21], which may be ascribed to the special core-shell nanostructure. 

First, the core-shell nanostructure provides enough contact areas for the electrode and electrolyte. 

Moreover, the carbon framework can buffer the volume change brought from the nanosized active 

materials on electrode and reduce the structure collapse of the active materials inside. 

 

4. CONCLUSIONS 

 

In summary, the In2O3/C core-shell nanospheres were synthesized via one-step template-free 

hydrothermal approach at 200 °C, then further treated in glucose aqueous solution and annealed at 

500 °C. The obtained In2O3/C core-shell nanospheres are around 100 nm in size with carbon shells of 

10 nm in thickness. Electrochemical performance of In2O3/C core-shell nanospheres exhibited 

improved cycling behavior performance and enhanced discharge capacities compared with the 

electrochemical properties of In2O3 ever reported.
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