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Corrosion resistance behaviour of S43903 ferritic stainless steel was evaluated in different 

hydrochloric acid and the acid chloride concentrations. The experiments were performed at ambient 

temperature using potentiodynamic polarization measurement. This paper reports the observed 

electrochemical response of the experimental tests. Different concentrations of the test media were 

used with sodium chloride addition. Tafel and polarization resistance techniques were used to estimate 

the corrosion rate and the polarisation resistance of the alloy samples tested. The results obtained 

showed some magnitude of corrosion susceptibility for the stainless steel at higher HCl concentrations 

and also in the acid chloride test media.  
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1. INTRODUCTION 

Stainless steel is the name given to a family of corrosion and heat resistant steels containing a 

minimum of 10.5% chromium. Just as there is a range of structural and engineering carbon steels 

meeting different requirements of strength, weldability and toughness, so there is a wide range of 

stainless steels with progressively higher levels of corrosion resistance and strength. These result from 

the controlled addition of alloying elements, each offering specific attributes in respect of strength and 

ability to resist different environments. The available grades of stainless steel can be classified into 

five basic families: ferritic, martensitic, austenitic, duplex and precipitation hardenable. A lot of 

research studies in corrosion and protection had been done [1-8] and are still being done on these 

groups of metallic alloys because of their use in all important facets of engineering infrastructural, 

production and manufacturing processes. 

http://www.electrochemsci.org/
mailto:akinloto@gmail.com


Int. J. Electrochem. Sci., Vol. 7, 2012 

  

11012 

Ferritic stainless steels have a "body-centred-cubic" (bcc) crystal structure, which is the same 

as pure iron at room temperature.  The main alloying element is chromium, with contents typically 

between 11 and 17%, although a higher chromium content of about 29% is found in one specialised 

grade. Carbon is kept low which results in these steels having limited strength. They are not 

hardenable by heat treatment and have annealed yield strengths in the range of 275 to 350 MPa. 

Ferritic grades have been developed to provide a group of stainless steel to resist corrosion and 

oxidation, while being highly resistant to stress corrosion cracking. These steels are magnetic but 

cannot be hardened or strengthened by heat treatment. They can be cold worked and softene.id by 

annealing. As a group, they are more corrosive resistant than the martensitic grades, but generally 

inferior to the austenitic grades. Like martensitic grades, these are straight chromium steels with no 

nickel. They are used for decorative trim, sinks, and automotive applications, particularly exhaust 

systems. 

Ferritic grades offer a wide range of corrosion resistance properties from non-severe conditions 

inside the home to rough outdoor conditions. At the high-end, ferritics surpass even some austenitic 

grades in corrosion resistance [9-11]. It must be noted, however, that the corrosion resistance of 

stainless steel is determined more by chemical composition than by austenitic or ferritic atomic 

structure.  These grades can be used in atmospheric environments of widely varied corrosive severity. 

The nickel-free ferritic grades have excellent resistances to chloride induced stress corrosion cracking.  

The molybdenum-alloyed ferritic steels, e.g. 4521, have largely the same corrosion resistance as 4401 / 

4404 but are superior to most austenitic steels in terms of their resistance to stress corrosion cracking. 

The ferritics, including the superferritics, group of stainless steel alloys had generated increased 

research interest, particularly in the recent time [12-16].   

Hydrochloric acid, the test medium in this work, is a highly corrosive, strong mineral acid with 

many industrial uses. Hydrogen chloride (HCl) is a monoprotic acid, which means it can dissociate 

(i.e., ionize) only once to give up one H
+
 ion (a single proton). In aqueous hydrochloric acid, the H

+
 

joins a water molecule to form a hydronium ion, H3O
+
 [17-18]. 

 

HCl + H2O → H3O
+
 + Cl

−
 

 

The other ion formed is Cl
−
, the chloride ion. Hydrochloric acid is a strong acid, since it is 

essentially completely dissociated in water [17-18]. It is the most difficult of the common acids to 

handle from the standpoints of corrosion and materials of construction. This acid is very corrosive to 

most of the common metals and alloys [7]. Hydrochloric acid is used in many industrial processes such 

as pickling of steel; production of organic and inorganic compounds, pH control and neutralization, 

and regeneration of ion exchangers. Hydrochloric acid is used for a large number of small-scale 

applications, such as leather processing, purification of common salt, household cleaning and building 

construction [19]. Oil production may be stimulated by injecting hydrochloric acid into the rock 

formation of an oil well, dissolving a portion of the rock, and creating a large-pore structure. Oil well 

acidizing is a common process in the North Sea oil production industry [20]. 

This work looks at the corrosion resistance reactions phenomena of S43903 ferritic stainless 

steel in varied concentrations of HCl. The acid test media were further contaminated with sodium 

http://en.wikipedia.org/wiki/Corrosive
http://en.wikipedia.org/wiki/Strong_acid
http://en.wikipedia.org/wiki/Mineral_acid
http://en.wikipedia.org/wiki/Monoprotic_acid
http://en.wikipedia.org/wiki/Dissociation_%28chemistry%29
http://en.wikipedia.org/wiki/Proton
http://en.wikipedia.org/wiki/Hydronium
http://en.wikipedia.org/wiki/Chloride
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chloride (NaCl) at all the concentrations of HCl used to further enhance the breakdown of passivity by 

the chloride ions. The work aims at evaluating the corrosion resistance of the stainless steel at different 

concentrations of the acid and the acid-chloride test media. It also aims at determining its viable 

usefulness in this likely industrial and work environments particularly with respect to materials 

selection.  

 

 

2. EXPERIMENTAL METHOD 

Ferritic stainless steel, – S43903 samples in plate form (10mm wide and 10mm long) used for 

this investigation were mounted in araldite resin and connected with a flexible wire connection, ground 

and polished to fine diamond (1μm), cleaned and rinsed/degreased in an ultrasonic bath using acetone. 

The samples were immediately kept in a desiccator for subsequent corrosion experimental studies. 

Potentiostatic polarisation experiments were performed using each of the flat plate specimens in turns, 

in which 1 cm
2
 surface area of the specimen was exposed to the test solution at room temperature. The 

experiments were performed using a polarisation cell of three – electrode system consisting of a 

reference electrode (silver chloride electrode– SCE), a working electrode (WE); and two carbon rod 

counter electrodes (CE). The potentiodynamic studies were made at a scan rate of 0.00166V/s from -

1.5 to +1.5V and the corrosion currents were recorded. The experiments were conducted in four 

different concentrations of hydrochloric acid (HCl) and the acid contaminated with 3.5% sodium 

chloride, Table 1. The chemicals used: sodium chloride (NaCl) and hydrochloric acid (HCl) were 

prepared from analytic reagent grade (AR).  

 

Table 1. Test Environments 

 

Hydrochloric acid, HCl HCl + 35 g/L NaCl (3.5%) 

4 M 4 M 

2.5 M 2.5 M 

1.5 M 1.5M 

1.0 M 1.0M 

 

The polarisation cell was connected to a potentiostat (Autolab PGSTAT 30 ECO CHIMIE) and 

interfaced with a computer for data acquisition and analysis. For reproducibility of results, three 

different experiments were performed for each of the samples under the same conditions; a scan rate of 

1 mV/s was maintained throughout the experiment. The experiments were performed in turns in de-

aerated condition using nitrogen gas. 

 

 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

11014 

3. RESULTS AND DISCUSSION 

3.1. 4 M HCl test environment 

For all the experimental tests performed, the summary of the results for all the major result 

parameters used in the analysis for this work are presented in Table 2. The potentiostatic polarization 

curves’ results for the test specimen recorded in 4 M HCl and the 4M HCl + 3.5% NaCl test media are 

presented in Figures 1 and 2 respectively. Fig.1 shows the polarization corrosion curve of the S43903 

ferritic stainless steel in 4M HCl alone. The open corrosion potential (OCP), Ecorr was -0.29249 V. 

This medium had the highest   molarity and hence the most concentrated but without added NaCl. 

From the Table, a polarisation resistance, Rρ, value of 288.04 Ω; corrosion rate of 0.59091 mm/year 

and current density of 5.53E-05 (A/cm2), in addition to the OCP values stated above, showed active 

corrosion reactions that persisted throughout the monitoring period. From Fig.1, the primary passive 

potential (Epp) value was 0.0991821 V, the critical current density (icr) value was 0.052475 (A/cm
2
); 

the passive current density (ipass) was 0.00118805 (A/cm
2
); the critical pitting potential (EB) was 

0.982971 V and passive potential range value was 0.798340 V. These values will be subsequently used 

comparatively for the values obtained for the other tests where applicable. The above results data 

changed with the use of the acid chloride, Fig. 2, that is, 4 M HCl + 3.5% NaCl. The polarization 

resistance, Rρ, value was lowered to 135.76 Ω; and likewise the Ecorr value (-0.19152 V). The 

corrosion rate increased to 0.8136 mm/yr; and so also the current density value, 7.62E-05 A/cm
2
. All 

these indicate increased electrochemical active corrosion reactions. The chloride ions, Cl
-
, from the 

sodium chloride would have added to this increased active corrosion reactions and hence increase in 

corrosion magnitude. 

 

Table 2. Corrosion polarisation results for the test in HCl 

 

Test Environment Ecorr, Obs 

(V)  

icorr 

(A/cm²)  

icorr (A)  Corrosion  

rate (mm/yr 

Polarization 

resistance (Ω)  

4 M HCl -0.29249 5.53E-05 7.47E-05 0.59091 288.04 

4 M HCl + 

3.5%NaCl 

-0.19152 7.62E-05 9.94E-05 0.8136 135.76 

2.5 M HCl -0.2058 3.31E-05 3.57E05 0.35341 295.55 

2.5 M HCl + 3.5% 

NaCl 

-0.16347 3.61E-05 4.71E-05 0.38495 124.75 

1.5 M HCl -0.22009 9.79E-06 1.23E-05 0.10376 1571.8 

 

1.5 MHCl + 3.5% 

NaCl 

-0.1951 3.48E-05 4.07E-05 0.37177 140.68 

1 M HCl -0.162 

46 

8.43E-06 7.21E-06 0.090036 4275.9 

1 M HCl + 3.5% 

NaCl 

-0.19314 2.89E-05 3.24E-05 0.30875 101.41 
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From Fig.2, the primary passive potential (Epp) value was -0.00335693 V, the critical current  

density (icr) was 0.0788025 (A/cm
2
); the passive current density (ipass) was 0.00203308 

(A/cm
2
); and the critical pitting potential (EB) was 0.96344 V. All these pointed towards increase in 

active corrosion reactions when compared with the Figure 1 values. 

 

 
   

Figure 1. Polarization curve of ferritic stainless steel in 4M HCl 

 

 
 

Figure 2. Polarisation curve of ferritic stainless steel in 4 M HCl + 3.5% NaCl 

 



Int. J. Electrochem. Sci., Vol. 7, 2012 

  

11016 

In general, the corrosion resistance, the passivation characteristics and the anodic protectibility 

improve as the primary passive potential becomes more active; as the critical current density and the 

passive current densities decrease, and as the passive potential range becomes broader. 

 

3.2. 2.5 M HCl and 2.5 M HCl + 3.5% NaCl test environment 

Figs. 3 and 4 show the polarization curve for the test specimen performed in 2.5 M HCl and the 

HCl + 3.5% NaCl respectively. The summary of the results for these tests in these environments are 

presented in Table 2. The Ecorr value from the Table was -0.2058 V, a relatively active corrosion 

reactions value.  

 

 
 

Figure 3. Polarisation curve of ferritic stainless steel in 2.5 M HCl 

 

In this medium, the corrosion rate value obtained was 0.35341 mm/yr which was low, particularly 

when compared with the value of 1.7116 mm/yr obtained for the test in 4 M HCl (Table 2). The 

dissociated chloride ions (Cl
-
) was therefore far more in 4M than in 2.5 M HCl and hence the more 

intense active corrosion reactions. The polarization resistance, Rρ, value obtained was 295.55 Ω which 

was far more than as obtained for 4 MHCl (288.04Ω) and hence the lower corrosion values obtained. 

A value of 3.31 × 10
-05

 A/cm
2
 current density was recorded and this was a far lower corrosion current 

than in the 4 M HCl. This value also showed corrosion - reactions which were less significant than in 4 

M HCl test environment. 
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 Figure 4. Polarisation curve of ferritic stainless steel in 2.5M HCl + 3.5% NaCl  

 

From Fig.3, the primary passive potential (Epp) value was 0.0981579 V, the critical current 

density (icr) value was 0.00494415 (A/cm
2
); the passive current density (ipass) was 0.000171265 

(A/cm
2
); the critical pitting potential (EB) was 0.960999 V and passive potential range value was 0.866 

V. When compared with the similar values obtained in Fig. 1, for the test in 4 M HCl, it could be seen 

that the primary potential value becomes more active; the critical current density and the passive 

current density decrease in values and the passive potential range becomes broader comparatively, and 

these could be associated with the improvement in the corrosion resistance, passivation characteristics 

and anodic protectibility of the stainless steel in 2.5 M HCl, a lower concentration test environment 

than in the former (4 M HCl). 

Just like in Fig. 2, the use of NaCl in addition to the HCl, Fig. 4, brought about changes in the 

corrosion reactions profile. The polarization resistance, Rρ, value was lowered to 124.75 Ω; the Ecorr 

was -0.16347 V, a lower negative value. The corrosion rate increased to 0.38495 mm/yr when 

compared with Fig. 3 – the HCl test environment alone; and so also the current density value, 3.61E-05 

A/cm
2 

increased slightly. These values indicate increasing loss of anodic protectibilty, reduction in 

corrosion resistance and decrease in passivation characteristics when compared with the HCl 

environment alone, Fig. 3. In Fig. 4, the primary passive potential (Epp) value was 0.0186157 V, the 

critical current density (icr) was 0.0568575 (A/cm
2
); the passive current density (ipass) was 

0.00144531 (A/cm
2
); and the critical pitting potential (EB) was 0.978088 V. All these are indication of 

increasing active corrosion reactions when compared with the Figure 3 values. 
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3.3. 1.5 M HCl test environment 

Fig. 5 shows the curve obtained from the corrosion measurement of the specimen tested in 1.5 

M HCl. The Ecorr (OCP) value obtained was -0.22009 V; and the polarisation resistance, Rρ, was 

1571.8 Ω.The corrosion current density value obtained was 9.79 × 10
-6

; and a corrosion rate value of 

0.10376 mm/yr was recorded. These data showed minimal corrosion reactions magnitude. These 

values gave lower active corrosion reactions and hence lower magnitude of corrosion when compared 

with the test experiments in 4 M and 2.5 M HCl respectively. This result was not unexpected due to the 

very lower concentration of the acid used. Further data values obtained from Fig.5 also pointed 

towards better corrosion performance in this low concentration of the acid. These values include: the 

primary passive potential (Epp) value was -0.0790405 V, the critical current density (icr) value was 

0.00138184 (A/cm
2
); the passive current density (ipass) was 5.02 × 10

-05
 (A/cm

2
); the critical pitting 

potential (EB) was 0.960999 V and passive potential range value was 0.842286 V. A comparison with 

the similar values obtained in Figs. 1 and 3 for the tests in 4 M and 2.5 M HCl respectively, showed 

that the primary potential value becomes more active; the critical current density and the passive 

current density decrease in values greatly. These could be associated with the improvement in the 

corrosion resistance, passivation characteristics and anodic protectibility of the stainless steel in 2.5 M 

HCl, a lower concentration test environment than the former (4 M HCl) as earlier indicated.  

 

 
  

Figure 5. Polarisation curve of ferritic stainless steel in 1.5 M HCl 

 

3.4. 1.5 M HCl + 35 g/l NaCl (3.5%) test environment 

When 35g/l (3.5%) sodium chloride was separately added to the same concentration (1.5M 

HCl) of the test environment as in Fig. 5, there was apparent increased active corrosion reactions 
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behaviour observed in the corrosion polarization values obtained, as shown in Table 2 and Fig. 6. From 

both the Table 2 and Fig. 6, it could be seen that a much higher corrosion current density (icorr) value 

of 3.48 × 10
-05

 A/cm
2
 was achieved that was even much higher than in 2.5 M HCl. A lower value of 

polarization resistance, Rρ, of 140.68 Ω that was even lower than that obtained in the test with 4M HCl 

was achieved. Also a much higher corrosion rate of 0.37177 mm/yr that was even much higher than 

obtained in the tests with 1.5 and 2.5 M HCl without NaCl addition was obtained. These values are 

apparent indication of increased corrosion reactions, due to the action of the added NaCl that increased 

Cl
-
 ions concentration in the test medium. The increased Cl

- 
ions acted to further depassivate the steel 

specimens’ protective film, initiated the metal’s surface anodic dissolution and hence increased 

corrosion of the tested specimens. From Fig.6, the primary passive potential (Epp) has a value of -

0.0692749 V, the critical current density, (icr) is 4.523 × 10 
-3 

A/cm
2 

; and the passive current, (ipass), 

is 2.14 × 10
-4

 A/cm
2
. 

 

 
 

Figure 6. Polarisation curve of ferritic stainless steel in 1.5 M HCl + 3.5% NaCl 

 

The critical pitting potential is 0.948972 V. From these data values, the primary passive 

potential becomes less active, and the critical current and the passive current densities increase. These 

are indications of increased active corrosion reactions due to the increased Cl
-
 ions concentration from 

the addition of NaCl as mentioned above. 

 

3.5. 1 M HCl  and 1 M HCl + 3.5% (35 g/l) NaCl test environment  

The potentiostatic polarization curves and tables of measurement results for the test specimens 

recorded in different concentrations of HCl with and without the addition of 35g/l NaCl are presented 
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in Figs. 7 and 8 and Table 2 respectively. Fig.7 shows the polarization corrosion curve of the ferritic 

stainless steel in 1M HCl alone. The open corrosion potential (OCP), Ecorr was 0.57387V. The 

specimen can be described to be protected with this potential value throughout the experimental 

period.  

This medium serves as the control for the subsequent experiment in which there was the 

addition of 3.5% NaCl (35g/l) to the HCl. A summary of the overall result data is presented in Table 2 

The corrosion rate recorded was 0.090036 mm/yr and the corrosion polarisation resistance, Rρ, was 

4275.9 Ω. At this 1 M HCl concentration, it appears that though there was corrosion reactions 

behaviour, the ferritic stainless steel specimen was very corrosion resistant. The primary passive 

potential, Epp, value obtained was 0.150452 V and the critical current density value was 1.53 × 10
-4

 

A/cm
2
. These two values put the corrosion behaviour more in the passive reactions state. 

 

 
  

Figure 7. Polarisation curve of ferritic stainless steel in 1 M HCl 

 

Fig. 8 and the relevant data in Table 2 show the corrosion polarisation curve and the summary 

of the results obtained for the test specimen in 1 M HCl + 35 g/l (3.5%) NaCl. The open circuit 

potential (Ecoor) recorded was -0.20027 V (Table 7). The corrosion rate value was 0.30875 mm/yr and 

the corrosion polarization resistance, Rρ, was 101.41 Ω. When compared with the test in 1 M HCl 

alone, these results data confirmed that there was increase in corrosion reactions when NaCl was used 

in addition, with the acid at that same concentration. The corrosion resistance, in comparison became 

very low and the corrosion rate increased drastically. 
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Figure 8. Polarisation curve of ferritic stainless steel in 1 M HCl + 3.5% NaCl 

 

The results obtained in the HCl and HCl + NaCl test media showed varied corrosion 

magnitudes. The effect of Cl
-
 ions, in particular, was significant in the active corrosion reactions 

phenomena causing the protective film rupture and initiation of anodic dissolution of the test 

electrodes. The overall corrosion polarisation behaviour showed the ferritic stainless steel electrode to 

have a measure of corrosion resistance in the HCl test environment alone at lower concentrations. The 

HCl- acid chloride solution increased the corrosion rate and reduced the corrosion resistance of the 

steel. The ferritic stainless steel also was susceptible to corrosion at the higher concentration(s) of HCl 

without NaCl as indicated by the test in the 4 M HCl. 

 

 

 

4. CONCLUSION 

Appreciable corrosion resistance of the tested S43903 stainless steel specimens was exhibited 

in the hydrochloric acid test environments alone at the low concentrations (1 M and 1.5 M), 

particularly in the test environments that did not contain added NaCl. The addition of sodium chloride, 

however, shifted the polarisation behaviour into active corrosion reactions at these two mentioned 

concentrations. The corrosion polarisation behaviour for the tests performed in 4 M HCl showed active 

corrosion reactions that were similar to the tests with added NaCl at the lower concentrations. There 

was reduced corrosion resistance of the steel at this concentration of the acid alone.  Addition of NaCl 

to this concentration increased the corrosion rate further and lowered the corrosion resistance. The 
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steel gave a fairly good corrosion resistance performance in 2.5 M HCl without sodium chloride 

addition. The stainless steel should be used with caution in the HCl environment that contains sodium 

chloride. 
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