# Density, Dynamic Viscosity and Derived Properties of Binary Mixtures of Methanol, Ethanol, *n*-Propanol, and *n*-Butanol with Pyridine at T = (293.15, 303.15, 313.15 and 323.15) K

Ezekiel D. Dikio<sup>1,\*</sup>, Simphiwe M. Nelana<sup>1</sup>, David A. Isabirye<sup>2</sup>, Eno E. Ebenso<sup>2</sup>

 <sup>1</sup>Applied Chemistry and Nanoscience Laboratory, Department of Chemistry, Vaal University of Technology, P. O. Box X021, Vanderbijlpark, South Africa.
 <sup>2</sup>Department of Chemistry, School of Mathematical and Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
 \*E-mail: <u>ezekield@vut.ac.za</u>.

Received: 15 August 2012 / Accepted: 22 September 2012 / Published: 1 November 2012

Densities, viscosities of binary liquid mixtures composed of pyridine and some primary alcohols namely methanol, ethanol, n-propanol and n-butanol were determined at 293.15, 303.15, 313.15 and 323.15 K. From the experimental results obtained, deviation in viscosity ( $\Delta\eta$ ), excess molar volume (V<sup>E</sup>), excess Gibbs free energy of activation of viscous flow ( $\Delta G^{*E}$ ), were determined. The deviations in viscosity, excess molar volume and excess Gibbs free energy of activation of viscous flow were correlated with Redlich-Kister polynomial equation. Other parameters like Grunberg-Nissan interaction constant (d') and a modified Kendall-Monroe equation ( $E\eta_m$ ), were used to quantitatively analyze the interactions in the system.

Keywords: Density, Viscosity, Binary mixtures, Pyridine, Alcohols.

# **1. INTRODUCTION**

The mixing of different solvents results in the formation of a solution that is different from ideal [1]. The thermodynamic properties of multicomponent liquid mixtures and their analysis in terms of interpretative models constitute a very interesting subject [2]. The practical need for thermodynamic data for teaching and research as well as for design and set up of industrial processes continue to drive research in the study of multicomponent systems. The characterization of mixtures through their thermodynamic and transport properties is important from the fundamental viewpoint of understand their mixing behavior [3-8]. A thorough knowledge of transport properties of non-aqueous solutions is essential in many chemical and industrial applications [9].

The studies of excess properties such as deviation in viscosity, excess molar volume, excess Gibbs free energy of activation of viscous flow and Grunberg-Nissan interaction constant of binary mixtures are useful in understanding the nature of intermolecular interactions between two liquids [8-12]. Properties such as density and viscosity at several temperatures both for pure chemicals and their binary liquid mixtures over the whole composition range are useful for understanding of the thermodynamic and transport properties associated with heat and fluid flow [6,13]. Binary liquid mixtures due to their unusual behavior have attracted considerable attention due to their importance from both theoretical and practical point of view because these mixtures are used in titration, calorimetry and reaction calorimetry, among other uses [10,14].

Alcohols serve as simple examples of biological and industrially important amphiphilic materials that exist in the liquid state which may be due to hydrogen bonding of their O–H group. They are polar and self-associated liquids. The dipolar association of alcohols decreases when they are mixed with aromatic hydrocarbons due to some specific intermolecular interactions between the alcohol and an aromatic hydrocarbon [13,15]. Primary alcohols have both a proton donor and a proton acceptor group. It is expected that there will be a significant degree of H-bonding leading to self-association in the pure state in addition to mutual association in their binaries [11,16].

In this study, experimental viscosity and density are reported at four temperatures 293.15, 303.15, 313.15 and 323.15 K for binary mixtures of pyridine and some alcohols namely methanol, ethanol, n-propanol and n-butanol. Deviation in viscosity ( $\Delta \eta$ ), excess molar volume ( $V^E$ ) and excess Gibbs free energy of activation of viscous flow ( $\Delta G^{*E}$ ) have been calculated from the density ( $\rho$ ), and viscosity ( $\eta$ ), data. Modified Kendall-Monroe equation with no parameters has been used in correlating viscosity data of the binary mixtures. Calculated deviation in viscosity and excess functions were fitted to the Redlich-Kister polynomial equation and the results analyzed in terms of molecular interactions.

#### 2. EXPERIMENTAL

# 2.1. Materials

Reagent grade methanol, ethanol, propanol, butanol and pyridine were purchased from Sigma-Aldrich, South Africa and used without further purification.

# 2.2 Mixture preparation

Binary mixtures were prepared by weighing appropriate amounts of pyridine and alcohol on an electronic balance. An AE Adam balance (Adam Equipment Inc. USA) model PW124 with a maximum capacity of 120 g, a readability range 0.0001 g and repeatability (S.D.) of 0.00015 g, linearity 0.0002 g, operating temperature  $+10^{\circ}$ C to  $40^{\circ}$ C was used in all measurements.

Density measurement of binary mixtures was carried out with an Anton Paar DMA-4500 M digital densitometer thermostatted at different temperatures. Two integrated Pt 100 platinum thermometers were provided for good precision in temperature control internally (T  $\pm$  0.01 K). The densimeter protocol includes an automatic correction for the viscosity of the sample. The apparatus is precise to within  $1.0 \times 10^{-5}$  g/cm<sup>3</sup>, and the uncertainty of the measurements was estimated to be better than  $\pm 1.0 \times 10^{-4}$  g/cm<sup>3</sup>. Calibration of the densimeter was performed at atmospheric pressure using doubly distilled and degassed water.

#### 2.4 Viscosity measurement

Viscosity measurements were carried out using Anton Paar SVM 3000 Stabinger Viscometer. The viscometer has a dynamic viscosity range of 0.2 to 20 000 mPa.s, a kinematic viscosity range of 0.2 to 20 000 mm<sup>2</sup>/s and a density range of 0.65 to 3 g/cm<sup>3</sup>. The instrument is equipped with a maximum temperature range of  $+105^{\circ}$ C and a minimum of 20°C below ambient. Instrument viscosity reproducibility is 0.35% of measured value and density reproducibility of 0.0005 g/cm<sup>3</sup>.

### **3. RESULTS AND DISCUSSION**

A comparison of experimentally determined values of density ( $\rho$ ), and viscosity ( $\eta$ ) measured for all pure liquids at 293.15, 303.15, 313.15 and 323.15 K, with literature values are presented in table 1.

| Component  |                          | T = 293.15                                                            |                                                                                | T = 303.15                                                                           |                                                                                  | T = 313.15                                                              |                                                                                  | T = 323.15                                                            |                                                                                 |
|------------|--------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|
|            |                          | ho (g/cm <sup>3</sup> )                                               | η<br>(mPa.s)                                                                   | $ ho$ $(g/cm^3)$                                                                     | η<br>(mPa.s)                                                                     | ho (g/cm <sup>3</sup> )                                                 | η<br>(mPa.s)                                                                     | ho (g/cm <sup>3</sup> )                                               | η<br>(mPa.s)                                                                    |
| Methanol   | Experiment<br>Literature | $\begin{array}{c} 0.7939 \\ 0.7910^{17} \\ 0.79112^{20} \end{array}$  | $\begin{array}{c} 0.5990 \\ 0.5945^{17} \\ 0.5970^{18} \end{array}$            | $\begin{array}{c} 0.7844 \\ 0.78180^{19,20} \end{array}$                             | $0.5163 \\ 0.510^{18}$                                                           | $\begin{array}{c} 0.7748 \\ 0.77232^{20} \end{array}$                   | $0.4324 \\ 0.456^{18}$                                                           | $\begin{array}{c} 0.7701 \\ 0.76511^{20} \end{array}$                 | $\begin{array}{c} 0.4055 \\ 0.403^{21} \end{array}$                             |
| Ethanol    | Experiment<br>Literature | $\begin{array}{c} 0.8005 \\ 0.78945^{18} \\ 0.79008^{21} \end{array}$ | $\begin{array}{c} 0.7893 \\ 1.144^{18} \\ 1.21^{21} \end{array}$               | $\begin{array}{c} 0.8000 \\ 0.7818^{19} \\ 0.78100^{21} \end{array}$                 | $\begin{array}{c} 0.7807 \\ 0.949^{18} \\ 1.00^{21} \\ 0.995^{21} \end{array}$   | $\begin{array}{c} 0.7916 \\ 0.7734^{19} \\ 0.77231^{21} \end{array}$    | $\begin{array}{c} 0.7720 \\ 0.794^{[5]} \\ 0.83^{21} \\ 0.8290^{21} \end{array}$ | $\begin{array}{c} 0.7739 \\ 0.76324^{21} \\ 0.77220^{21} \end{array}$ | $\begin{array}{c} 0.7630 \\ 0.670^{18} \\ 0.69^{21} \\ 0.6868^{21} \end{array}$ |
| n-Propanol | Experiment<br>Literature | $\begin{array}{c} 0.8045 \\ 0.8041^{17} \\ 0.80376^{21} \end{array}$  | $\begin{array}{c} 2.2506 \\ 2.256 \\ 2.19^{21} \\ 2.238^{21} \end{array}$      | 0.7967<br>0.79574 <sup>21</sup>                                                      | 1.7153<br>1.72<br>1.73 <sup>21</sup><br>1.145 <sup>21</sup>                      | $\begin{array}{c} 0.7820 \\ 0.78746^{21} \end{array}$                   | 1.4339<br>1.405<br>1.37 <sup>21</sup><br>1.381 <sup>21</sup>                     | $\begin{array}{c} 0.7730 \\ 0.77902^{21} \\ 0.77391^{21} \end{array}$ | $\begin{array}{c} 1.0983 \\ 1.130 \\ 1.10^{21} \\ 1.115^{21} \end{array}$       |
| n-Butanol  | Experiment<br>Literature | 0.8115<br>0.81<br>0.8101 <sup>17</sup><br>0.80979 <sup>21</sup>       | $\begin{array}{c} 2.9623 \\ 2.948^{18} \\ 2.93^{21} \\ 2.963^{21} \end{array}$ | $\begin{array}{c} 0.8037\\ 0.8022^{[6,8]}\\ 0.80209^{21}\\ 0.80195^{21} \end{array}$ | $\begin{array}{c} 2.2662 \\ 2.2243^{[9]} \\ 2.271^{21} \\ 2.26^{21} \end{array}$ | $\begin{array}{c} 0.7958 \\ 0.79396^{[10]} \\ 0.79437^{21} \end{array}$ | $\frac{1.7680}{1.7734^{[10]}}\\ 1.77^{21}\\ 1.783^{21}$                          | 0.7876<br>0.78643 <sup>21</sup>                                       | $\begin{array}{c} 1.3631 \\ 1.411^{18} \\ 1.41^{21} \\ 1.421^{21} \end{array}$  |
| Pyridine   | Experiment<br>Literature | $0.9880 \\ 0.9819^{18}$                                               | 1.4927                                                                         | 0.9780<br>0.9737                                                                     | 1.2054                                                                           | 0.9680                                                                  | 1.0098                                                                           | 0.9537                                                                | 0.7719                                                                          |

**Table 1.** Comparison of experimental densities ( $\rho$ ) and viscosities ( $\eta$ ) with literature values

**Table 2.** Experimental values of density  $\rho(g/cm^3)$ , viscosity  $\eta(mPa.s)$ , deviation in viscosity  $\Delta \eta(mPa.s)$ , excess molar volumes  $V^E(cm^3/mol)$ , molar volume of mixture  $V_m(cm^3/mol)$ , excess Gibbs free energy of activation of viscous flow  $\Delta G^{*E}(J/mol)$ , Grunberg-Nissan parameter (*d'*) and modified Kendall and Monroe viscosity correlation  $E\eta_m$  (mPa.s) with pyridine ( $x_I$ ) at 293.15, 303.15, 313.15 and 323.15 K.

| $X_{I}$ | $\rho(g/cm^3)$ | $\eta$ (mPa.s) | $\Delta\eta$ (mPa.s) | $V^{E}(cm^{3}/mol)$ | $V_m(cm^3/mol)$ | $\Delta G^{*^E}(J/mol)$ | d'          | $E\eta_m(mPa.s)$ |
|---------|----------------|----------------|----------------------|---------------------|-----------------|-------------------------|-------------|------------------|
| 1.0000  | 0.9880         | 1.4927         | 0.0000               | 0.0000              | 80.0607         | 0.0000                  | 0.0000      | 0.0000           |
| 0.9003  | 0.9631         | 1.0695         | -0.3429              | 1.1566              | 77.2590         | 246.3145                | 4.0691      | 0.0597           |
| 0.8008  | 0.9529         | 1.0875         | -0.2448              | 1.0195              | 73.1754         | 934.4682                | 1.9090      | 0.1174           |
| 0.7003  | 0.9260         | 0.9154         | -0.3359              | 2.0285              | 70.1902         | 1042.7914               | 0.2595      | 0.1704           |
| 0.6006  | 0.9182         | 0.8420         | -0.3290              | 1.4732              | 65.6766         | 1183.5755               | -           | 0.2141           |
| 0.4760  | 0.9038         | 0.8919         | -0.1786              | 0.9788              | 60.2352         | 1603.7511               | 0.5838      | 0.2495           |
| 0.4013  | 0.8712         | 0.8530         | -0.1574              | 2.1635              | 58.4541         | 1642.7594               | -           | 0.2568           |
| 0.2997  | 0.8537         | 0.7364         | -0.1921              | 1.7949              | 54.0516         | 1302.0910               | 2 2584      | 0.2450           |
| 0.2032  | 0.8283         | 0.6161         | -0.2347              | 1.8011              | 50.2265         | 774.3171                | - 4 4917    | 0.2050           |
| 0.1028  | 0.8180         | 0.6617         | -0.1081              | 0.6436              | 45.0828         | 619.5616                | - 7 0555    | 0.1268           |
| 0.0000  | 0.7939         | 0.6870         | 0.0000               | 0.0000              | 40.3577         | 0.0000                  | 0.0000      | 0.0000           |
|         | 303.15 K       |                |                      |                     |                 |                         |             |                  |
| 1.0000  | 0.9780         | 1.2054         | 0.0000               | 0.0000              | 80.8793         | 0.0000                  | 0.0000      | 0.0000           |
| 0.9003  | 0.9532         | 0.9189         | -0.2225              | 1.1733              | 78.0614         | 407.1797                | 4.6069      | 0.0510           |
| 0.8008  | 0.9429         | 0.8804         | -0.1972              | 1.0426              | 73.9515         | 965.0874                | 1.8483      | 0.0996           |
| 0.7003  | 0.9163         | 0.7584         | -0.2546              | 2.0517              | 70.9332         | 1131.0321               | 0.3307      | 0.1434           |
| 0.6006  | 0.9084         | 0.7169         | -0.2320              | 1.4949              | 66.3851         | 1341.7254               | 0.2615      | 0.1789           |
| 0.4760  | 0.8822         | 0.7234         | -0.1456              | 1.8079              | 61.7100         | 1682.0571               | 0.5953      | 0.2069           |
| 0.4013  | 0.8614         | 0.7170         | -0.1040              | 2.2074              | 59.1191         | 1776.9694               | 0.8915      | 0.2120           |
| 0.2997  | 0.8441         | 0.6291         | -0.1266              | 1.8220              | 54.6664         | 1461.2595               | 2.0120      | 0.2010           |
| 0.2032  | 0.8188         | 0.5222         | -0.1716              | 1.8280              | 50.8092         | 891.6245                | 4.2118      | 0.1673           |
| 0.1028  | 0.8084         | 0.5506         | -0.0787              | 0.6563              | 45.6182         | 681.6361                | -           | 0.1029           |
| 0.0000  | 0.7844         | 0.5633         | 0.0000               | 0.0000              | 40.8465         | 0.0000                  | 0.0000      | 0.0000           |
|         | 313.15 K       |                |                      |                     |                 |                         |             |                  |
| 1.0000  | 0.9680         | 1.0098         | 0.0000               | 0.0000              | 81.7149         | 0.0000                  | 0.0000      | 0.0000           |
| 0.9003  | 0.9432         | 0.7937         | -0.1585              | 1.1983              | 78.8890         | 523.1829                | 5.8244      | 0.0436           |
| 0.8008  | 0.9329         | 0.7338         | -0.1610              | 1.0653              | 74.7442         | 1029.0982               | 2.2550      | 0.0848           |
| 0.7003  | 0.9064         | 0.6492         | -0.1876              | 2.0897              | 71.7080         | 1292.6979               | 0.7252      | 0.1219           |
| 0.6006  | 0.8985         | 0.6055         | -0.1737              | 1.5224              | 67.1166         | 1497.7828               | 0.0085      | 0.1517           |
| 0.4760  | 0.8723         | 0.6077         | -0.0995              | 1.8453              | 62.4104         | 1864.1643               | -<br>0.4174 | 0.1749           |
| 0.4013  | 0.8513         | 0.5811         | -0.0830              | 2.2705              | 59.8205         | 1886.7004               | 0.8833      | 0.1789           |
| 0.2997  | 0.8344         | 0.5059         | -0.0995              | 1.8527              | 55.3019         | 1562.2187               | 2.0820      | 0.1693           |
| 0.2032  | 0.8093         | 0.4292         | -0.1205              | 1.8514              | 51.4056         | 1052.4287               | 4 2199      | 0.1407           |
| 0.1028  | 0.7988         | 0.4380         | -0.0537              | 0.6646              | 46.1665         | 773.5706                | 8 1110      | 0.0864           |

(a) Pyridine (1) + Methanol (2) 293.15 K

| 0.0000 | 0.7748   | 0.4324 | 0.0000  | 0.0000 | 41.3526 | 0.0000    | 0.0000      | 0.0000 |
|--------|----------|--------|---------|--------|---------|-----------|-------------|--------|
|        | 323.15 K |        |         |        |         |           |             |        |
| 1.0000 | 0.9581   | 0.7719 | 0.0000  | 0.0000 | 82.5592 | 0.0000    | 0.0000      | 0.0000 |
| 0.9003 | 0.9332   | 0.6512 | -0.0991 | 1.3811 | 79.7344 | 601.3039  | 1.4235      | 0.0391 |
| 0.8008 | 0.9228   | 0.5974 | -0.1312 | 1.4025 | 75.5623 | 974.2366  | 0.0539      | 0.0744 |
| 0.7003 | 0.8963   | 0.5360 | -0.1708 | 2.6000 | 72.5160 | 1154.3551 | 0.6340      | 0.1048 |
| 0.6006 | 0.8885   | 0.5176 | -0.1675 | 2.1619 | 67.8720 | 1330.0805 | 0.8378      | 0.1279 |
| 0.4760 | 0.8624   | 0.5007 | -0.1573 | 2.6732 | 63.1268 | 1448.0616 | -<br>1.1041 | 0.1442 |
| 0.4013 | 0.8414   | 0.4342 | -0.2076 | 3.2220 | 60.5243 | 1112.2408 | 1.8422      | 0.1456 |
| 0.2997 | 0.8241   | 0.3662 | -0.2534 | 2.9769 | 55.9931 | 562.4994  | 3.0805      | 0.1355 |
| 0.2032 | 0.7994   | 1.9850 | 1.3863  | 3.0970 | 52.0423 | 4893.5986 | 6.2488      | 0.1108 |
| 0.1028 | 0.7890   | 0.3115 | -0.2654 | 2.0302 | 46.7399 | -555.3334 | -<br>9.4701 | 0.0670 |
| 0.0000 | 0.7936   | 0.5545 | 0.0000  | 0.0000 | 40.3730 | 0.0000    | 0.0000      | 0.0000 |

# (b) Pyridine (1) + Ethanol (2) 293.15 K

| $x_1$  | ho       | η      | $\Delta \eta$ | $V^{E}$  | V <sub>m</sub> | $\Delta G^{*^{L}}$ | d'      | $E\eta_m(mPa.s)$ |
|--------|----------|--------|---------------|----------|----------------|--------------------|---------|------------------|
| 1.0000 | 0.9839   | 0.9847 | 0.0000        | 0.0000   | 80.3943        | 0.0000             | 0.0000  | 0.0000           |
| 0.9003 | 0.9650   | 0.9624 | -0.0028       | 0.4941   | 78.5564        | 815.8017           | 1.9634  | 0.0725           |
| 0.8008 | 0.9459   | 0.9847 | 0.0388        | 0.9325   | 76.6730        | 1374.9294          | 1.1098  | 0.1318           |
| 0.7003 | 0.9273   | 0.9100 | -0.0161       | 1.2422   | 74.6262        | 1527.1906          | 0.3621  | 0.1773           |
| 0.6006 | 0.9159   | 0.8970 | -0.0097       | 0.9077   | 71.9596        | 1692.2294          | 0.1649  | 0.2072           |
| 0.4760 | 0.8910   | 0.8839 | 0.0016        | 1.2142   | 69.3516        | 1784.8488          | -0.0109 | 0.2215           |
| 0.4013 | 0.8772   | 0.8650 | -0.0027       | 1.2398   | 67.6299        | 1728.7783          | -0.1700 | 0.2169           |
| 0.2997 | 0.8579   | 0.8524 | 0.0045        | 1.2261   | 65.2396        | 1591.8659          | -0.3716 | 0.1937           |
| 0.2032 | 0.8406   | 0.8322 | 0.0032        | 1.0342   | 62.7905        | 1315.1779          | -0.7616 | 0.1526           |
| 0.1028 | 0.8333   | 0.8115 | 0.0021        | -0.0469  | 59.3610        | 832.0138           | -1.8509 | 0.0888           |
| 0.0000 | 0.8082   | 0.7893 | 0.0000        | 0.0000   | 57.0032        | 0.0000             | 0.0000  | 0.0000           |
|        | 303.15 K |        |               |          |                |                    |         |                  |
| 1.0000 | 0.9739   | 0.9747 | 0.0000        | 0.0000   | 81.2198        | 0.0000             | 0.0000  | 0.0000           |
| 0.9003 | 0.9550   | 0.9526 | -0.0028       | 0.5153   | 79.3790        | 844.2599           | 1.9706  | 0.0717           |
| 0.8008 | 0.9362   | 0.9747 | 0.0386        | 0.9494   | 77.4675        | 1422.4482          | 1.1136  | 0.1304           |
| 0.7003 | 0.9178   | 0.9005 | -0.0161       | 1.2615   | 75.3987        | 1579.3481          | 0.3633  | 0.1754           |
| 0.6006 | 0.9065   | 0.8874 | -0.0098       | 0.9247   | 72.7058        | 1749.5865          | 0.1645  | 0.2050           |
| 0.4760 | 0.8820   | 0.8744 | 0.0014        | 1.2228   | 70.0593        | 1845.0773          | -0.0118 | 0.2192           |
| 0.4013 | 0.8682   | 0.8557 | -0.0029       | 1.2598   | 68.3310        | 1787.6337          | -0.1713 | 0.2146           |
| 0.2997 | 0.8491   | 0.8432 | 0.0044        | 1.2457   | 65.9158        | 1646.1352          | -0.3736 | 0.1917           |
| 0.2032 | 0.8321   | 0.8232 | 0.0031        | 1.0423   | 63.4319        | 1359.7686          | -0.7648 | 0.1511           |
| 0.1028 | 0.8247   | 0.8027 | 0.0021        | -0.0369  | 59.9800        | 860.7729           | -1.8576 | 0.0879           |
| 0.0000 | 0.8000   | 0.7807 | 0.0000        | 0.0000   | 57.5875        | 0.0000             | 0.0000  | 0.0000           |
|        | 31       | 3.15 K |               |          |                |                    |         |                  |
| 1.0000 | 0.8204   | 0.9645 | 0.0000        | 0.0000   | 96.4164        | 0.0000             | 0.0000  | 0.0000           |
| 0.9003 | 0.9451   | 0.9426 | -0.0027       | -12.3956 | 80.2105        | 494.5641           | 1.9771  | 0.0709           |

| 0.8008                                                                                 | 0.9265                                                                                 | 0.9645                                                                                           | 0.0383                                                                                               | -10.5307                                                                                | 78.2785                                                                                                                                 | 1133.7723                                                                                                       | 1.1170                                                                                      | 0.1290                                                                                 |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 0.7003                                                                                 | 0.9082                                                                                 | 0.8908                                                                                           | -0.0160                                                                                              | -8.7668                                                                                 | 76.1957                                                                                                                                 | 1337.5954                                                                                                       | 0.3641                                                                                      | 0.1735                                                                                 |
| 0.6006                                                                                 | 0.8971                                                                                 | 0.8778                                                                                           | -0.0098                                                                                              | -7.6846                                                                                 | 73.4676                                                                                                                                 | 1555.0493                                                                                                       | 0.1647                                                                                      | 0.2028                                                                                 |
| 0.4760                                                                                 | 0.8728                                                                                 | 0.8649                                                                                           | 0.0013                                                                                               | -5.5925                                                                                 | 70.7978                                                                                                                                 | 1706.1674                                                                                                       | -0.0121                                                                                     | 0.2168                                                                                 |
| 0.4013                                                                                 | 0.8591                                                                                 | 0.8468                                                                                           | -0.0025                                                                                              | -4.4806                                                                                 | 69.0548                                                                                                                                 | 1679.6202                                                                                                       | -0.1698                                                                                     | 0.2123                                                                                 |
| 0.2997                                                                                 | 0.8402                                                                                 | 0.8339                                                                                           | 0.0042                                                                                               | -3.0384                                                                                 | 66.6140                                                                                                                                 | 1574.5593                                                                                                       | -0.3753                                                                                     | 0.1897                                                                                 |
| 0.2032                                                                                 | 0.8233                                                                                 | 0.8142                                                                                           | 0.0031                                                                                               | -1.8545                                                                                 | 64.1099                                                                                                                                 | 1319.8600                                                                                                       | -0.7669                                                                                     | 0.1495                                                                                 |
| 0.1028                                                                                 | 0.8160                                                                                 | 0.7937                                                                                           | 0.0019                                                                                               | -1.5079                                                                                 | 60.6195                                                                                                                                 | 845.8532                                                                                                        | -1.8651                                                                                     | 0.0870                                                                                 |
| 0.0000                                                                                 | 0.7916                                                                                 | 0.7720                                                                                           | 0.0000                                                                                               | 0.0000                                                                                  | 58.1986                                                                                                                                 | 0.0000                                                                                                          | 0.0000                                                                                      | 0.0000                                                                                 |
|                                                                                        | 323.15 K                                                                               |                                                                                                  |                                                                                                      |                                                                                         |                                                                                                                                         |                                                                                                                 |                                                                                             |                                                                                        |
| 1.0000                                                                                 | 0.9537                                                                                 | 0.9544                                                                                           | 0.0000                                                                                               | 0.0000                                                                                  | 82.9401                                                                                                                                 | 0.0000                                                                                                          | 0.0000                                                                                      | 0.0000                                                                                 |
|                                                                                        |                                                                                        |                                                                                                  |                                                                                                      |                                                                                         |                                                                                                                                         |                                                                                                                 |                                                                                             |                                                                                        |
| 0.9003                                                                                 | 0.9351                                                                                 | 0.9325                                                                                           | -0.0028                                                                                              | 0.5311                                                                                  | 81.0682                                                                                                                                 | 899.8397                                                                                                        | 1.9864                                                                                      | 0.0701                                                                                 |
| 0.9003                                                                                 | 0.9351<br>0.9166                                                                       | 0.9325<br>0.9544                                                                                 | -0.0028<br>0.0381                                                                                    | 0.5311<br>0.9791                                                                        | 81.0682<br>79.1240                                                                                                                      | 899.8397<br>1517.5577                                                                                           | 1.9864<br>1.1231                                                                            | 0.0701<br>0.1275                                                                       |
| 0.9003<br>0.8008<br>0.7003                                                             | 0.9351<br>0.9166<br>0.8985                                                             | 0.9325<br>0.9544<br>0.8811                                                                       | -0.0028<br>0.0381<br>-0.0159                                                                         | 0.5311<br>0.9791<br>1.3016                                                              | 81.0682<br>79.1240<br>77.0183                                                                                                           | 899.8397<br>1517.5577<br>1683.4651                                                                              | 1.9864<br>1.1231<br>0.3661                                                                  | 0.0701<br>0.1275<br>0.1716                                                             |
| 0.9003<br>0.8008<br>0.7003<br>0.6006                                                   | 0.9351<br>0.9166<br>0.8985<br>0.8875                                                   | 0.9325<br>0.9544<br>0.8811<br>0.8681                                                             | -0.0028<br>0.0381<br>-0.0159<br>-0.0099                                                              | 0.5311<br>0.9791<br>1.3016<br>0.9487                                                    | 81.0682<br>79.1240<br>77.0183<br>74.2623                                                                                                | 899.8397<br>1517.5577<br>1683.4651<br>1864.5482                                                                 | 1.9864         1.1231         0.3661         0.1653                                         | 0.0701<br>0.1275<br>0.1716<br>0.2006                                                   |
| 0.9003<br>0.8008<br>0.7003<br>0.6006<br>0.4760                                         | 0.9351<br>0.9166<br>0.8985<br>0.8875<br>0.8634                                         | 0.9325<br>0.9544<br>0.8811<br>0.8681<br>0.8552                                                   | -0.0028<br>0.0381<br>-0.0159<br>-0.0099<br>0.0011                                                    | 0.5311<br>0.9791<br>1.3016<br>0.9487<br>1.2580                                          | 81.0682         79.1240         77.0183         74.2623         71.5685                                                                 | 899.8397<br>1517.5577<br>1683.4651<br>1864.5482<br>1966.5755                                                    | 1.9864<br>1.1231<br>0.3661<br>0.1653<br>-0.0129                                             | 0.0701<br>0.1275<br>0.1716<br>0.2006<br>0.2144                                         |
| 0.9003<br>0.8008<br>0.7003<br>0.6006<br>0.4760<br>0.4013                               | 0.9351<br>0.9166<br>0.8985<br>0.8875<br>0.8634<br>0.8498                               | 0.9325<br>0.9544<br>0.8811<br>0.8681<br>0.8552<br>0.8366                                         | -0.0028<br>0.0381<br>-0.0159<br>-0.0099<br>0.0011<br>-0.0032                                         | 0.5311<br>0.9791<br>1.3016<br>0.9487<br>1.2580<br>1.3004                                | 81.0682         79.1240         77.0183         74.2623         71.5685         69.8105                                                 | 899.8397<br>1517.5577<br>1683.4651<br>1864.5482<br>1966.5755<br>1904.9068                                       | 1.9864<br>1.1231<br>0.3661<br>0.1653<br>-0.0129<br>-0.1745                                  | 0.0701<br>0.1275<br>0.1716<br>0.2006<br>0.2144<br>0.2100                               |
| 0.9003<br>0.8008<br>0.7003<br>0.6006<br>0.4760<br>0.4013<br>0.2997                     | 0.9351<br>0.9166<br>0.8985<br>0.8875<br>0.8634<br>0.8498<br>0.8311                     | 0.9325<br>0.9544<br>0.8811<br>0.8681<br>0.8552<br>0.8366<br>0.8246                               | -0.0028<br>0.0381<br>-0.0159<br>-0.0099<br>0.0011<br>-0.0032<br>0.0042                               | 0.5311<br>0.9791<br>1.3016<br>0.9487<br>1.2580<br>1.3004<br>1.2821                      | 81.0682         79.1240         77.0183         74.2623         71.5685         69.8105         67.3434                                 | 899.8397<br>1517.5577<br>1683.4651<br>1864.5482<br>1966.5755<br>1904.9068<br>1755.1817                          | 1.9864<br>1.1231<br>0.3661<br>0.1653<br>-0.0129<br>-0.1745<br>-0.3769                       | 0.0701<br>0.1275<br>0.1716<br>0.2006<br>0.2144<br>0.2100<br>0.1876                     |
| 0.9003<br>0.8008<br>0.7003<br>0.6006<br>0.4760<br>0.4013<br>0.2997<br>0.2032           | 0.9351<br>0.9166<br>0.8985<br>0.8875<br>0.8634<br>0.8498<br>0.8311<br>0.8145           | 0.9325<br>0.9544<br>0.8811<br>0.8681<br>0.8552<br>0.8366<br>0.8246<br>0.8046                     | -0.0028<br>0.0381<br>-0.0159<br>-0.0099<br>0.0011<br>-0.0032<br>0.0042<br>0.0027                     | 0.5311<br>0.9791<br>1.3016<br>0.9487<br>1.2580<br>1.3004<br>1.2821<br>1.0672            | 81.0682<br>79.1240<br>77.0183<br>74.2623<br>71.5685<br>69.8105<br>67.3434<br>64.8026                                                    | 899.8397<br>1517.5577<br>1683.4651<br>1864.5482<br>1966.5755<br>1904.9068<br>1755.1817<br>1448.6732             | 1.9864<br>1.1231<br>0.3661<br>0.1653<br>-0.0129<br>-0.1745<br>-0.3769<br>-0.7736            | 0.0701<br>0.1275<br>0.1716<br>0.2006<br>0.2144<br>0.2100<br>0.1876<br>0.1479           |
| 0.9003<br>0.8008<br>0.7003<br>0.6006<br>0.4760<br>0.4013<br>0.2997<br>0.2032<br>0.1028 | 0.9351<br>0.9166<br>0.8985<br>0.8875<br>0.8634<br>0.8498<br>0.8311<br>0.8145<br>0.8073 | 0.9325<br>0.9544<br>0.8811<br>0.8681<br>0.8552<br>0.8366<br>0.8246<br>0.8246<br>0.8046<br>0.7843 | -0.0028<br>0.0381<br>-0.0159<br>-0.0099<br>0.0011<br>-0.0032<br>0.0042<br>0.0042<br>0.0027<br>0.0016 | 0.5311<br>0.9791<br>1.3016<br>0.9487<br>1.2580<br>1.3004<br>1.2821<br>1.0672<br>-0.0428 | 81.0682         79.1240         77.0183         74.2623         71.5685         69.8105         67.3434         64.8026         61.2727 | 899.8397<br>1517.5577<br>1683.4651<br>1864.5482<br>1966.5755<br>1904.9068<br>1755.1817<br>1448.6732<br>916.0792 | 1.9864<br>1.1231<br>0.3661<br>0.1653<br>-0.0129<br>-0.1745<br>-0.3769<br>-0.7736<br>-1.8788 | 0.0701<br>0.1275<br>0.1716<br>0.2006<br>0.2144<br>0.2100<br>0.1876<br>0.1479<br>0.0861 |

# (c) Pyridine (1)+ n-Propanol (2) 293.15 K

| $x_1$  | ρ        | η      | $\Delta\eta$ | V <sup>E</sup> | V <sub>m</sub> | ∆G* <sup>E</sup> | d'      | $E\eta_m(mPa.s)$ |
|--------|----------|--------|--------------|----------------|----------------|------------------|---------|------------------|
| 1.0000 | 0.9847   | 1.1771 | 0.0000       | 0.0000         | 80.3290        | 0.0000           | 0.0000  | 0.0000           |
| 0.9003 | 0.9624   | 1.1804 | -0.1237      | 0.3103         | 80.2220        | 629.0965         | -7.3237 | 0.1944           |
| 0.8008 | 0.9847   | 1.4439 | 0.0129       | -3.0113        | 76.4915        | 1264.3551        | -2.3991 | 0.3325           |
| 0.7003 | 0.9100   | 1.4395 | -0.1193      | 1.5910         | 80.6656        | 1492.3448        | -1.4879 | 0.4204           |
| 0.6006 | 0.8970   | 1.8604 | 0.1747       | 1.0656         | 79.7229        | 2075.1513        | 0.0722  | 0.4618           |
| 0.4760 | 0.8839   | 1.5432 | -0.3012      | 0.0903         | 78.2260        | 1413.7822        | -0.3137 | 0.4565           |
| 0.4013 | 0.8650   | 1.9658 | 0.0263       | 0.4713         | 78.2945        | 1837.0767        | 0.9098  | 0.4264           |
| 0.2997 | 0.8524   | 2.0921 | 0.0232       | -0.2107        | 77.1871        | 1632.4337        | 1.6931  | 0.3571           |
| 0.2032 | 0.8322   | 2.1453 | -0.0465      | -0.1364        | 76.8575        | 1265.4588        | 2.7869  | 0.2645           |
| 0.1028 | 0.8115   | 2.3774 | 0.0577       | -0.1064        | 76.4673        | 913.9462         | 6.8043  | 0.1444           |
| 0.0000 | 0.7893   | 2.4506 | 0.0000       | 0.0000         | 76.1434        | 0.0000           | 0.0000  | 0.0000           |
|        | 303.15 K |        |              |                |                |                  |         |                  |
| 1.0000 | 0.9747   | 0.9691 | 0.0000       | 0.0000         | 81.1532        | 0.0000           | 0.0000  | 0.0000           |
| 0.9003 | 0.9526   | 0.9840 | -0.0732      | 0.3100         | 81.0473        | 703.2704         | -6.3315 | 0.1489           |
| 0.8008 | 0.9747   | 1.1677 | 0.0223       | -3.0537        | 77.2763        | 1304.8547        | -2.0841 | 0.2560           |
| 0.7003 | 0.9005   | 1.1918 | -0.0422      | 1.6135         | 81.5166        | 1621.8207        | -1.1772 | 0.3253           |
| 0.6006 | 0.8874   | 1.4231 | 0.1010       | 1.0980         | 80.5853        | 2046.9496        | -0.0212 | 0.3591           |
| 0.4760 | 0.8744   | 1.2571 | -0.1752      | 0.1084         | 79.0759        | 1548.1616        | -0.1938 | 0.3575           |

| 0.4013 | 0.8557   | 1.5283 | 0.0300  | 0.4894  | 79.1454 | 1884.0999 | 0.8134  | 0.3353 |
|--------|----------|--------|---------|---------|---------|-----------|---------|--------|
| 0.2997 | 0.8432   | 1.6233 | 0.0352  | -0.2029 | 78.0293 | 1689.2286 | 1.5322  | 0.2824 |
| 0.2032 | 0.8232   | 1.6496 | -0.0238 | -0.1320 | 77.6978 | 1307.5202 | 2.4718  | 0.2104 |
| 0.1028 | 0.8027   | 1.8072 | 0.0451  | -0.1054 | 77.3056 | 936.4934  | 6.0340  | 0.1155 |
| 0.0000 | 0.7807   | 1.8530 | 0.0000  | 0.0000  | 76.9822 | 0.0000    | 0.0000  | 0.0000 |
|        | 313.15 K |        |         |         |         |           |         |        |
| 1.0000 | 0.9643   | 0.9638 | 0.0000  | 0.0000  | 82.0284 | 0.0000    | 0.0000  | 0.0000 |
| 0.9003 | 0.9426   | 0.8368 | -0.1738 | 0.2954  | 81.9072 | 383.4332  | -5.5588 | 0.1240 |
| 0.8008 | 0.9645   | 0.9663 | -0.0913 | -3.1103 | 78.0935 | 998.7747  | -1.9771 | 0.2123 |
| 0.7003 | 0.8908   | 0.9949 | -0.1098 | 1.6282  | 82.4042 | 1415.0639 | -1.1742 | 0.2686 |
| 0.6006 | 0.8778   | 1.1437 | -0.0079 | 1.1072  | 81.4666 | 1820.5142 | -0.2812 | 0.2953 |
| 0.4760 | 0.8649   | 1.0381 | -0.1720 | 0.1057  | 79.9445 | 1457.3345 | -0.4604 | 0.2923 |
| 0.4013 | 0.8463   | 1.2196 | -0.0256 | 0.4978  | 80.0245 | 1764.2923 | 0.3162  | 0.2733 |
| 0.2997 | 0.8339   | 1.2573 | -0.0357 | -0.2026 | 78.8995 | 1551.6114 | 0.6993  | 0.2291 |
| 0.2032 | 0.8142   | 1.3061 | -0.0323 | -0.1422 | 78.5566 | 1277.2762 | 1.3785  | 0.1699 |
| 0.1028 | 0.7937   | 1.3768 | -0.0088 | -0.0971 | 78.1822 | 859.8977  | 3.4239  | 0.0928 |
| 0.0000 | 0.7720   | 1.4339 | 0.0000  | 0.0000  | 77.8497 | 0.0000    | 0.0000  | 0.0000 |
|        | 323.15 K |        |         |         |         |           |         |        |
| 1.0000 | 0.9544   | 0.7016 | 0.0000  | 0.0000  | 82.8793 | 0.0000    | 0.0000  | 0.0000 |
| 0.9003 | 0.9325   | 0.7178 | -0.0234 | 0.3249  | 82.7943 | 823.5612  | -4.2407 | 0.0945 |
| 0.8008 | 0.9544   | 0.8225 | 0.0418  | -3.1482 | 78.9200 | 1423.3787 | -1.2524 | 0.1611 |
| 0.7003 | 0.8810   | 0.8219 | 0.0014  | 1.6737  | 83.3209 | 1760.1280 | -0.7413 | 0.2029 |
| 0.6006 | 0.8681   | 0.9078 | 0.0478  | 1.1397  | 82.3769 | 2057.1076 | -0.0479 | 0.2220 |
| 0.4760 | 0.8552   | 0.8756 | -0.0339 | 0.1263  | 80.8513 | 1828.4744 | 0.0330  | 0.2184 |
| 0.4013 | 0.8366   | 0.9560 | 0.0169  | 0.5344  | 80.9523 | 1938.6171 | 0.5392  | 0.2034 |
| 0.2997 | 0.8246   | 0.9983 | 0.0189  | -0.2108 | 79.7894 | 1738.4873 | 1.0405  | 0.1696 |
| 0.2032 | 0.8046   | 1.0181 | 0.0004  | -0.1095 | 79.4939 | 1394.0392 | 1.7372  | 0.1251 |
| 0.1028 | 0.7843   | 1.0804 | 0.0229  | -0.0714 | 79.1192 | 967.3196  | 4.1813  | 0.0680 |
| 0.0000 | 0.7630   | 1.0983 | 0.0000  | 0.0000  | 78.7680 | 0.0000    | 0.0000  | 0.0000 |
|        |          |        |         |         |         |           |         |        |

# (d) Pyridine (1) + n-Butanol (2) 293.15 K

| <i>x</i> <sub>1</sub> | ρ      | η      | $\Delta \eta$ | $V^{\mathcal{E}}$ | V <sub>m</sub> | ∆G* <sup>E</sup> | d'      | $E\eta_m(mPa.s)$ |
|-----------------------|--------|--------|---------------|-------------------|----------------|------------------|---------|------------------|
| 1.0000                | 0.9853 | 1.1835 | 0.0000        | 0.0000            | 80.2801        | 0.0000           | 0.0000  | 0.0000           |
| 0.9003                | 0.9630 | 1.2574 | -0.1034       | 0.2411            | 81.6236        | 724.4743         | -8.5277 | 0.2500           |
| 0.8008                | 0.9259 | 1.6625 | 0.1244        | 1.8752            | 84.3670        | 1656.9043        | -2.4739 | 0.4173           |
| 0.7003                | 0.9435 | 1.4495 | -0.2671       | -1.3390           | 82.2549        | 1277.1430        | -2.0954 | 0.5144           |
| 0.6006                | 0.9116 | 1.7512 | -0.1428       | -0.1076           | 84.5886        | 1703.3661        | -0.6637 | 0.5504           |
| 0.4760                | 0.8934 | 1.6978 | -0.4178       | -0.4567           | 85.6173        | 1386.4009        | -0.3042 | 0.5261           |
| 0.4013                | 0.8925 | 2.1925 | -0.0560       | -1.6131           | 85.2868        | 1764.6788        | 1.0338  | 0.4812           |
| 0.2997                | 0.8743 | 2.1732 | -0.2560       | -1.5398           | 86.4835        | 1364.5793        | 1.5854  | 0.3913           |
| 0.2032                | 0.8600 | 2.1685 | -0.4323       | -1.7275           | 87.3627        | 879.9503         | 2.5886  | 0.2815           |
| 0.1028                | 0.8434 | 2.3977 | -0.3817       | -1.7110           | 88.4894        | 476.8354         | 6.6323  | 0.1489           |

| 0.0000 | 0.8115   | 2.9623 | 0.0000  | 0.0000  | 91.3370 | 0.0000    | 0.0000  | 0.0000 |
|--------|----------|--------|---------|---------|---------|-----------|---------|--------|
|        | 303.15 K |        |         |         |         |           |         |        |
| 1.0000 | 0.9752   | 0.9765 | 0.0000  | 0.0000  | 81.1116 | 0.0000    | 0.0000  | 0.0000 |
| 0.9003 | 0.9540   | 1.0421 | -0.0630 | 0.1742  | 82.3936 | 777.1638  | -7.7198 | 0.1921 |
| 0.8008 | 0.9166   | 1.3470 | 0.1133  | 1.8887  | 85.2230 | 1705.3286 | -2.2085 | 0.3221 |
| 0.7003 | 0.9339   | 1.1972 | -0.1659 | -1.3414 | 83.1004 | 1380.6199 | -1.8382 | 0.3990 |
| 0.6006 | 0.9024   | 1.3747 | -0.1169 | -0.0987 | 85.4510 | 1712.2245 | -0.6821 | 0.4291 |
| 0.4760 | 0.8844   | 1.3657 | -0.2866 | -0.4456 | 86.4886 | 1469.8553 | -0.2618 | 0.4128 |
| 0.4013 | 0.8836   | 1.7037 | -0.0450 | -1.6184 | 86.1459 | 1788.0016 | 0.9104  | 0.3792 |
| 0.2997 | 0.8656   | 1.6900 | -0.1897 | -1.5405 | 87.3527 | 1395.6712 | 1.4113  | 0.3101 |
| 0.2032 | 0.8521   | 1.7216 | -0.2825 | -1.7929 | 88.1727 | 963.2680  | 2.4456  | 0.2244 |
| 0.1028 | 0.8351   | 1.8864 | -0.2472 | -1.7123 | 89.3689 | 544.5442  | 6.2007  | 0.1194 |
| 0.0000 | 0.8037   | 2.2662 | 0.0000  | 0.0000  | 92.2235 | 0.0000    | 0.0000  | 0.0000 |
|        | 313.15 K |        |         |         |         |           |         |        |
| 1.0000 | 0.9651   | 0.8188 | 0.0000  | 0.0000  | 81.9604 | 0.0000    | 0.0000  | 0.0000 |
| 0.9003 | 0.9441   | 0.8904 | -0.0230 | 0.1827  | 83.2576 | 870.9028  | -6.7869 | 0.1507 |
| 0.8008 | 0.9072   | 1.1079 | 0.0999  | 1.9095  | 86.1060 | 1749.0260 | -1.9675 | 0.2544 |
| 0.7003 | 0.9243   | 0.9939 | -0.1094 | -1.3471 | 83.9635 | 1456.7037 | -1.6451 | 0.3171 |
| 0.6006 | 0.8932   | 1.1123 | -0.0856 | -0.0940 | 86.3312 | 1751.0800 | -0.6502 | 0.3433 |
| 0.4760 | 0.8754   | 1.1219 | -0.1943 | -0.4402 | 87.3777 | 1563.6854 | -0.2064 | 0.3331 |
| 0.4013 | 0.8747   | 1.3530 | -0.0341 | -1.6306 | 87.0224 | 1818.0784 | 0.8047  | 0.3076 |
| 0.2997 | 0.8569   | 1.3092 | -0.1743 | -1.5492 | 88.2396 | 1367.2904 | 1.1370  | 0.2535 |
| 0.2032 | 0.8435   | 1.3856 | -0.1895 | -1.7958 | 89.0716 | 1038.4001 | 2.2830  | 0.1848 |
| 0.1028 | 0.8268   | 1.5131 | -0.1573 | -1.7238 | 90.2660 | 615.6071  | 5.8000  | 0.0992 |
| 0.0000 | 0.7958   | 1.7680 | 0.0000  | 0.0000  | 93.1390 | 0.0000    | 0.0000  | 0.0000 |
|        | 323.15 K |        |         |         |         |           |         |        |
| 1.0000 | 0.9550   | 0.6958 | 0.0000  | 0.0000  | 82.8272 | 0.0000    | 0.0000  | 0.0000 |
| 0.9003 | 0.9342   | 0.7687 | 0.0064  | 0.1879  | 84.1399 | 967.2306  | -5.6347 | 0.1151 |
| 0.8008 | 0.8977   | 0.9314 | 0.1025  | 1.9334  | 87.0173 | 1828.1858 | -1.5466 | 0.1924 |
| 0.7003 | 0.9146   | 0.8450 | -0.0508 | -1.3543 | 84.8540 | 1583.1935 | -1.3181 | 0.2375 |
| 0.6006 | 0.8839   | 0.9199 | -0.0425 | -0.0935 | 87.2395 | 1838.3713 | -0.5197 | 0.2544 |
| 0.4760 | 0.8663   | 0.9378 | -0.1077 | -0.4431 | 88.2956 | 1706.3893 | -0.0867 | 0.2436 |
| 0.4013 | 0.8655   | 1.0881 | -0.0072 | -1.6340 | 87.9474 | 1884.9685 | 0.7378  | 0.2230 |
| 0.2997 | 0.8480   | 1.0579 | -0.1052 | -1.5619 | 89.1657 | 1458.8314 | 1.0360  | 0.1816 |
| 0.2032 | 0.8349   | 1.1189 | -0.1086 | -1.8271 | 89.9891 | 1142.4333 | 2.0900  | 0.1308 |
| 0.1028 | 0.8183   | 1.2040 | -0.0905 | -1.7453 | 91.2036 | 693.1098  | 5.1957  | 0.0693 |
| 0.0000 | 0.7876   | 1.3631 | 0.0000  | 0.0000  | 94.1087 | 0.0000    | 0.0000  | 0.0000 |

Experimental density ( $\rho$ ), dynamic viscosity ( $\eta$ ), at temperatures of (293.15, 303.15, 313.15 and 323.15 K) are presented in table 2. The table also lists deviation in viscosity,  $\Delta \eta$ , excess molar volume,  $V^E$  and excess Gibbs free energy of activation of viscous flow  $\Delta G^{*E}$ , for (methanol + pyridine), (ethanol + pyridine), (*n*-propanol + pyridine) and (*n*-butanol + pyridine) as a function of mole fraction of the alcohol.

To investigate the molecular interaction between pyridine and the alcohols, (methanol, ethanol, *n*-propanol and *n*-butanol), viscosity deviation,  $\Delta \eta$ , excess molar volumes  $V^E$  and excess Gibbs free energy of activation of viscous flow,  $\Delta G^{*E}$ , have been evaluated from experimental density and viscosity using equations 1 and 2 respectively.

$$V^{E} = \frac{x_{1}M_{1} + x_{2}M_{2}}{\rho_{m}} - \left(\frac{x_{1}M_{1}}{\rho_{1}} + \frac{x_{2}M_{2}}{\rho_{2}}\right)$$
(1)

$$\Delta \eta = \eta_m - (x_1 \eta_1 + x_2 \eta_2) \tag{2}$$

where  $x_1$  and  $x_2$  are the mole fractions calculated from mass fractions.  $M_1$  and  $M_2$  are molar masses,  $\rho_1$  and  $\rho_2$  are densities,  $\eta_1$  and  $\eta_2$  are the viscosities of pure components 1 and 2 respectively.  $\rho_m$  and  $\eta_m$  are the density and viscosity of the mixture.

The excess Gibbs free energy of activation of viscous flow was obtained from equation 3.

$$\Delta G^{*E} = RT [ln\eta_m V_m - (x_1 ln\eta_1 V_1 + x_2 ln\eta_2 V_2)]$$
(3)

where *R* is the universal constant of gases, T is the absolute temperature,  $V_1$  and  $V_2$  are the molar volumes of component 1 and 2,  $x_1$  and  $x_2$  represents the mole fraction of component 1 and 2.  $V_m$  is obtained from equation 4 below.  $\eta_1$ ,  $\eta_2$  and  $\eta_m$  are the viscosity of component 1 and 2 and mixture respectively.

$$V_m = \frac{x_1 M_1 + x_2 M_2}{\rho_m}$$
(4)

The values of  $V^E$ ,  $\Delta \eta$  and  $\Delta G^{*E}$  were correlated by a Redlich-Kister [22] type polynomial, equation 5 and 6.

$$\Delta Y = x_1 x_2 \sum_{k=1}^{n} A_k (2x_1 - 1)^{k-1}$$
(5)

$$\Delta Y = x_1 x_2 [A_o + A_1 (2x_1 - 1)^1 + A_2 (2x_1 - 1)^2 + A_3 (2x_1 - 1)^3 + A_4 (2x_1 - 1)^4]$$
(6)

The values of the parameters  $A_k$ , are obtained by fitting the equation to the experimental values with the least-squares method. The correlated results for excess molar volume, viscosity deviation and excess Gibbs free energy of activation of viscous flow are presented in table 3. The standard deviation  $\sigma(\Delta Y)$  is calculated from equation 7.

$$\sigma(\Delta Y) = \left[\frac{\Sigma (Y_{expt} - Y_{calc})^2}{N - n}\right]^{1/2}$$
(7)

where  $\Delta Y$  is the excess volume,  $V^E$ , deviation in viscosity  $\Delta \eta$ , and excess Gibbs free energy of activation of viscous flow,  $\Delta G^{*E}$ . The subscript *expt* and *calc* represents the experimental and calculated values respectively. *N* and *n* are the number of experimental data points and the number of coefficients in the Redlich-Kister polynomial equation.

**Table 3.** Adjustable parameters  $A_i$ , with standard deviations  $\sigma(\Delta Y)$ , for deviation in viscosity  $(\Delta \eta)$ , Excess volume  $(V^E)$ , and Excess Gibbs free energy  $(\Delta G^{*E})$ , for binary mixtures at various temperatures.

| Parameter/Function                          | T/K    | $A_o$   | $A_I$          | $A_2$                       | $A_{3}$                | $A_4$                  | $\sigma$ |
|---------------------------------------------|--------|---------|----------------|-----------------------------|------------------------|------------------------|----------|
| $\Delta\eta$ (mPa.s)                        |        |         | Ру             | ridine (1) +Metha           | nol (2)                |                        |          |
|                                             | 293.15 | -0.2585 | 0.1306         | 3.0x10 <sup>-15</sup>       |                        |                        | 0.58     |
|                                             | 303.15 | -0.1866 | 0.0943         | 9.0x10 <sup>-16</sup>       |                        |                        | 0.42     |
|                                             | 313.15 | -0.1403 | 0.0737         | $1.0 \times 10^{-15}$       |                        |                        | 0.31     |
|                                             | 323.15 | -0.1711 | 0.3293         | 9.0x10 <sup>-16</sup>       |                        |                        | 0.07     |
| $V^{E}$ (cm <sup>3</sup> /mol)              | 293.15 | 1.1668  | 0.0408         | -3.0x10 <sup>-13</sup>      | $1.0 \times 10^{-13}$  |                        | 3.7      |
|                                             | 303.15 | 1.2504  | 0.0598         | $-3.0 \times 10^{-13}$      | $2.0 \times 10^{-13}$  |                        | 4.0      |
|                                             | 313.15 | 1.2774  | 0.0561         | $-2.0 \times 10^{-13}$      | $1.0 \times 10^{-13}$  |                        | 4.1      |
|                                             | 323.15 | 1.5192  | 0.08764        | $-7.0 \times 10^{-13}$      | $5.0 \times 10^{-13}$  |                        | 6.2      |
| $\Delta G^{*^{E}}(kJ/mol)$                  | 293.15 | 0.75    | 0.198          |                             |                        |                        | 2.7      |
|                                             | 303.15 | 0.84    | 0.196          | -7.0x10 <sup>-12</sup>      |                        |                        | 3.0      |
|                                             | 313.15 | 0.94    | 0.200          | -3.0x10 <sup>-10</sup>      | $1.0 \times 10^{-10}$  |                        | 3.3      |
|                                             | 323.15 | 0.78    | 0.524          | -7.0x10 <sup>-12</sup>      |                        |                        | 3.4      |
|                                             |        |         | P              | yridine (1) + Ethan         | ol (2)                 |                        |          |
| Δη (mPa.s)                                  | 293.15 | 0.0035  | -0.0036        |                             |                        |                        | 0.0024   |
|                                             | 303.15 | 0.0034  | -0.0036        | $-1.0 \times 10^{-17}$      |                        |                        | 0.0023   |
|                                             | 313.15 | 0.0034  | -0.0036        | $-1.0 \times 10^{-17}$      |                        |                        | 0.0022   |
|                                             | 323.15 | 0.0034  | -0.0038        | $-2.0 \times 10^{-17}$      |                        |                        | 0.0014   |
| $V^{E}(cm^{3}/mol)$                         | 293.15 | 0.8153  | -0.1314        | $-7.0 \times 10^{-15}$      |                        |                        | 2.36     |
|                                             | 303.15 | 0.8313  | -0.1377        | $-2.0 \times 10^{-14}$      | 10                     |                        | 2.40     |
|                                             | 313.15 | -8.9159 | 7.6559         | $-2.0 \times 10^{-12}$      | $7.0 \times 10^{-13}$  |                        | 10.79    |
|                                             | 323.15 | 0.8572  | -0.1458        | $-1.0 \times 10^{-13}$      |                        |                        | 2.46     |
| $\Delta G^{*E}(kJ/mol)$                     | 293.15 | 1.14    | 27.614         | 0.2719                      | 0.0021                 |                        | 4.09     |
|                                             | 303.15 | 1.18    | 27.879         | 0.2719                      | 0.0021                 |                        | 4.23     |
|                                             | 313.15 | 0.94    | 256.35         | 0.2719                      | 0.0021                 |                        | 3.98     |
|                                             | 323.15 | 1.26    | 28.095         | 0.2719                      | 0.0021                 |                        | 4.51     |
|                                             |        |         | Pyı            | ridine (1)+ <i>n</i> -Propa | mol (2)                |                        |          |
| $\Delta\eta \ (mPa.s)$                      | 293.15 | -0.0647 | 0.0005         | 6.0x10 <sup>-5</sup>        | -8.0x10 <sup>-15</sup> | 3.0x10 <sup>-7</sup>   | 0.08     |
|                                             | 303.15 | -0.0246 | 0.0343         | $-7.0 \times 10^{-15}$      | $3.0 \times 10^{-14}$  | $-7.0 \times 10^{-15}$ | 0.007    |
|                                             | 313.15 | -0.1026 | 0.0855         | $-1.0 \times 10^{-14}$      | $9.0 \times 10^{-13}$  | 14                     | 0.14     |
|                                             | 323.15 | 0.006   | 0.005          | -9.0x10 <sup>-14</sup>      | 1.0x10 <sup>-15</sup>  | -6.0x10 <sup>-14</sup> | 0.04     |
| $V^{E}(cm^{3}/mol)$                         | 293.15 | -0.1217 | 0.2543         | $-4.0 \times 10^{-10}$      |                        |                        | 0.24     |
|                                             | 303.15 | -0.1209 | 0.2639         | $4.0 \times 10^{-16}$       |                        |                        | 0.27     |
|                                             | 313.15 | -0.1341 | 0.2823         | $4.0 \times 10^{-10}$       |                        |                        | 0.27     |
| E                                           | 323.15 | -0.1222 | 0.2908         | 4.0x10 <sup>10</sup>        |                        |                        | 0.33     |
| $\Delta G^{*^{L}}(kJ/mol)$                  | 293.15 | 1.08    | 0.113          |                             |                        |                        | 3.64     |
|                                             | 303.15 | 1.14    | 0.090          |                             |                        |                        | 4.9      |
|                                             | 313.15 | 0.91    | 0.277          |                             |                        |                        | 3.5      |
|                                             | 323.15 | 1.25    | 0.0411<br>Data | riding $(1) \perp n$ Buta   | pol(2)                 |                        | 4.0      |
|                                             | 202.15 | 0.0512  | F y            | $0 \times 10^{-13}$         | $2 \times 10^{-12}$    | $7 \times 10^{-13}$    | 0.02     |
| $\Delta\eta \ (mPa.s)$                      | 293.13 | -0.0313 | -0.246         | $7 \times 10^{-13}$         | $-2 \times 10^{-12}$   | $7 \times 10^{-13}$    | 0.92     |
|                                             | 313 15 | -0.0283 | -0.1703        | $9 \times 10^{-13}$         | $-1 \times 10^{-12}$   | $5 \times 10^{-13}$    | 0.03     |
|                                             | 323 15 | 0.014   | -0.1011        | $3 \times 10^{-13}$         | $-6 \times 10^{-13}$   | $2 \times 10^{-13}$    | 0.44     |
| $V^{E}(cm^{3}/mol)$                         | 203.15 | 0.354   | _1 8625        | 5 x 10 <sup>-12</sup>       | -1 x10 <sup>-11</sup>  | 4 x10 <sup>-12</sup>   | 4.00     |
| v (cm/mor)                                  | 293.15 | 0.334   | -1.8606        | $7 \times 10^{-12}$         | $-4 \times 10^{-12}$   | $4 \times 10^{-12}$    | 4.09     |
|                                             | 313 15 | 0.3509  | -1.8763        | $5 \times 10^{-12}$         | $-1 \times 10^{-11}$   | $4 \times 10^{-12}$    | 4 14     |
|                                             | 323.15 | 0.3594  | -1.9024        | $4 \times 10^{-12}$         | $-7 \times 10^{-12}$   | $5 \times 10^{-12}$    | 4 19     |
| $AG^{*E}(kI/mol)$                           | 203 15 | 1.16    | 0.273          | 1 x 10 <sup>-10</sup>       | -1 x10 <sup>-10</sup>  | 0.110                  | 3 69     |
| $\Delta \mathbf{U}^{+}$ ( <i>KJ/IIIOL</i> ) | 303 15 | 1.10    | -0.296         | $-1 \times 10^{-10}$        | $1 \times 10^{-10}$    |                        | 3.52     |
|                                             | 313 15 | 1.20    | -0 288         | $-7 \times 10^{-12}$        | 1 410                  |                        | 3.42     |
|                                             | 323.15 | 1.34    | -0.295         | $1 \times 10^{-10}$         | -1 x10 <sup>-10</sup>  |                        | 3.93     |

Kendall and Monroe [23] derived equation 8 for analyzing the viscosity of binary mixtures based on zero adjustable parameter.

$$\eta_m = \left(x_1 \eta_1^{1/3} + x_2 \eta_2^{1/3}\right)^3 \tag{8}$$

$$E\eta_m = x_1 x_2 \left( x_1 \eta_1^{1/3} + x_2 \eta_2^{1/3} \right)^3 \tag{9}$$

where  $E\eta_m$  is a modified Kendall-Monroe equation, 9.

The predictive ability of some selected viscosity models such as the one parameter model of Frenkel [24] equation 10 and Hind [25] equation 11, apply to the studied binary mixtures.

$$\ln \eta = x_1^2 \ln \eta_1 + x_2^2 \ln \eta_2 + 2x_1 x_2 \ln \eta_{12} \tag{10}$$

$$\eta = x_1^2 \eta_1 + x_2^2 \eta_2 + 2x_1 x_2 \eta_{12} \tag{11}$$

where  $\eta_{12}$  is a constant attributed to unlike pair interactions. Its value is obtained from equation 12.

$$\eta_{12} = 0.5\eta_1 + 0.5\eta_2 \tag{12}$$

Grunberg and Nissan [26] formulated equation 13 to determine the molecular interactions leading to viscosity changes with one parameter to estimate the dynamic viscosity of binary liquid mixtures.

$$ln\eta_m = x_1 ln\eta_1 + x_2 ln\eta_2 + x_1 x_2 d$$
 (13)

where d' is an interaction parameter which is a function of the composition and temperature of binary liquid mixture.

McAllister's three-body interaction model derived for the viscosity of a mixture based on Eyring's rate theory enables correlation of the kinematic viscosity of binary liquid mixtures with mole fraction [15]. The three-body model is presented in equation 14.

$$lnv = x_{1}^{3}lnv_{1} + x_{2}^{3}lnv_{2} + 3x_{1}^{2}x_{2}lnv_{12} + 3x_{1}x_{2}^{2}lnv_{21} - ln\left[x_{1} + \left(\frac{x_{2}M_{2}}{M_{1}}\right)\right] + 3x_{1}^{2}x_{2}ln\left[\left(\frac{2}{3}\right) + \left(\frac{M_{2}}{3M_{1}}\right)\right] + 3x_{1}x_{2}^{2}ln\left[\left(\frac{1}{3}\right) + \left(\frac{2M_{2}}{3M_{1}}\right)\right] + x_{2}^{3}ln\left(\frac{M_{2}}{M_{1}}\right)$$

$$(14)$$

where v,  $v_1$  and  $v_2$  are the kinematic viscosities of the mixture, viscosity of component 1 and 2 respectively,  $v_{12}$  and  $v_{21}$  are interaction parameters. The correlating ability of equations 9, 10, 11 and

13 were tested by calculating the average percentage deviations (*APD*) between the experimental and the calculated viscosity as shown in equation 15.

$$APD = \frac{100}{N} \sum_{i=1}^{N} \left[ \frac{(\eta_{expt} - \eta_{calc})}{\eta_{expt}} \right]$$
(15)

where  $\eta_{expt}$  and  $\eta_{calc}$  represent the viscosity of experimental and calculated data, N is the number of experimental data points.





Figure 1. Plots of deviation in viscosity (Δη) against mole fraction for the system (a) Pyridine (1) + Methanol (2) (b) Pyridine (1) + Ethanol (2) (c) Pyridine (1) + n-Propanol (2) (d) Pyridine (1) + *n*-Butanol (2) at different temperatures: ♦, 293.15 K; ■, 303.15 K; ▲, 313.15 K; x, 323.15 K. The solid line represents the corresponding correlation by the Redlich-Kister equation.

The plots of deviation in viscosity against mole fraction at 293.15, 303.15, 313.15 and 323.15 K for pyridine + methanol, pyridine + ethanol, pyridine + n-propanol and pyridine + n-butanol are presented in figure 1 (a-d). Deviations in viscosity were found to be both negative and positive.

Negative deviations are observed for pyridine +methanol and pyridine + *n*-propanol mixtures while positive deviations were observed for pyridine + ethanol and pyridine + *n*-butanol mixtures. The negative values of the deviation in viscosity ( $\Delta \eta$ ) suggest the existence of weak intermolecular interactions upon mixing in methanol and n-propanol while the positive values of deviation observed in ethanol and n-butanol relate to strong intermolecular interaction between pyridine, ethanol and n-butanol. This shows that the strength of the specific forces is not the factor influencing the viscosity deviation in the liquid mixture. This leads to suggestions that combinations of an interactive and non-interactive force are responsible in these positive and negative interactions [9,27]. The figures also clearly show a general deviation in viscosity to decrease with increase in temperature.





Figure 2. Plots of Excess molar volume (V<sup>E</sup>) against mole fraction for the system (a) Pyridine (1) + Methanol (2) (b) Pyridine (1) + Ethanol (2) (c) Pyridine (1) + n-Propanol (2) (d) Pyridine (1) + n-Butanol (2) at different temperatures: ◆, 293.15 K; ■, 303.15 K; ▲, 313.15 K; x, 323.15 K. The solid line represents the corresponding correlation by the Redlich-Kister equation.

The plots of excess molar volume against mole fraction at 293.15, 303.15, 313.15 and 323.15 K for pyridine + methanol, pyridine + ethanol, pyridine + n-propanol and pyridine + n-butanol are presented in figure 2 (a-d). Excess parameters associated with a liquid mixture are a quantitative measure of deviation in the behavior of the liquid mixture from ideality [3,4]. These functions are found to be sensitive towards the intermolecular forces and also on the difference in size and shape of

the molecules. Excess volumes of liquid mixtures reflect the result of different contributions arising from structural changes undergone by the pure cosolvent.





Figure 3. Plots of Excess Gibbs free energy of activation of viscous flow (ΔG\*<sup>E</sup>) against mole fraction for the system system (a) Pyridine (1) + Methanol (2) (b) Pyridine (1) + Ethanol (2) (c) Pyridine (1) + n-Propanol (2) (d) Pyridine (1) + n-Butanol (2) at different temperatures: ◆, 293.15 K; ■, 303.15 K; ▲, 313.15 K; x, 323.15 K. The solid line represents the corresponding correlation by the Redlich-Kister equation.

Positive contributions arise from breakup of interactions between molecules namely, the rupture of hydrogen bonded chains and the loosening of dipole interactions [28]. The values of  $V^E$  for the mixtures of pyridine + methanol, pyridine + ethanol and pyridine + n-butanol are positive while for the mixture pyridine + n-propanol is negative. In all plots,  $V^E$  increases with increase in temperature. The values of  $V^E$  are the result of contributions from several opposing effects. Negative excess molar volume can be attributed to strong interactions between unlike molecules through hydrogen bonding as observed in the system pyridine + n-propanol.





Figure 4. Plots of modified Kendall and Monroe viscosity correlation Eη<sub>m</sub> (mPa.s) against mole fraction for the system (a) Pyridine (1) + Methanol (2) (b) Pyridine (1) + Ethanol (2) (c) Pyridine (1) + n-Propanol (2) (d) Pyridine (1) + n-Butanol (2) at different temperatures: ♦, 293.15 K; ■, 303.15 K; ▲, 313.15 K; ×, 323.15 K.

The plots of excess Gibbs free energy of activation of viscous flow against mole fraction at 293.15, 303.15, 313.15 and 323.15 K for pyridine + methanol, pyridine + ethanol, pyridine + *n*-propanol and pyridine + *n*-butanol are presented in figure 3(a-d). Excess properties provide information about the molecular interactions and macroscopic behavior of fluid mixtures which can be used to test and improve thermodynamic models for calculating and predicting fluid phase equilibria [4]. The magnitude of  $\Delta G^{*E}$  represents the strength of interaction between unlike molecules [29,30]. Excess Gibbs free energy of activation of viscous flow were found to be positive for all plots. In all

plots,  $\Delta G^{*E}$  increased with increase in temperature. The positive values of excess Gibbs free energy of activation of viscous flow indicate the presence of specific and strong interactions in the systems under investigation [31,32]. The excess Gibbs free energy of activation of viscous flow attains a maximum between 0.44 – 0.6 of the mole fraction of pyridine.

A comparison of experimental thermodynamic data of multicomponent mixtures with that calculated by means of various predictive methods is very useful from different points of view: (i) it suggests which model is more appropriate to the characteristics of the system, (ii) it may indicate which parameters should be improved when the model involves group contributions and (iii) it may allow the identification of some model as a convenient reference for the interpretation of the deviations observed [4]. The viscosity data have been correlated with semi-empirical equations of modified Kendall and Monroe, Frenkel, Hind, and Grunberg-Nissan. The values of the Grunberg and Nissan constant (d') and modified Kendall-Monroe ( $E\eta_m$ ) for all systems under study are presented in table 2. Grunberg-Nissan interaction parameters are both positive and negative while the modified Kendall-Monroe viscosity correlation data are all positive. Plots for the modified Kendall-Monroe viscosity correlation at different temperatures show decrease in viscosity with increase in temperature. The values of Frenkel and Hind are presented in table 4.

| Table 4. Fitting parameters with Average Percentage Deviations (APD) for binary in | mixtures at | various |
|------------------------------------------------------------------------------------|-------------|---------|
| temperatures.                                                                      |             |         |

| Temperature | Fr          | enkel                        | ]           | Hind   |
|-------------|-------------|------------------------------|-------------|--------|
| K           | $\eta_{12}$ | APD                          | $\eta_{12}$ | APD    |
|             | Py          | ridine (1) + Methanc         | ol (2)      |        |
| 293.15      | 1.04585     | -0.617                       | 1.04585     | 0.363  |
| 303.15      | 0.86085     | -0.699                       | 0.86085     | 0.147  |
| 313.15      | 0.7261      | -0.619                       | 0.7261      | 0.177  |
| 323.15      | 0.5887      | -0.472                       | 0.5887      | 0.005  |
|             | P           | yridine (1) + Ethanol        | (2)         |        |
| 293.15      | 0.8870      | 0.073                        | 0.8870      | 0.129  |
| 303.15      | 0.8777      | 0.075                        | 0.8777      | 0.132  |
| 313.15      | 0.8683      | 0.076                        | 0.8683      | 0.133  |
| 323.15      | 0.8587      | 0.078                        | 0.8587      | 0.135  |
|             | Pyr         | idine (1) + <i>n</i> -Propan | ol (2)      |        |
| 293.15      | 1.8739      | 0.622                        | 1.8739      | 0.843  |
| 303.15      | 1.4604      | 0.743                        | 1.4604      | 0.941  |
| 313.15      | 1.1989      | 0.913                        | 1.1989      | 0.887  |
| 323.15      | 0.89995     | 0.508                        | 0.89995     | 0.050  |
|             | Py          | ridine (1) + n-Butano        | ol (2)      |        |
| 293.15      | 2.2275      | -1.858                       | 2.2275      | -1.095 |
| 303.15      | 1.7358      | -1.604                       | 1.7358      | -0.977 |
| 313.15      | 1.3889      | -1.247                       | 1.3889      | -0.786 |
| 323.15      | 1.0295      | 0.051                        | 1.0295      | 0.581  |

Positive and negative Grunberg-Nissan parameters indicate the presence of both strong and weak interactions between unlike molecules [9].

# 4. CONCLUSION

The deviation in viscosity, excess molar volume and excess Gibbs free energy of activation of viscous flow for the systems pyridine + methanol, pyridine + ethanol, pyridine + n-propanol and pyridine + n-butanol at T = 293.15, 303.15, 313.15 and 323.15 K has been reported. There is intermolecular interaction among the components of the binary mixtures leading to possible hydrogen bond formation of the type N···H—O between unlike molecules confirming hydrogen bonding formation between pyridine and the alcohol mixtures.

### ACKNOWLEDGEMENT

This work was supported by a research grant from the Faculty of Applied and Computer Science Research and Publications Committee of Vaal University of Technology, Vanderbijlpark Republic of South Africa.

# References

- 1. V. Serheyev. Chem. Chem. Tech. 5(3) (2011) 241.
- 2. G. Conti, P. Gianni, L. Lepori, E. Matteoli. J. Pure & Appl. Chem. 67(1) (1995) 1849.
- 3. B. R. Kumar, B. Satyanarayana, S. A. Banu, K. A. Jyoti, T. S. Jyostna, N. Satyanarayana. *Ind. J. Pure & Appl. Phys.* 47 (2009) 511.
- 4. S. Parveen, M. Yasmin, M. Gupta, J. P. Shukla. Int. J. Thermodyn. 13(2) (2010) 59.
- 5. S. Singh, B. P. S. Sethi, R. C. Katyal, V. K. Rattan. J. Chem. Eng. Data 49 (2004) 1373.
- R. A. Clara, A. C. G. Marigliano, V. V. Campos, H. N. Solimo. *Fluid Phase Equilib*. 293 (2010) 151.
- 7. B. Gonzalez, N. Calvar, E. Gomez, A. Dominguez. J. Chem. Thermodyn. 39 (2007) 1578.
- 8. S. C. Bhatia, J. Sangwan, R. Bhatia. J. Mol. Liq. 161 (2011) 95.
- 9. B. Sathyanarayana, B. Ranjithkumar, T. S. Jyostna, N. Satyanarayana. J. Chem. Thermodyn. 39 (2007) 16.
- 10. R. Baskaran, T. R. Kubendran. Int. J. Appl. Sci. Eng. 8(2) (2010) 149.
- 11. Fedeles, O. Ciocirlan, O. Iulian. U. P. B. Sci. Bull. B 71(4) (2009) 99.
- 12. M. L. J. Kijevcanin, V. Z. Kostic, I. R. Radovic, B. D. Djordjevic, S. P. Serbanovic. *Chem. Ind. Chem Eng.* 14(4) (2008) 223.
- 13. S. S. Patil, S. R. Mirgane. Rasayan J. Chem. 4(2) (2011) 445.
- 14. E. M. Zivkovic, M. L. Kijevcanin, I R. Radovic, S. P. Serbanovic, B. D. Djordjevic. *Fluid Phase Equilib.* 299 (2010) 191.
- 15. S. C. Bhatia, R. Rani, R. Bhatia. J. Mol. Liq. 159 (2011) 132.
- 16. S. L. Oswal, H. S. Desai. Fluid Phase Equilib. 161 (1999) 191.
- 17. V. E. Vittal Prasad, S. B. Agrawal, A. B. Bajaj, D. H. L. Prasad. *Phys. Chem. Liq.: Int. J.* 38(4) (2000) 433.
- 18. Lange's Handbook of Chemistry 10<sup>th</sup> edition, 1525 1528
- 19. N. Deenadayalu, I. Bahadur, T. Hofman, J. Chem. Thermodyn. 42 (2010) 726.
- 20. M. M. Taib, A. K. Ziyada, C. D. Wilfred, T. Murugesan. J. Mol. Liq. 158 (2011) 101.
- 21. J. Liu, C. Zhu, Y. Ma. J. Chem. Eng, Data. 56 (2011) 2095.
- 22. O. Redlich, A. T. Kister. Ind. Eng. Chem. 40(2) (1948) 345.
- 23. J. Kendall, K. P. Monroe. J. Am. Chem. Soc. 39(9) (1917) 1787.
- 24. Frenkel Ya. I.. Petroleum (London) 9 (1946) 27.
- 25. R. K. Hind, E. McLaughlin, A. R. Ubbelohde. Trans Faraday Soc. 56 (1960) 328.

- 26. L. Grunberg, A. H. Nissan. Nature 164 (1949) 799.
- 27. B. Mokhtarani, A. Sharifi, H. R. Mortaheb, M. Mirzaei, M. Mafi, F. Sadeghian. J. Chem. Thermodyn. 41 (2009) 323.
- 28. M. M. El-Banna. Can. J. Chem. 75 (1997) 1890.
- 29. P. N. Tshibangu, S. N. Ndwandwe, E. D. Dikio Int. J. Electrochem. Sci. 6(3) (2011) 2201.
- 30. M. Shafiq, S. Asif, M. Farooqui. A. J. Biochem. Pharm. Res. 1(2) (2011) 419.
- 31. K. Sreekanth, D. S. Kumar, M. Kondaiah, D. K. Rao. J. Phys B. 406 (2011) 854.
- 32. A. G. Peshwe, B. R. Arbad, S. P. Pachaling. Int. J. Chem. Sci. 7(3) (2009) 1505.

© 2012 by ESG (www.electrochemsci.org)