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The detection of alkali metal complex formation with polycarboxylate, hydroxo-polycarboxylate and 

amino-polycarboxylate ligands has been investigated employing ISE-Na
+
 potentiometry. To minimize 

the effects due to the variation of activity coefficients, a set of measurements were made at constant 

ionic strength. The formation of alkali metal complexes in solution has been evidenced unequivocally 

comparing the experimental values of free Na
+
 ions with those of total sodium added for each point of 

titration curve. There are no doubts about the formation of alkali metal complexes in solution. After 

detection, the formation constants were determined and their values, compared with those evaluated by 

pH-metric technique (previously) or by ISE-Na
+
 potentiometry at variable ionic strengths (this work), 

show a good agreement, suggesting that also potentiometric techniques at variable ionic strengths can 

be used in the study of this topic with a good accuracy. Moreover, our results confirm the low stability 

of alkali metal complexes (ion pairs) in aqueous solution, which is founded on coulomb interactions. In 

general, the values of stability constants depend not only on the number of charged oxygen donor 

groups, but also on the presence of amino donor(s) (NTA, EDTA and EDDS) and hydroxyl group 

(citrate).  

 

 

Keywords: sodium, ion pairs, weak complexes, ISE potentiometry, polycarboxylic acids. 

 

 

1. INTRODUCTION 

The coordination chemistry in solution of alkali metal ions was relatively little investigated, in 

particular if compared with the great number of results reported in the literature for complexes of 

transition metal ions. All the classical experimental techniques were employed in determining the 

formation constants of weak complexes (ion pairs), so as reported in the review of Marcus and Hefter 

[1]. Among the other experimental methods, potentiometry, NMR, calorimetry, circular dichroism and 

http://www.electrochemsci.org/
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dilatometry were employed to study the formation in solution of alkali metal complexes.  

In a recent review [2] we focused the main reasons for the scarce interest in this topic and, in 

this connection, the weakness of alkali metal ion pairs is certainly an important factor. As well known, 

the pH-metric classical method for determination of stability constants is based on the competition for 

the ligand molecule between the cation investigated and the hydrogen ion. In general, for the most of 

ligands, the alkali metal cations are scarcely competitive towards H
+
, hence their effect on the pH 

variation may be small. Furthermore, the not great pH variation can be assigned with certainty to the 

complexation reaction only if the values of the activity coefficients at the ionic strength under 

investigation are known with a good accuracy. In the last decades we proposed several papers [3-17] 

dealing with complexes or ion pairs of alkali metal ions, in which the conditional (at a fixed ionic 

strength) formation constants were calculated from pH-metric data obtained at different ionic 

strengths, taking rigorously into account the variation of activity coefficients as a function of ionic 

strength, but avoiding explicit calculations of their values. In the NEA report [18] dealing with the 

citrate complexes, the determination of formation constants of alkali metal complexes with citrate ion 

[19] by ISE potentiometric measurements was discussed. According to the NEA authors [18], the 

existence of citrate complexes with alkali metal ions “should not be considered as completely proven” 

because the above measurements [19] were carried out at different ionic strengths and therefore the 

results depend on the model used for activity coefficients. 

The results reported in this paper were obtained elaborating ISE potentiometric data at ionic 

strength values kept, as far as possible, constant over the experiment, in order to compare the 

formation constants values so calculated with those determined at the same ionic strength, elaborating 

experimental data from potentiometric measurements at variable ionic strength. From the comparison, 

extended to the results from some ISE-Na
+
 measurements at variable ionic strengths, we aim to draw 

some conclusions about the reliability of our pH-metric based chemical model at variable ionic 

strength for the evaluation of weak complex formation constants. The investigation regarded the 

complexes of sodium with some carboxylic and aminocarboxylic ligands, namely acetate, benzoate, 

malonate, phthalate, citrate, mellitate, nitrilotriacetate, ethylenediaminetetraacetate and 

ethylenediamine-N,N′-disuccinate. 

 

 

 

2. EXPERIMENTAL PART 

2.1. Chemicals 

Sodium chloride (purity of 99.5%) was from Sigma-Aldrich and before use was maintained at 

120°C for almost 2 hours. Tetrabutylammonium bromide (Bu4NBr, purity of 99.0%), 

tetraethylammonium iodide (Et4NI, purity ≥ 98.5%), tetrabutylammonium hydroxide (stock solution 

1.0 mol L
-1

) and tetraehtylammonium hydroxide (stock solution 1.0 mol L
-1

) were from Fluka. Citric 

(cit) and malonic (mal) acids were Merck products (purity of 99.5% and 99% respectively). Acetic, 

Nitrilotriacetic (NTA), ethylenediaminetetraacetic (EDTA), ethylenediamine-N,N′-disuccinic acid 

(EDDS) and 1,2,3,4-butanetetracarboxylic (btc) acids were Sigma-Aldrich products (purity of 99.7%, 
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99%, 99.995%, 35% in water and 99.5% respectively). Benzoic and Phthalic acid (phthal) were from 

Carlo Erba (purity of 99.5%). Mellitic acid (mlt) was from Fluka (purity ≥ 98%). 

Grade A glassware and deionised and twice distilled water were used for all the solutions. 

Tetrabutylammonium hydroxide solution was standardized against potassium hydrogen 

phthalate (Fluka, puriss.) and the purity of the acids was evaluated by pH-metric titrations. 

 

2.2. Potentiometric apparatuses  

Two potentiometric apparatus were used in this paper, both of them consisted of a Metrohm 

potentiometer (resolution of 0.1 mV), used for the measurement of the electromotive force (e.m.f.) of 

the ISE-Na
+
 and ISE-H

+
 electrodes.   

In the first set up, the ISE-Na
+
 electrode was purchased by Metrohm (model 6.0501.000) and 

was combined with an Ag/AgCl reference electrode (Metrohm, 6.0733.100). The sodium-selective 

electrode has a selectivity constant of 2 · 10
-2

 with respect to H
+
. The system was equipped with a 

combined H
+
 glass electrode (Metrohm, 6.0222.100). Temperature control was achieved by means of 

water circulation, in the outer chamber of the titration cell from a thermocryostat (model D1-G Haake). 

The titrant (NaCl solution 0.1 mol L
-1

) was dispensed with a 765 Dosimat (minimum deliverable 

volume of 0.001 mL) burette by Metrohm. 

In the case of the second set up, the Metrohm 713 potentiometer was equipped with a combined 

sodium-selective electrode (Orion, model 86-11), whereas the pH measurements were performed with 

a combined H
+ 

glass electrode (Metrohm, model 6.0224.100). Temperature control was achieved by 

means of water circulation, in the outer chamber of the titration cell from a thermocryostat (model D1-

G Haake). The titrant (NaCl solution 0.1 mol L
-1

) was delivered with a 665 Dosimat (minimum 

deliverable volume of 0.001 mL) burette by Metrohm. 

 

2.3. Procedure used for potentiometric titrations 

Two procedures were used in this paper, to obtain different information on the formation of 

alkali metal ion weak complexes. In the first case, the choice of the ligand to metal ratios and of the 

quantities of sodium titrant added was made in order to keep constant the value of the ionic strength 

during the experiment and obtain the maximum of percentage complex formation with respect to 

sodium. The procedure adopted is as follows: the ionic strength was adjusted with Bu4NBr, at I = 0.1 

mol L
-1

, for the NTA and EDTA systems, and I = 0.3 mol L
-1

, for the phthal, mal, cit and btc systems. 

The concentration of the ligands were: cit 0.0475 mol L
-1

, EDTA 0.0100 mol L
-1

, mal 0.100 mol L
-1

, 

NTA 0.0167 mol L
-1

, phthal 0.100 mol L
-1

, btc 0.0100 mol L
-1

, while the concentration of NaCl added 

as titrant ranged between 1.00 · 10
-4

 to 4.8 · 10
-4

 mol L
-1

.  

To evaluate how the variation of ionic strength during titration can affect the experimental 

results, a second procedure was adopted for cit system. In this case, the ionic strength was adjusted 

with Et4NI at I = 0.3 mol L
-1

 and cit concentration ranged between 0.015 ≤ cL/mol L
-1

 ≤ 0.030. Similar 

conditions were also adopted for the mlt and EDDS systems. The ionic strength was adjusted at I = 0.3 
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and 0.4 mol L
-1

 for the mlt system and at I = 0.3, 0.4 and 0.5 mol L
-1

 for the EDDS system. The ligand 

concentration ranged between 0.010 ≤ cL/mol L
-1

 ≤ 0.021 (mlt) and 0.010 ≤ cL/mol L
-1

 ≤ 0.040 

(EDDS), whereas the concentration of NaCl added as titrant between 1.00 · 10
-4

 ≤ cNaCl/mol L
-1

 ≤ 1.5 · 

10
-2

. The higher is the ligand concentration, the greater variation of ionic strength during titration. As 

an example, the ionic strength value due to the presence of mlt, when cL = 0.0146 mol L
-1

, is I = 0.3068 

mol L
-1

. In our calculations the variation of ionic strength during titration and its effect on activity 

coefficients were taken into account, so as described below.   

In both procedures, the solutions were basified at pH ~ 10-11 with tetraalkylammonium 

hydroxide to maintain the acids in the dissociated form and to avoid the interference of H
+
 ions. The 

titrations were carried out in a stream of purified nitrogen gently bubbled in the titration cell to avoid 

CO2 contamination, which could acidify the solution interfering with the e.m.f. measurement. The 

couple was calibrated in log[Na
+
] units (pNa) recording the e.m.f. values obtained adding known 

volumes of NaCl solution 0.1 mol L
-1

 in a tetraalkylammonium halide solution. The Na
+
 concentration 

of calibrating solutions ranges between 2 · 10
-4

 and 5 · 10
-3

 mol L
-1

 and the ionic strength was the same 

as the solutions being examined, controlled with tetraalkylammonium halide. Even the calibration 

solutions were basified at pH ~ 10-11 with tetraalkylammonium hydroxide. Each titration was repeated 

in triplicate and, to check the stability of the electrode response, before each titration the calibration 

procedure was repeated.   

 

2.4. ICP-OES measurements 

The sodium impurities in the solution under titration were quantified by ICP measurements, 

performed by a model Liberty – Series II ICP-OES Varian spectrometer. The contribution of sodium 

impurities is not negligible (2.5 · 10
-5

 mol L
-1

 as mean value), in particular with low concentrations of 

sodium titrant added. 

 

2.5. Data analysis and calculations 

The non-linear least squares computer program ESAB2M [20] was used for the refinement of 

all the parameters of the acid-base titrations (E
0
, Kw, liquid junction potential coefficient, ja, analytical 

concentration of reagents). The non-linear least squares BSTAC and STACO [21] computer programs 

were used in the calculation of complex formation constants. Both programs can deal with 

measurements at different ionic strengths. The ES4ECI [21] program was used to draw the speciation 

and sequestration diagrams, and to calculate species formation percentages. The linear and non-linear 

computer program LIANA [22] was used to fit the experimental data by means of the equations 

reported in the next sections.  

The slope of the Nernst equation for the sodium-selective electrode was checked and in all 

cases resulted equal to 59.2 ± 0.1 mV at 25°C, therefore the tabulated slope of 59.16 mV was used. 

The same program was used for the elaboration of titration points for each metal-ligand system in 

order to calculate the stability constant of ion pair Na-acid. The electrode formal potential considered 
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in the elaboration was the daily mean value. In the calculation both of E
0
 values and of formation 

constants, we took into account the presence of unavoidable impurities of sodium in the reactants. The 

concentration of sodium impurities was well confirmed by ICP measurements. 

The uncertainty budgets are evaluated in accordance with recommended procedures [23-25] 

using commercial spreadsheets. 

As regards the measurements for which the ionic strength is not constant, the variation of 

activity coefficients has been taken into account by the procedure explained in the below Section 

Experimental evidence of weak complexes with measurements at variable ionic strength. 

All species reported in this paper can be expressed according to the following equilibria: 

 

p M
+
 + q H

+
 + L

n-
 = MpHqL

(p+q-n)
 pq 

(

1) 

p M
+
 + HqL

(q-n)
 = MpHqL

(p+q-n)
 Kpq 

(

2) 

 

where p and q are the stoichiometric coefficients, whereas n is the charge of the fully 

deprotonated ligand (e.g., for EDTA n = 4).  

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Experimental evidence of weak complexes with measurements at constant ionic strength 

The free sodium concentration in solution is always lowered by the addition of the ligands 

investigated in this work. As an example, in Fig. 1, we reported a comparison between the measured 

pNa at different titrant volumes added and the pNa resultant from the total Na concentration in the 

solution, for Na-EDTA and Na-mal systems. Since the value of ionic strength during experiments is 

kept constant and the values of activity coefficients, with a good approximation, do not vary 

significantly, this effect, as more significant as the number of potential donor groups involved 

increases, can only depend on the complexation of sodium ions.  

In order to support the experimental evidence of the complex formation, an estimation of pNa 

combined uncertainty is proposed. The uncertainty budgets are evaluated following the procedure 

described in ref. [26] for a potentiometric apparatus calibrated according to the concentration scale. 

The procedure is in accordance with the metrological literature recommendation [23-25]. For pNa 

uncertainty budget, we must consider the contributions acting on formal potential E
0
, to the potential 

reading E and to the junction potential Ej. The standard uncertainty is: 

 

uc(pNa) = [(u(E
0
) c(E

0
))

2
 + (u(E) c(E))

2
 + (u(Ej) c(Ej))

2
]
0.5

 (3) 

 

where the terms c(xi) = ∂(pNa)/∂xi are the sensitivity coefficients of E
 0

, E, and Ej all equal to 

1/s (as above underlined, we fixed the slope s = 59.16 mV). 
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Figure 1 Comparison between the measured pNa at different titrant volumes added (titrant NaCl 0.1 

mol L
-1

) and the pNa resultant from the total Na concentration in the solution, for Na-EDTA 

and Na-malonate systems. The measured pNa are the means of values obtained with 6 

replicates and the error bars represent the extended uncertainty U(pNa) (see Uncertainty budget 

paragraph). Total Na concentration takes into account the concentration of Na at Vtitrant = 0 mL. 
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Evaluation of E
0
 is run by means of a refinement procedure based on the treatment of titration 

data; similarly, the uncertainty estimation must follow the same path. Four quantities contribute to the 

overall uncertainty of E
0
:  

1) the relative standard uncertainty on volume of the calibration solution u(V) (total volume 25 

mL). The estimation of u(V) has been assessed on 0.08%.  

2) The resolution of the automatic burette. The estimation of u(Vtit) (relative uncertainty on 

volume dispensed by the automatic burette) has been assessed on 0.12%, assuming a triangular 

distribution on the stated accuracy of the burette. 

3) The resolution of the potentiometer. The estimation of u(E) (relative uncertainty on potential 

reading) has been assessed on 0.10%, assuming a rectangular distribution on the instrument resolution 

and considering a value of 55 mV (the first point of the titration considered in the E
0
 refinement). 

4) The standard deviation on E
0
 from the refinement process. The values of standard deviation 

on E
0
 has been evaluated by BSTAC [21] and ranged between 0.005 and 0.16 mV. It accounts for the 

accordance degree between experimental and calculated titration curves taking into account in the 

calculation the covariance(s) among the parameters under refinement. 

The uncertainty contribution of the concentration of titrant solution, u(CNaCl), resulted 

negligible. 

Combining the aforementioned contributions we obtained a relative standard uncertainty of E
0
 

ranging between 0.19 and 0.24%. 

The uncertainty contribution on E was evaluated considering the potential resolution and the 

repeatability for each titration point. The uncertainty contribution of the Ej, u(Ej), resulted negligible. 

For each pNa value obtained during the titration we calculated the combined standard 

uncertainty uc(pNa) and the extended U(pNa), using a coverage factor k = 2. The U(pNa) values range 

between 0.02 and 0.2 units, and higher values are calculated for the titration points at the beginning of 

the titration. In the calculation of log values low weights are attributed to these points.  

The uncertainty of the total Na concentration in the solution - uc(pNatot) - was also calculated. 

Three quantities contribute to the overall uncertainty of total Na concentration: i) the relative standard 

uncertainty on the volume of the solution u(V) (total volume 25 mL). The estimation of u(V) has been 

assessed on 0.33%; ii) the relative standard uncertainty on the concentration of titrant solution, 

u(CNaCl), equal to 0.095%; iii) the resolution of the automatic burette. The estimation of u(Vtit) (relative 

uncertainty on volume dispensed by the automatic burette) has been assessed on 0.3%, assuming a 

triangular distribution on the stated accuracy of the burette. 

The combined standard uncertainty uc(pNatot) for pNa = 3 is 0.0046 and the extended U(pNa), 

using a coverage factor k = 2, is 0.009. 

 

3.2. Experimental evidence of weak complexes with measurements at variable ionic strength 

As already pointed out in the experimental section, a second set of measurements was made 

with variable ionic strength (in a small concentration range) during the titration, owing to the high 

charge of ligands (e.g. for mellitic acid, z = 6) as well as their relatively high concentration, up to 20 
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mmol L
-1

. In this light, together with the uncertainty budget considered in the previous section, we 

must add a term relative to the variation of the E
0
 and logβ with ionic strength during a titration. For 

example, considering the titration n° 2 of the Na/mlt system, where cmlt = 0.010 mol L
-1

, we can note 

that the ionic strength value is I = 0.301 mol L
-1

 at the beginning of the titration, whereas is I = 0.244 

mol L
-1

 at the end of the titration, and the average ionic strength value is I = 0.283 mol L
-1

. In the 

refinement process, the computer program BSTAC [21] uses a Debye-Hückel smoothing function for 

the correction of both E
0
 and logβ, such as: 

 

logβ (I) = logβ (I=0.3M) – z* · 0.51 · I
 0.5

/(1+1.5·I
 0.5

) + C·I (4) 

 

where z* = Σ (charge)
2

react – Σ (charge)
2

prod and C is an empirical parameter. Rearranging eq. 

(4) we obtain: 

 

logβ (I=0.3M) = logβ (I) + z* · 0.51 · I
 0.5

/(1+1.5·I
 0.5

) + C·I (5) 

 

therefore, the uncertainty on the logβ (I = 0.3 M) is given by the error propagation and is: 

 

u(logβ(I=0.3M)) = (
2

logβexp + ((∂(logβ(I=0.3M))/∂I) I)
2
 + ((∂(logβ(I=0.3M))/∂C) C)

2
)
0.5

 (6)  

 

where logβexp is the standard deviation on the stability constant calculated by the computer 

program, whereas C is the parameter that accounts for the ionic strength dependence in the 

measurements. Assuming that the ionic strength value is free from error and logβexp is constant, we 

obtain: 

 

u(logβ(I=0.3M))= (
2

logβexp + ((∂(logβ(I=0.3M))/∂C) C)
2
)
0.5

 

 

and calculating the derivative, we have: 

 

u(logβ(I=0.3M))= (
2

logβexp + (I · C)
2
)
0.5

 

 

where I = (I – Iref). Numerically, when I = 0.05 and C = 0.03, u(logβ(I=0.3M)) ~ 0.003.  

 

3.3. Formation constants 

The values of formation constants of 1:1 sodium - ligand complexes obtained in Bu4NBr and in 

Et4NI at different ionic strengths, and maintaining or not the same ionic conditions during the titration, 

are collected in Table 1. The corresponding values calculated at the same ionic strength by employing 

pH-metric technique [5, 6, 9, 13] starting from the protonation constants determined in different ionic 

media, are also reported. The agreement may be considered quite good, especially if considering that 

we deal with weak complexes. 
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Our investigation also included monocarboxylic acids, such as acetic and benzoic acids, but in 

this case the very weak complex formation might cause small e.m.f. variation, which falls within the 

limits of error in E
0
 value. 

As regards the speciation models, in this paper we can only report the formation of ML species, 

and only in the case of mellitic acid of the M2L complex. This is due to the experimental procedure 

adopted, in particular we performed measurements at high pH values, therefore we cannot determine 

the formation of protonated species, such as MHL or successive MHqL species, that are reported for 

many systems. Furthermore, owing to the relative low M:L concentration ratio, the formation 

percentages of polynuclear MpL species is low, hampering their determination. For this purpose, the 

calculation of weak complexes, by means of protonation measurements in different ionic media is 

more suitable.  

For citrate, in the past, Daniele et al. [9] reported the formation of three species, namely Nacit, 

NaHcit and Na2cit, calculating the alkali metal weak complexes determining the protonation of citrate 

in different ionic media at different ionic strengths. The stability of the Na2cit species is higher than 

that of the Nacit one by 0.5 logK units almost at any ionic strength values, whereas for the NaHcit 

species they report values of 6.43, 6.45 and 6.75 (expressed as in eq. (1)) at I = 0.1, 0.5 and 1.0 mol L
-

1
, respectively.  

For mellitate, De Robertis et al. [27], reported the formation of twelve species, namely MpL 

(with 1 ≤ p ≤ 4), MpHL (with 1 ≤ p ≤ 3), MpH2L (with 1 ≤ p ≤ 2) and MpH3L (with 1 ≤ p ≤ 2). Also in 

this case the stabilities of alkali weak complexes were calculated starting from protonation constants in 

different ionic media at different ionic strengths. There is a good agreement between the stability of the 

ML and the M2L species found in this paper and in that of De Robertis et al.  

 

 

Table 1. Stability constant values of the NaL complexes expressed as logNaL ±2σ. The experimental 

values were determined for various ligands (L) in Bu4NBr or Et4NI, at different ionic strengths 

(expressed as mol L
-1

) and t = 25°C.  

 
 logNaL  

L I = 0 I = 0.1 
f)
 I = 0.1 I = 0.3

 f)
 I = 0.3

 h)
 I = 0.3 I = 0.4 

h)
 I = 0.5 

h)
 

mlt 3.06 a)    1.91 ±0.01  1.94 ±0.02  

mlt 4.75 a1)    3.48 ±0.02  3.54 ±0.02  

EDTA 2.54 b) 2.04 ±0.02 1.84 g)      

NTA 1.90 b) 1.46 ±0.03 1.35 g)      

btc 1.82 c)   1.06 ±0.06  1.07 c)   

cit 1.53 d)   1.12 ±0.02 1.04 ±0.01 0.98 d)   

EDDS     0.940 ±0.005  0.913 ±0.004 0.868 ±0.005 

phthal 1.02 e)   0.60 ±0.03  0.75 e)   

mal 0.91 e)   0.48 ±0.02  0.58 e)   

 

a)
 calculated from ref. [27]; 

a1)
 log for binuclear complex Na2L; 

b)
 calculated from ref. [5] ; 

c)
 

calculated from ref. [13]; 
 d)

 calculated from ref. [9]; 
 e)

 calculated from ref. [6]; 
f)
 this work, values 

measured at constant ionic strength in Bu4NBr; 
g)

 ref. [5]; 
h)

 this work, values measured at variable 

ionic strength in Et4NI. 
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4. CONCLUSIONS 

The formation of alkali metal complexes with polycarboxylate ligands is clearly shown by our 

results and their existence cannot be further questioned.  

With the aim of correctly solving analytical problems, in building chemical speciation models 

for interpretation of natural chemical system behaviour, the formation of alkali metal complexes 

cannot be neglected. 

The determination of formation constants of these species can be made by employing ion-

selective electrodes, either at constant or at variable ionic strength, but pH-metric measurements of 

protonation constants at different ionic strengths can allow to estimate them with a quite good 

accuracy, particularly if considering the weakness of the chemical species investigated. Furthermore, 

by employing pH-metric readings, we are allowed to determine the formation of protonated species 

(important for polyprotic ligands) as well, whose percentage of formation, in the experimental 

conditions suitable for the use of Na
+
- ISE electrode, is negligible.    

As regards the values of stability constants, they depend not only on the number of charged 

coordinating groups in the ligand molecule but also (i) on the nitrogen donor group(s), as shown by the 

formation constant values calculated for NTA, EDTA and EDDS, and (ii) on the presence of hydroxyl 

group as revealed by the citrate ion binding properties. 

 

 

ACKNOWLEDGEMENTS 

We thank the Universities of Messina and Torino for the partial financial support. 

 

 

References 

 

1. Y. Marcus and G. Hefter, Chem. Rev., 106 (2006) 4585 

2. P.G. Daniele, C. Foti, A. Gianguzza, E. Prenesti and S. Sammartano, Coord. Chem. Rev. , 252 

(2008) 1093 

3. C. De Stefano, C. Foti and A. Gianguzza, Talanta, 41 (1994) 1715 

4. A. De Robertis, C. Rigano and S. Sammartano, Ann. Chim. (Rome), 74 (1984) 33 

5. P.G. Daniele, C. Rigano and S. Sammartano, Anal. Chem., 57 (1985) 2956 

6. P.G. Daniele, A. De Robertis, C. De Stefano, S. Sammartano and C. Rigano, J. Chem. Soc. Dalton 

Trans., (1985) 2353 

7. A. De Robertis, C. De Stefano, S. Sammartano, R. Calì, R. Purrello and C. Rigano, J. Chem. Res., 

(1986) (S) 164 

8. C. De Stefano, C. Rigano, S. Sammartano and R. Scarcella, J. Chem. Res., (1988) (S) 372 

9. P.G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza and S. Sammartano, J. Chem. Res., 

(1990) (S) 300 

10. P.G. Daniele, A. De Robertis, C. De Stefano and S. Sammartano, Ann. Chim. (Rome), 80 (1990) 

177 

11. P.G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza and S. Sammartano, J. Solution Chem., 

20 (1991) 495 

12. A. De Robertis, C. De Stefano and A. Gianguzza, Thermochim. Acta, 177 (1991) 39 

13. A. De Robertis, C. Foti and A. Gianguzza, Ann. Chim. (Rome), 83 (1993) 485 

14. A. De Robertis, C. De Stefano, S. Sammartano and A. Gianguzza, Chem. Spec. Bioavail., 6 (1994) 

65 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

10986 

15. C. De Stefano, C. Foti, A. Gianguzza and D. Piazzese, Chem. Spec. Bioavail., 10 (1998) 19 

16. C. De Stefano, D. Milea, A. Pettignano and S. Sammartano, Anal. Bioanal. Chem., 376 (2003) 

1030 

17. F. Crea, C. De Stefano, A. Gianguzza, D. Piazzese and S. Sammartano, Talanta, 68 (2006) 1102 

18. G. Anderegg, L. Rao, I. Puigdomenech and O. Tochiyama, Chemical Thermodynamics 9. Chemical 

Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with 

Selected Organic Ligands, Elsevier, Amsterdam, The Netherlands (2005). 

19. A. De Robertis, P. Di Giacomo and C. Foti, Anal. Chim. Acta, 300 (1995) 45 

20. C. De Stefano, P. Princi, C. Rigano and S. Sammartano, Ann. Chim. (Rome), 77 (1987)  

21. C. De Stefano, P. Mineo, C. Rigano and S. Sammartano, Ann. Chim. (Rome), 83 (1993)  

22. C. De Stefano, S. Sammartano, P. Mineo and C. Rigano, Computer Tools for the Speciation of 

Natural Fluids, in Marine Chemistry - An Environmental Analytical Chemistry Approach, A. 

Gianguzza, E. Pelizzetti, and S. Sammartano, Editors. 1997, Kluwer Academic Publishers: 

Amsterdam. p. 71-83. 

23. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML, Guide to the Expression of Uncertainty in 

Measurement, , in 1
st
 edn. International Organization for Standardization. 1993: Geneva, 

Switzerland. 

24. R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M.A. Brett, M.F. Camoes, M.J.T. 

Milton, T. Mussini, R. Naumann, K.W. Pratt, P. Spitzer and G.S. Wilson, Pure Appl. Chem., 74 

(2002) 2169 

25. U. EURACHEM/CITAC (2000) Quantifying uncertainty in analytical measurement. S.L.R. Ellison 

(LGC, UK), M. Rosslein (EMPA, Switzerland),  A. Williams (UK) (eds), Tech. Rep. Guide CG4, 

EURACHEM/CITEC 2
nd

 edn. 

26. P. Fisicaro, E. Ferrara, E. Prenesti and S. Berto, Combining and Reporting Analytical Results, A. 

Fajgelj, M. Belli, U. Sansone, Editor. 2007, Royal Society of Chemistry: Cambridge (UK). 

27. A. De Robertis, C. De Stefano and C. Foti, Ann. Chim. (Rome), 86 (1996) 155 

 

 

© 2012 by ESG (www.electrochemsci.org) 

 

http://www.electrochemsci.org/

