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Additive differential double pulse voltammetry (ADDPV) is applied to the study of reversible 

multistep electron transfers at microelectrodes of different geometries, including discs, (hemi)spheres, 

bands and cylinders. Analytical expressions are deduced for arbitrary numbers of electrons transferred 

and for any difference between the formal potentials of the different redox couples. ADDPV curves 

show two or more peaks and one or more crossing potentials depending on the number of steps, the 

difference between the formal potentials and the pulse amplitude employed. The variation of the 

voltammograms with the electrode size and shape, the pulse amplitude and the difference between 

formal potentials is described. The optimal extraction of the values of the formal potentials from the 

ADDPV signal is also described. In this context, the use of the crossing potentials is particularly 

valuable since they can be measured with better accuracy than peak parameters and they are 

independent of experimental variables like the electrode geometry and size.  

 

 

Keywords: Multistep electron transfer; Additive differential double pulse voltammetry; Disc 

microelectrodes; Band microelectrodes; Cylindrical microelectrodes 

 

1. INTRODUCTION 

The electrochemistry of numerous species includes successive electron transfer steps (see 

scheme (1)). This is the case for many organic and organometallic compounds [1-4], biomolecules 

(nucleic acids, dopamine, ascorbic acid, etc.) [5-7] as well as nanoparticles [8]. The electrochemical 

response depends on the properties of the different oxidation states in solution and hence on the 

interactions existing between the different redox centers and with the surrounding medium [9-13]. 

Unfortunately, in many cases the analysis of the voltammograms is not straightforward due to the 
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overlapping of signals corresponding to different steps. Thus, the development of theoretical and 

practical tools to facilitate the study of these redox systems has received a lot of attention [14-24].  

In previous works we contributed to the above development by deriving simple, analytical 

expressions for the study of multistep electron transfer processes via cyclic voltammetry (CV), square 

wave voltammetry (SWV) and other differential techniques on disc and (hemi)spherical 

microelectrodes [25-27]. The results obtained showed the convenience of using differential techniques 

(like SWV and differential staircase voltammetry) since the response is always peak-shaped with better 

definition and symmetry than cyclic voltammograms, especially when very small electrodes are 

employed.  

In the present paper we go further by considering the application of additive differential double 

pulse voltammetry (ADDPV) [28] to the study of reversible multistep electrode reactions, regardless of 

the number of steps and the differences between the formal potentials. In ADDPV two differential 

double pulse voltammetry (DDPV) experiments are performed with the same absolute value of the 

pulse amplitude ( E ) but opposite signs as shown in Figure 1.A. The ADDPV signal (see Figure 1.B) 

results from adding the two differential voltammograms recorded. Depending on the number of steps 

and the difference between the formal potentials, ADDPV voltammograms can show two or more 

peaks and one or more crossing points corresponding to the intersection of the current with the 

potential axis. This offers a very valuable procedure for the determination of the formal potentials 

since, besides its simplicity, the crossing potentials can often be measured experimentally with better 

precision than the peak potentials and widths in other differential techniques. Moreover, their value is 

independent of the electrode geometry and it is not affected by uncertainties in experimental variables 

such as the electrode size, the concentration of electroactive species and the diffusion coefficient. As a 

differential pulse method the ADDPV technique also leads to a significant reduction of the effects due 

to charging and background currents. Therefore, the voltammograms obtained are well-defined which 

is very convenient for the quantitative analysis of the system. 

Besides the two most usual electrode geometries (microdisc and microhemispheres), the theory 

presented here is also valid for cylinder and band electrodes of any size. The results are applied to the 

EE mechanism, analyzing the influences of the difference between formal potentials, the electrode size 

and geometry, and the pulse amplitude on the ADDPV voltammograms. Procedures for the extraction 

of the formal potentials are given for the different situations that can be found depending on the 

magnitude of the difference between the formal potentials. 

 

 

2. THEORY 

Let us consider the reduction of a molecule present in solution with 1n  possible oxidation 

states 1O , 2O ,… n+1O  (i.e., a multi-E mechanism): 
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where  0 1 2'
i i , ,... nE   are the formal potentials of each electron transfer. Comproportionation 

reactions have been demonstrated not to affect the voltammetric response under the conditions 

considered in this work, that is, when diffusion is the only mass transport mechanism, the value of the 

diffusion coefficient is the same for all the species Oi, the electron transfers are reversible and the 

absence of any other chemical reaction [16,19,29]. 

In the following, we will study the electrochemical response of a process following the scheme 

(1) when applying two consecutive potential pulses 1E  and 2E  with lengths 1t  and 2t , respectively, to 

an electrode with the characteristic dimension 0r . The most commonly used electrode geometries will 

be considered, that is, disc ( 0 dr r ), spherical ( 0 sr r ), cylinder ( 0 cr r ) and band ( 0r w ) electrodes. 

By following the procedure indicated in references [25-27], the following expressions corresponding to 

the currents of the first and second potential steps, (1)I  and (2)I  respectively, are obtained: 
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where the time function  0tg ,r  is dependent on the electrode size and shape (see Table 1): 

 

Table 1. Expressions for the function  0g t,r  for the main electrode geometries. 0r  is the 

characteristic dimension of the electrode. 
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Note that the function 0( )g t,r  of spherical electrodes is derived from the exact analytical 

solution [30] whereas in the case of other geometries it is obtained from the semi-empirical Shoup and 

Szabo equations (disc and band electrodes) [31,32] and from the Aoki equation for the cylindrical ones 

[33]. The accuracy of the semi-empirical expressions has been tested in previous papers [34] by 

comparison with numerical results, giving rise to errors below 0.5% in all the cases.  

With respect to the potential function  
iO mEf  ( 1,2m  ), this is independent of the electrode 

geometry: 
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For the particular simpler case of a two steps reduction (EE mechanism), the above equations 

can be written in the following simpler way: 
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2.1. Additive double differential pulse technique (ADDPV) 
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Figure 1. Additive Differential Pulse Voltammetry: (A) Potential waveform, (B) Signal. 
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As can be seen in Figure 1.A, in additive double differential pulse technique (ADDPV) two 

DDPV experiments are performed with the same absolute value of the pulse height ( E ) in normal 

mode ( E 0  ) and in reverse mode ( E 0  ). The resulting DDPV curves are summed such that the 

ADDPV signal is given by: 

 

2 1 2 1 1 12ADDPV normal reverseI I I I ( E E ) I ( E E ) I ( E )           (13) 

 

The typical morphology of ADDPV curves for a one electron transfer (E mechanism) is shown 

in Figure 1.B, which can be easily characterized by the magnitude of the peaks (IM, Im) and by the 

value of the crossing potential ( cE ). 

From the solution for currents (1)I  and (2)I  given by equations (2)-(3), the additive response 

given by Equation (13) takes the following dimensionless form: 
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and D being the diffusion coefficient of all the species. 

For any length of the potential pulses ( 1t , 2t ), the response given in Equation (14) corresponds 

to the normal pulse mode of this technique (Additive Double Differential Normal Pulse Voltammetry, 

ADDNPV). When the second pulse is much shorter than the first one, 2 1t t  (with  1 2 50t / t  ), the 

last term in Equation (14) can be neglected and the response can be written as: 
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Under these conditions the technique is known as ADDPV.  

For the case of the EE mechanism, Eq. (16) with 2n  becomes into (see equations (4)-(12)): 
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with 2,n  and 2,r  given by equation (10) with 2 1E E E    and 2 1E E E   , respectively. 

Thus, the ADDPV voltammogram has a symmetry centre for any value of the difference between the 
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formal potentials, 0 0' 0'

2 1E E E   , which corresponds to null current and a potential value given by (see 

below and references [28,35]): 
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Figure 2. Influence of 0E  on the dimensionless ADDPV curves ( 1 2 100t / t  ) for a reversible EE 

mechanism (Eq. (17)) at a disc electrode of radius 50dr  μm. E =50 mV, 2t =10 ms, 

510D   cm
2
 s

-1
, 0

1 0'E   V, T=298 K. The values of the difference between the formal 

potentials of both electrochemical steps are shown on the curves. 
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In this section the theoretical results for the EE mechanism in ADDPV will be analyzed. Note, 

however, that the theory presented in section 2 is general and it can be applied to more complicated 

stepwise processes involving an arbitrary number of electron transfers. The temperature considered for 

all the calculations is 298.15 K. 

Figure 2 shows the dimensionless theoretical ADDPV curves for a reversible EE mechanism 

(Eq. (17)) at a disc electrode of radius 50dr  μm, with a pulse amplitude E =50 mV and for 

different values of the difference between the formal potentials of both electrochemical steps: 
0 0' 0'

2 1E E E   . In all cases, ADDPV curves has a centre of symmetry at the crossing potential, ccE , 

which coincides with the average value of the formal potentials: 
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1 2
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E E
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So, the determination of this point assists the accurate extraction of the formal potentials. 

Besides being easier to measure than the potential or width of a peak, the ccE  value is independent of 

the pulse amplitude, the electrode size and shape, and the difference between the formal potentials 

( 0E ), such that this diagnosis criterion is very general.  

For the 0E  values considered in Figure 2.A, ADDPV curves show two peaks (a maximum 

and a minimum) of the same height that increases with 0E  until reaching a maximum value for 
0 200E   mV corresponding to a simple E process of two electrons (see [28,35]). The ccE  value, and 

so the position of the wave, moves continuously towards more positive potentials as 0E  increases. 

For the case 0 35 6 mVE .  , corresponding to “non-interacting centres” [30], the shape of the 

ADDPV curve is the same as that of single-centre molecules although the peak current is double, as 

occurs in any other voltammetric technique [25-27,30].  

For more negative 0E  values ( 0 100 mV  E  in the conditions considered in Figure 2.B) 

the ADDPV voltammogram splits into two as the stability of the intermediate species O2 increases. As 

a result, four peaks (two maxima and two minima) and three crossing potentials ( 1cE , ccE  and 2cE ) 

can be identified.  Expressions for the values of 1cE , ccE  and 2cE  are obtained from Eq. (17) by 

finding the roots of the equation for the ADDPV current: 
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Unlike the ccE  value, the extreme crossing potentials 
c1E  and 

c2E  do depend on the difference 

between the formal potentials (through K) and the pulse amplitude employed (through J ) in such a 

way that they move away when K decreases. The influence of the pulse amplitude will be discussed 

below (Figure 3).  

E
1
-E

0'
 / V

-0.4-0.20.00.2

I A
D

D
P

V
/I

d
(t

2
)

-1.0

-0.5

0.0

0.5

1.0

1  
 

Figure 3. Influence of the pulse amplitude E  on the dimensionless ADDPV curves  for a reversible 

EE mechanism (Eq. (17)) at a disc electrode of radius 10dr   μm. The values of E  (in mV) 

are: 25 (solid line); 50 (dashed line); 75 (dashed dotted line); 100 (dotted line). 0E =-100 mV. 

Other conditions as in Figure 2. 

 

When the ADDPV curve shows three crossing points, the values of the formal potentials can be 

easily and accurately extracted from the analysis of the 1cE , ccE  and 2cE  values. For very negative 

values of 0E  the determination is immediate since two well resolved waves are obtained with the 

characteristics of the ADDPV voltammograms of one-electron reversible processes. Thus, the extreme 

potentials coincide with the corresponding formal potentials:   0'

c1 1E K 0 E   and   0'

c2 2E K 0 E  . 

The splitting of the ADDPV signal (i.e., the number of real roots of Eq. (17)) depends on the 

value of the pulse amplitude (see Eq. (20)). In Figure 3 the influence of E  on the ADDPV curves is 

plotted for the EE mechanism with 0E =-100 mV at a disc microelectrode of radius 10dr   μm. For a 

given 0E  value, the separation of the peaks is promoted by the use of small values of the pulse 
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amplitude. Thus, only two peaks are observed in Figure 3 for large E  values, whereas four peaks 

and three crossing potentials can be obtained by decreasing E . The use of small E  values has 

other beneficial effects like the reduction of charging current effects and the obtaining of better defined 

(less broad) peaks, although the magnitude of the signal is smaller.  
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Figure 4. Dimensionless ADDPV curves (Eq. (17)) for a reversible EE mechanism calculated for 

spherical (solid lines), disc (dashed lines), cylindrical (dashed dotted lines) and band (dotted 

lines) electrodes of different sizes. The values of 0 d s cr  ( r r ( w / 2 ) r )     (in m) are 

indicated on the curves. E =50 mV, 0 200 mV  E . Other conditions as in Figure 2.  
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From the equations deduced in section 2, the limiting value of 0E  to obtain three crossing 

potentials has been calculated by considering that the differences between the extreme crossing 

potentials, 1cE  and 2cE , and the central crossing potential, ccE , should be greater than 4 mV. For the 

typical value E =50 mV 1cE , 2cE  and ccE  are well defined for 0 85E    mV. This value increases 

with the pulse amplitude such as for E =75 mV four peaks are obtained for 0 105E    mV. Note 

that, as discussed above, the central crossing potential is not affected by this parameter in agreement 

with Eq. (19).  

The effect of the electrode size and shape on the ADDPV curves is analyzed in Figure 4 for the 

EE mechanism with 0E =-200 mV (four peaks, two well separate processes) at discs, spheres, bands 

and cylinders with a characteristic dimension 0 d s cr  ( r r ( w / 2 ) r )    . The voltammograms obtained 

at different electrode geometries are coincident for 0r  =100 µm (Figure 4.A) since for this size the 

prevalent diffusion field is planar, in such a way that the electrode geometry becomes irrelevant (see 

Table 1). As the electrode size is decreased (Figures 4.B and 4.C), the temporal dependence of the 

response diminishes and the divergences between the ADDPV curves of different electrode geometries 

increase. Finally, the response reaches a steady state (disc, sphere) or quasi-steady state (band, 

cylinder) behaviour (Figure 4.C). Under these conditions, the ratio between the ADDPV currents at 

discs and spheres of equal radius d sr r  is given by: 

 

,

,

1
ss

ADDPV disc

ss

ADDPV sphere

I

I



 (23) 

 

in agreement with Eq. (17) and expressions in Table 1.  

In the case of cylinder and band electrodes a stationary response cannot be attained [34], but it 

is also possible to find an equivalence relationship between them at a fixed time value when the 

characteristic dimensions of both electrodes fulfil cr w / 4 : 

 


ADDPV ,band

ADDPV ,hemicylinder

I

I
  (24) 

 

It is worth highlighting that in any case the crossing potentials do not depend on the electrode 

shape and size since they are obtained from the potential function  2,n 2,r   which is independent of 

the particular electrode geometry. 

In resume, the shape of the ADDPV response of an EE mechanism only depends on the 

difference between the formal potential of the electron transfers and the pulse amplitude employed. 

When four peaks are recorded, the values of the formal potentials of both steps can be extracted from 

the values of the crossing potentials. When only two peaks are obtained, the simultaneous analysis of 

the values of the crossing potential and the peak current or width is required for the extraction of 0'

2E  

and 0'

1E .  
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With this purpose the variation of the dimensionless peak current and width with 0E  are 

given in Figure 5 for the four geometries considered in this paper. Since the ADDPV response is 

symmetrical, we will only discuss the behaviour of the parameters of the maximum.  
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Figure 5. Evolution of the ADDPV maximum / minimum dimensionless peak height (A) and of the 

half peak width (B) with 0E  for a reversible EE mechanism calculated for spherical (solid 

lines), disc (dashed lines), cylindrical (dashed dotted lines) and band (dotted lines) electrodes of 

different sizes with E =50 mV (A) and for three values of the pulse amplitude (in mV) (B). 

Other conditions as in Figure 2. 

 

As can be seen in Figure 5.A, the maximum peak height increases with 0E  until reaching the 

value corresponding to an E process of two electrons for 0 150 mV E . The differences between the 

value of the peak height at different geometries are more apparent as the electrode size decreases, as 

was previously shown in Figure 4.  

Other interesting parameter is the half-peak width, W
1/2

, which varies with 0E  according to 

Figure 5.B. One of the advantages of employing this parameter is that the W
1/2

–value does not depend 
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on the electrode geometry and other experimental variables (e.g., concentration of the electroactive 

species, diffusion coefficient), unlike the peak height. The half-peak width is only dependent on 0E  

for a given pulse amplitude and it decreases as the 0E -value increases up to the value associated with 

an E process of two electrons for 0E >150 mV (which corresponds to 1 2 48 mV/W  for the typical 

value 50E   mV). Note also that the use of large pulse amplitudes causes a great broadening of the 

peaks. Thus, for example, for 0E =100 mV the half-peak width varies from 37 mV for E =25 mV to 

67 mV for E =75 mV. 

 

 

 

4. CONCLUSIONS 

Easy-to-manage, analytical expressions have been derived for the study of reversible multiple 

electron transfer reactions by additive differential double pulse voltammetry (ADDPV). The theory 

presented is valid for any number of electrochemical steps, any difference between the formal 

potentials of the various redox couples and any size of the electrode, covering the geometries most 

commonly employed in electrochemical experiments: discs, (hemi)spheres, bands and cylinders. 

The case of a two-electron reducible molecule (EE mechanism) has been analyzed showing the 

variation of the ADDPV curves with the difference between the formal potentials, 0 0' 0'

2 1E E E   , the 

electrode size and the pulse amplitude. The technique has the advantage that by decreasing the value of 

the pulse amplitude ( E ) the characteristic behaviour of an EE mechanism of four peaks and three 

crossing potentials ( ccE , 1cE  and 2cE ) can be achieved even for some high 0E - values. This 

facilitates the extraction of the formal potentials. 

In all cases, the central crossing potential ( ccE ) is a symmetry point and its value is equal to the 

average value of the formal potentials (independently of any experimental variable). When three 

crossing points are available, the extraction of 0'

1E  and 0'

2E  can be carried out from the ccE , 1cE  and 

2cE  values that can be measured with very good precision. When the ADDPV curve shows only one 

intercept, the values of the height or width of the peaks together with the crossing potential enable the 

determination of the two formal potentials.  
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