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A mathematical modeling of immobilized glucoamylase kinetics by flow calorimetry is discussed. The 

model is based on non-stationary diffusion equation containing a non-linear term related to kinetics of 

the enzymatic reaction. This paper presents the complex numerical methods (The modified Adomian 

decomposition method) to solve the non-linear differential equations that describe the diffusion 

coupled with a non-linear reaction terms. Approximate analytical expressions for substrate 

concentration have been derived for all values of enzyme reactions parameters.  
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1. INTRODUCTION 

Since the 1990s [1-7] there has been an important transition in the development of immobilized 

enzymes. Approaches used for the design of immobilized enzymes have become increasingly more 

rational; this is reflected in the use of more integrated and sophisticated immobilization techniques to 

solve problems that cannot be easily solved by previously developed single immobilization 

approaches. In this phase, the major focus of enzyme immobilization was on the development of robust 

enzymes that are not only active but also stable and selective in organic solvents. Although in the 

period from the 1970s to the 1980s it was recognized that many enzymes are active and stable in 

organic solvents under appropriate conditions, the enzymes used are usually less active or stable in 

organic solvents than in conventional aqueous media [8]. For this reason development of more robust 
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immobilized enzymes which can work under hostile conditions, especially in non-aqueous media came 

to the forefront of many research interests in this period [9-11].  Immobilization of enzymes on 

suitable support materials has resulted in their extended use in batch and continuous bioreactors. For 

immobilised enzymes, however, there are several factors which affect the observed kinetics that could 

be significantly different from the intrinsic kinetics of the free enzyme.    

Immobilized biocatalysts (IMB) –enzymes are still in the interest of people working in different 

branches. They constitute principal parts of devices of very variable scale and application starting from 

microgram amounts of IMB in special analytical devices up to industrial reactors with IMB loading of 

hundreds of kilograms. This is valid in the stage of IMB screening and design, as for the specification 

of operational conditions in which they should be used. Therefore, there is always the need coming 

with a new IMB to find sufficiently accurate, simple and fast experimental technique of investigation 

of their kinetic properties. 

Vladimir Stefuca et.al [12] described the principles and applications of flow calorimetry (FC) 

in the investigation of the IMB properties. The FC can be used practically for every enzyme-substrate 

system, under the condition that a sufficient reaction heat is produced and the substrate is in soluble 

form [13]. Wide applications of glucoamylase in starch industry research focused in the improvement 

of the enzyme properties by methods of enzyme screening, molecular biology and enzyme 

engineering. Research in this area can be facilitated by developing suitable methods for the 

investigation of kinetic properties of immobilized glucoamylase.   

Vladimir Stefuca et.al [12] simplified this task by reducing the experiment to the initial rate 

measurement in combination with the FC avoiding the requirement of a more complicated chemical 

analysis. For the purpose of the methodology development, the enzyme was immobilized in controlled-

pore glass (CPG) particles and a well defined substrate – maltodextrin (MDX) - was used. However, to 

the best of author’s knowledge, the steady state analytical expression of immobilized glucoamylase 

and effectiveness factor have not been derived. In this paper, we have obtained the analytical 

expression of immobilized glucoamylase and effectiveness factor for all values of parameters for 

steady state condition using the modified Adomian decomposition method.   

 

 

 

2. MATHEMATICAL FORMULATION OF THE NON-LINEAR DIFFUSION PROBLEM 

We assume that the glucoamylase was immobilized in porous particles. The experimental set-

up used for the measurements is depicted in Fig. 1. The main part of the system is a thermostatic cell 

with the immobolished enzyme column. The column is operated as a small packed bed reactor.Since 

biocatalyst particle is spherical shape, the material balance reaction diffusion equation is given by [12]  
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with boundary conditions: 
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               0 
dr

dcs  at   ,0r                                                                                                   (2a) 

 

sbs cc      at  ,Rr                                                                                                  (2b) 

 

where r  is the particle radial coordinate, R the particle radius and eD  the substrate (MDX) effective 

diffusion coefficient, sc  is the substrate concentration and  sbc is the bulk substrate concentration.  

 

  
Figure 1. Experimental calorimetric recirculation system. 

 

For substrate inhibition  model the  reaction rate, vr is given by 
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where mV , mK  and iK  are kinetic parameters. The steady  state effectiveness factor is [12] 
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where   is void fraction of IMB bed. The system governs the substrate concentration sc when there is 

no competitive inhibition in the reaction. The non-linear equation is made dimensionless by defining 

the following parameters 
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where )(Xu represents dimensionless concentration, X  is dimensionless distance.  k,  and   are  

dimensionless parameters. The equation (1) reduces to the following dimensionless form 
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The boundary conditions reduce to 

 

0 
dX

du
 at    0X                                                                                    (7a) 

 

       1  u  at  1X                                                                                             (7b) 

 

The dimensionless effective factor ( ) is given by [1] 
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3. ANALYTICAL SOLUTION OF BOUNDARY VALUE PROBLEM USING THE MODIFIED 

ADOMIAN DECOMPOSITION METHOD (MADM) 

The modified adomian decomposition method is an extremely simple method to solve the 

nonlinear differential equations. In the recent years, much attention is devoted to the application of the 

adomian decomposition method to the solution of various scientific models [14]. The MADM yields, 

without linearization, perturbation, transformation or discretisation, an analytical solution in terms of a 

rapidly convergent infinite power series with easily computable terms.  

The decomposition method is simple and easy to use and produces reliable results with some 

iteration used. The results show that the rate of convergence of modified Adomian decomposition 

method is higher than standard Adomian decomposition method [15-19]. Furthermore, the obtained 

result is of high accuracy. Using this modified Adomain decomposition method (see Appendix A), the 

solution of the boundary value problem (Eqs. 6 - 7) is 
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The above expression is valid when k is small ( 1k ) and all possible values of parameters   

and  . The experimental range of the numerical values of the dimensionless parameters are k = 0.001 
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to 1000,  =0.001 to 0.1 and   = 0.001 to 0.1. When k is large ( 1k ), the substrate concentration 

becomes 
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The effective factor using eqns. (9) and (11) becomes 
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4. NUMERICAL SIMULATION 

a)  (b)  

 

Figure 2. Dimensionless substrate concentration u(X). The concentrations were computed using 

Equation (11) for various values of   and   and for a fixed value of 1k . 

 

An analytical solution for non-linear reaction diffusion equation in immobilized glucoamylase 

kinetics solved using the modified Adomian decomposition method. To show the efficiency of the 

present method, our problem is compared with the numerical solution (MATLAB program). We have 

used the function pdex1 in MATLAB software, to solve the initial-boundary value problems 

numerically.  

The default parameters employed in Vladimir Stefuca et.al [1] and in this study are given in 

Table. 1. The numerical solution is compared with our analytical results in Figs 3-6 and Tables  2-4. 

The relative difference between the analytical dimensionless substrate concentration u and numerical 

reference results does not exceed 0.22 % for all values of the parameters. Upon comparison, it gives a 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

9127 

satisfactory agreement for all values of the dimensionless parameters  and, k . The MATLAB 

program is also given in Appendix (C).   

 

Table 1. Numerical values of the parameters used in this work. The fixed values of the dimensionless 

parameters are csb = 100 g/l, Km = 0.15 gdm
-3

 to 0.96 gdm
-3

, Ki = 470 gdm
-3

s
-1

 to 1910gdm
-3

s
-1

, 

Vm = 3.8 gdm
-3

s
-1

 to 4.2 gdm
-3

s
-1 

and De=9.4X10
-9

dm
2
s

-1
. These are dimensionless parameters 

used in Vladimir Stefuca et. al[1] 
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Figure 3. Dimensionless substrate concentration u. The concentrations were computed using  Eq. (11) 

for various values of  the reaction/diffusion parameter k and for a fixed small value of 

dimensionless diffusion co-efficients 001.0 and  001.0   .  The key to the graph: ‘__’ 

represent Eq.11 for 1k and Eq.13 for 1k  and ‘ + + +’ represents the simulation result. 
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Figure 4. Dimensionless substrate concentration u. The concentrations were computed using   Eq. (11) 

for various values of  the reaction/diffusion parameter k and for a fixed small value of 

dimensionless diffusion co-efficients 01.0 and  01.0   . The key to the graph: ‘__’ 

represent Eq.11 for 1k and Eq.13 for 1k  and ‘ + + +’ represents the simulation result. 

 

 
 

Figure 5. Dimensionless substrate concentration u. The concentrations were computed using Eq. (11) 

for various values of the reaction/diffusion parameter k and for a fixed small value of 

dimensionless diffusion co-efficients 05.0 and  05.0   . The key to the graph: ‘__’ 

represent Eq.11 for 1k and Eq.13 for 1k  and ‘ + + +’ represents the simulation result. 
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Figure 6. Dimensionless substrate concentration u. The concentrations were computed using Eq. (11) 

for various values of the reaction/diffusion parameter k and for a fixed small value of 

dimensionless diffusion co-efficients 1.0 and  1.0   . The key to the graph: ‘__’ represent 

Eq.11 for 1k and Eq.13 for 1k  and ‘ + + +’ represents the simulation result 

 

Table 2. Comparison of dimensionless concentration of analytical and numerical of u for various small 

values of k when , 001.0  001.0  

 
X Dimensionless concentration u when 001.0, 001.0    

k = 0.001 k = 0.01 k = 0.05 k = 0.1 k = 1 

Simulat

ion 

Analyti

cal 

result 

Eqn.(11

) 

Erro

r % 

Simulat

ion 

Analyti

cal 

result 

Eqn.(11

) 

Erro

r % 

Simulat

ion 

Analyti

cal 

result 

Eqn.(11

) 

Erro

r % 

Simulat

ion 

Analyti

cal 

result 

Eqn.(11

) 

Erro

r % 

Simulat

ion 

Analyti

cal 

result 

Eqn.(11

) 

Erro

r % 

0.000

1 

0.9998 0.9998 0 0.9983 0.9983 0 0.9917 0.9917 0 0.9836 0.9836 0 0.8511 0.8530 0.22 

0.1 0.9998 0.9998 0 0.9984 0.9984 0 0.9918 0.9918 0 0.9837 0.9837 0 0.8526 0.8544 0.21 

0.2 0.9998 0.9998 0 0.9984 0.9984 0 0.9921 0.9921 0 0.9842 0.9842 0 0.8568 0.8585 0.20 

0.3 0.9998 0.9998 0 0.9985 0.9985 0 0.9925 0.9925 0 0.9850 0.9850 0 0.8640 0.8655 0.17 

0.4 0.9999 0.9999 0 0.9986 0.9986 0 0.9931 0.9931 0 0.9862 0.9862 0 0.8740 0.8754 0.16 

0.5 0.9999 0.9999 0 0.9988 0.9988 0 0.9938 0.9938 0 0.9877 0.9877 0 0.8870 0.8882 0.14 

0.6 0.9999 0.9999 0 0.9989 0.9989 0 0.9947 0.9947 0 0.9895 0.9895 0 0.9031 0.9040 0.10 

0.7 0.9999 0.9999 0 0.9992 0.9992 0 0.9958 0.9958 0 0.9916 0.9916 0 0.9223 0.9229 0.07 

0.8 0.9999 0.9999 0 0.9994 0.9994 0 0.9970 0.9970 0 0.9941 0.9941 0 0.9447 0.9452 0.05 

0.9 1.0000 1.0000 0 0.9997 0.9997 0 0.9984 0.9984 0 0.9969 0.9969 0 0.9706 0.9708 0.02 

1 1.0000 1.0000 0 1.0000 1.0000 0 1.0000 1.0000 0 1.0000 1.0000 0 1.0000 1.0000 0.00 

 

Upon comparison, it gives a satisfactory agreement for all values of the dimensionless 

parameters  ,k and  . The MATLAB program is also given in Appendix (C).  
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Table 3. Comparison of dimensionless concentration of analytical and numerical of u for various small 

values of  k when 1.0, 1.0    

 
X 

Dimensionless concentration u when 1.0, 1.0    

k = 0.001 k = 0.01 k = 0.05 k = 0.1 k = 1 

Simulati
on 

Analytic
al result 

Eqn.(11) 

Error 
% 

Simulati
on 

Analytic
al result 

Eqn.(11) 

Erro
r % 

Simulati
on 

Analyti
cal 

result 

Eqn.(11
) 

Error 
% 

Simulati
on 

Analytic
al result 

Eqn.(11) 

Erro
r % 

Simulati
on 

Analytic
al result 

Eqn.(11) 

Error 
% 

0.0001 0.9999 0.9999 0 0.9986 0.9986 0 0.9931 0.9931 0 0.9862 0.9862 0 0.8709 0.8712 0.03 

0.1 0.9999 0.9999 0 0.9986 0.9986 0 0.9931 0.9931 0 0.9863 0.9863 0 0.8722 0.8725 0.03 

0.2 0.9999 0.9999 0 0.9987 0.9987 0 0.9934 0.9934 0 0.9868 0.9868 0 0.8759 0.8762 0.03 

0.3 0.9999 0.9999 0 0.9987 0.9987 0 0.9937 0.9937 0 0.9874 0.9874 0 0.8822 0.8825 0.03 

0.4 0.9999 0.9999 0 0.9988 0.9988 0 0.9942 0.9942 0 0.9884 0.9884 0 0.8910 0.8913 0.03 

0.5 0.9999 0.9999 0 0.9990 0.9990 0 0.9948 0.9948 0 0.9896 0.9897 0.01 0.9024 0.9026 0.02 

0.6 0.9999 0.9999 0 0.9991 0.9991 0 0.9956 0.9956 0 0.9912 0.9912 0 0.9164 0.9166 0.02 

0.7 0.9999 0.9999 0 0.9993 0.9993 0 0.9965 0.9965 0 0.9930 0.9930 0 0.9331 0.9332 0.01 

0.8 0.9999 1.0000 0.01 0.9995 0.9995 0 0.9975 0.9975 0 0.9950 0.9950 0 0.9526 0.9526 0 

0.9 1.0000 1.0000 0 0.9997 0.9997 0 0.9987 0.9987 0 0.9974 0.9974 0 0.9748 0.9749 0.01 

1 1.0000 1.0000 0 1.0000 1.0000 0 1.0000 1.0000 0 1.0000 1.0000 0 1.0000 1.0000 0 

 

Table 4. Comparison of dimensionless concentration of analytical and numerical of u for various large 

values of  k when 0, 0    

 
X 

Dimensionless concentration u when 0, 0    

k = 1 k = 5 k = 10 k = 100 k = 1000 

Simulati

on 

Analytic

al result 

Eqn.(13) 

Error 

% 

Simulati

on 

Analytic

al result 

Eqn.(13) 

Erro

r % 

Simulati

on 

Analytic

al result 

Eqn.(13) 

Error 

% 

Simulati

on 

Analytic

al result 

Eqn.(13) 

Error 

% 

Simulati

on 

Analytic

al result 

Eqn.(13) 

Error 

% 

0.0001 0.8509 0.8509 0 0.4835 0.4835 0 0.2681 0.2682 0.04 0.0009 0.0009 0 0.0000 0.0000 0 

0.1 0.8523 0.8523 0 0.4875 0.4875 0 0.2727 0.2727 0 0.0011 0.0011 0 0.0000 0.0000 0 

0.2 0.8566 0.8566 0 0.4998 0.4998 0 0.2864 0.2864 0 0.0016 0.0016 0 0.0000 0.0000 0 

 

 

5. DISCUSSION 

5.1 Concentration profile 

The kinetics response of calorimetric recirculation systems depends on the concentrations of 

glucoamylase. The concentrations of glucoamylase depends on the following three factors  ,k and  . 

Thiele modulus, k represents the ratio of the characteristic time of the enzymatic reaction to that of 

substrate diffusion. The variation in the Thiele modulus k can be achieved by varying either the radius 

of the particle or kinetic parameters. The Thiele modulus is indicative of the competition between the 

diffusion and reaction in the calorimetry. When k is small, the kinetics dominates and the uptake of 

glucoamylase in the enzyme matrix is kinetically controlled. Under these conditions, the glucoamylase 

concentration profile across the membrane is essentially uniform. When k is large, diffusion limitations 

are the principal resistance.             

Eq.9 and Eq.11 represent the analytical expressions for the dimensionless concentration of 

glucoamylase u(X). Eq. 9 is valid for 1k and Eq. 11 is valid for 1k . Fig. 2 presents the 

dimensionless substrate concentration u(X). The concentrations were computed using Eq. 9 for various 
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values of   and   and for a fixed value of 1k . From Fig. 2, it is inferred that the concentration 

increases when the values of   and   increases. In Figs. 3-6, simulation and analytical results are 

compared. From these figures, it is inferred that the value of the concentration u increases when k 

decreases but there is no significant difference in the concentration. When 1k , the concentration is 

uniform.  

 

5.2 Effectiveness factor 

      

        
 

Figure 7(a). Dimensionless effectiveness factor   . The dimensionless effectiveness factor  were 

computed using Eq. (14) for various values of dimensionless diffusion co-efficients   and  .  

 

 
 

Figure 7(b). Dimensionless effectiveness factor  . The dimensionless effectiveness factor were 

computed using Eq. (15) for large values of dimensionless parameter k.  
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Eqs.12 and 13 represent the analytical expressions for the dimensionless effectiveness factor  . 

The normalized effectiveness factor   versus k is ploted in Fig. 7(a). This figure illustrates the 

effectiveness factor   for 1k  and all practical values of   and  . In this figure, the effectiveness 

factor increases when the parameters   and   decreases. But there is no significant difference in the 

effectiveness factor for all practical values of the parameters   and  . Fig 7(b) illustrates the 

effectiveness factor   versus k for various values of   for 1k . In this figure the effectiveness factor 

increases when the value of k  increases. From these figures (7(a) and 7(b)), we conclude that the 

value of  increases when the reaction diffusion parameter k  increases.   

 

 

 

6. CONCLUSIONS 

We have presented a theoretical model of immobilized glucoamylase kinetics by flow 

calorimetry. An approximate analytical expression of substrate concentration  and effectiveness factor 

for all possible values of the kinitic parameters  are derived using the Adomian decomposition method 

[15-17]. The accuracy of the approximate analytical solutions of non-linear differential equations has 

been verified by comparison with numerical solutions. The theoretical results is very much useful to 

determine the reaction rate and intrinsic kinetic parameters of immobilized glucomylase. 
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Appendix A: Basic concepts of the modified Adomian decomposition method 

 

Consider the non-linear differential equation in the form 

 

),()(
)1(2

2
yxFxgy

x

nn
y

x

n
y 


      0n                                  (A.1)                         

 

with initial condition  

 

ByAy  )0( ,)0(  

 

where ),( yxF is a real function, )(xg  is the given function and A  and B are constants. We propose 

the new differential operator, as below 
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2

2

yx
dx

d
xL nn                                                                                  (A.2) 

 

So, the problem (A.1) can be written as, 

 

),()()( yxFxgyL                                                                             (A.3) 

 

The inverse operator 1L  is therefore considered a two-fold integral operator, as below. 
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Applying 1L   on both sides of   Eq. (A.1), we find  
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The Adomian decomposition method introduce the solution )(xy and the nonlinear function ),( yxF by 

infinity series 
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and  
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where the components )(xyn of the solution )(xy  will be determined recurrently and the Adomian 

polynomials coefficients nA  of ),( yxF are evaluated using the formula 
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By substituting Eq. (A.7) and Eq. (A.8) into Eq. (A.6), 
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Using modified Adomian decomposition method, the components )(xyn can be determined as  
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which gives 
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From Eq. (A.9) and Eq. (A.11), we can determine the components )(xyn , and hence the series solution 

of )(xy  in Eq. (A.6) can be immediately obtained. 

 

 

Appendix B: Solution of non-linear Eq. (6) by using modified Adomian decomposition method 

 

In this appendix, we derive the general solution of nonlinear Eq. (6) by using Adomian decomposition 

method. We write the Eq. (6) in the operator form, 

 

)]([)(X)  ( XukNuL                                                                             (B.1) 

  

where  
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Applying the inverse operator 1L  on both sides of Eq. (B.1) yields 

 

)]([       )( 1 XuNLkBXAXu                                                             (B.3) 

 

where A and B are the constants of integration. We let, 
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In view of Eqs. (B.4) and (B.5), Eq. (B.3) gives 
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We identify the zeroth component as 

 

    )(0 BXAXu                                                                                   (B.7) 

 

and the remaining components as the recurrence relation 
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where nA  are the Adomian polynomials of nuuuu ,...,,, 210 . We can find the first few nA  as follows: 
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The remaining polynomials can be generated easily, and so,  
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Adding (B.11) to (B.13) we get Eq. (9) in the text. 

 

 

Appendix C: The Matlab program to find the numerical solution of Equation 6  

 

function pdex4  

m = 2;  

x = linspace(0,1); 

t = linspace(0,1000);  

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u = sol(:,:,1); 

figure  

plot(x,u(end,:)) 

title('u(x,t)') 

% --------------------------------------------------------------  

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = 1; 

f = 1.*DuDx; 

r=1; 

a=0.01; 

b=0.1; 

F =-(r*u)/((1+(u*a)+(b*u^2))); 

s=F; 

% --------------------------------------------------------------  

function u0 = pdex4ic(x);  

 u0 = [1];                                  

% -------------------------------------------------------------- 

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)  

pl = 0; 

ql = 1; 

pr = ur-1; 

qr = 0; 

 

 

 

Appendix D: Nomenclature 

 

r         particle radial coordinate 

R         particle radius 

eD       substrate (MDX) effective diffusion coefficient t (=9.4 x 10
-9 

dm
2
s

-1
)  

rv         reaction rate 

mm KV , , and iK are kinetic parameters 

)(Xu   dimensionless concentration 

X        dimensionless distance 

sc        substrate concentration 
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         effective factor                                                                                                         

sbc       bulk substrate concentration 

         dimentionless effective factor                                                                                                                                                                                                                   

         void fraction of IMB bed                                                                                                                       

MN  ,  dimensionless constants.    
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