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CFD simulations of a rotating reactor used to remove hexavalent chromium (Cr(V1)) from industrial
wastewaters are presented in this work. The reaction time dependence on the angular speed was
experimentally demonstrated and these results were examined using the flow velocity and turbulence
intensity fields obtained by computational fluid dynamics (CFD) simulations. It was found out that the
flow velocity field and turbulence intensity are not homogeneous inside the reactor. Moreover, the
increase in the electrodes rotational speed has no important effect in the turbulence intensity and
velocity field inside the ring electrodes zone, which helps explaining why the reaction time is not
decreased in the same proportion of angular speed increment. The study provides reference aids for
optimization of impeller design and operation parameters.
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1. INTRODUCTION

Mechanically, stirred tanks are employed for a large variety of applications in industrial
processing like facilitation of chemical reactions in liquids, blending of miscible liquids, liquid-liquid
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dispersion of immiscible liquids, solids suspension, and others. Several parameters that depict
hydrodynamic behavior are traditionally used to evaluate the overall mixing process in stirred tanks.
Among these, the flow velocity field discharged from an impeller and the turbulence intensity as
function of the agitation rate and distance from the impeller. They are frequently used in practice, even
in cases when the local turbulence is not isotropic [1]. In the flow velocity induced by the impeller,
macromixing is driven by the largest scales of motion in the fluid [1,2], meanwhile, the distribution of
turbulence intensity in the vessel is a measured of the mixing on smaller scales or micro-mixing, in
which momentum diffusion due to turbulent velocity fluctuations -superposed on the principal motion-
provides the final blending [2,3].

In this paper, we present a study of the hydrodynamic performance of an electrochemical
reactor used in the treatment of wastewater contaminated with hexavalent chromium. Cr(VI) is one of
the most hazardous pollutants discharged into the wastewaters by the electroplating industry and other
manufacturing plants [4]. Cr(VI) is recognized as 1000 times more toxic than Cr(l11), and therefore
hazardous to human health. Additionally, wastewaters containing Cr(VI) are groundwater
contamination sources. Therefore, this metal must be removed to reach acceptable concentration level
(less than 0.1mg/L) and comply with the environmental regulations for wastewater disposal [5].
Although several methods can be used to remove Cr(VI) from water, in this work the use of a
electrochemical treatment, based on the reduction of Cr(\V1) to Cr(lll), mainly by releasing ferrous
ions (Fe (1)), from the anode into the solution when a direct electrical current is applied to an iron
sacrificial anode is analyzed. By this method a 99.9 % removal of Cr(VI) can be achieved. The
reaction 1, shows the Cr(VI) reduction into the solution.

6F82+(aq) + CI’2072- (aq) + 14 H+(aq) -> 6Fe3+(aq) + 2Cf3+(aq) +7 H20(|) (1)

As seen, in reaction 1 the Cr(V1), is reduced to Cr(l11) and the Fe(Il) is oxidized to Fe(l1l), then
the trivalent iron and chromium, can be precipitated and removed from the aqueous media. Treated
water can be reused as rinsing water and the precipitate can be treated to separate the Cr(I1l) from the
Fe(I11), and then both can be reused as well. Therefore, the electrochemical method is a potential clean
technology. However, during the process, an oxide fouling film is formed on the electrodes surface
(passivation effect) in electrochemical reactors with no liquid mixing or static electrodes because of
the poor diffusion and mass transfer, reducing the process efficiency and increasing the energy
consumption [6]. Based on these effects, in this work the performance of an electrochemical reactor
with rotating iron electrodes at different rotating electrode speeds was evaluated [7]. This
electrochemical reactor had a stirred tank configuration of a cylindrical geometry with four standard
baffles equally spaced disposed to prevent a swirl motion and tangential flow pattern of the mass fluid.

The impellers are in this case an arrangement of rotational rings joined by three flat blades, also
serving as electrodes. The motion of the rings has a self-cleaning effect reducing fouling and
increasing mass transfer efficiency due to high shear stress at the electrodes surface. However it was
obtained that there was no important difference in the treatment time to reduce the Cr(VI) to Cr(111),
when the rotating electrode speed was increased. In that work [7], it was partially demonstrated that
the average turbulent intensity had a reduced increment value by only 0.2%, when rotating electrode
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speed was increased from 150 rpm to 200 rpm. In this type of reactors, tank baffles are required to
establish the appropriate flow pattern to promote positive top-to-bottom turnover (macromixing),
reducing blend time. In addition, the turbulence intensity is the primary responsible for micromixing or
eddy diffusion of momentum, heat and mass [8]. Therefore, micromixing is the limiting step in the
progress of fast reactions. From the above discussions, it is apparent that the performance of a stirred
tank reactor depends largely on the characteristics of pattern flow and turbulent intensity generated by
an impeller. For this reason, several works have been focused on identifying the hydrodynamical
characteristics of the flow induced by basic impeller types and its relationship with the most important
design parameters like impeller off-bottom distance, impeller diameter relative to the tank diameter,
liquid depth, spacing between impellers, aspect ratio of the vessel, tank bottom, size and shape of
baffles [9-17]. For this purpose, numerical and experimental studies have been carried out to establish
the design and operating parameters needed to enhance the performance of such reactors. Knowing the
characteristics of turbulent flow and its properties can be very useful for designing a stirred tank, scale
up the process, and evaluate energy consumption and control of product quality. However,
experimental techniques for the acquisition of experimental data are generally expensive due to the
unstable nature of turbulent flows, the complexity of the geometry of the impeller blade, and the
relative movement between the elements of the fluid [18]. CFD can be used to simulate turbulent flows
in stirred tank electrochemical reactors and are useful for predicting the hydrodynamic behavior of the
reactor [19]. Then, it is possible to determine different characteristics as the velocity field, the
vorticity, turbulent intensities, and circulation patterns, among others. Due to the high computing
capacity available in current computers, numerical tools such as CFD have reached a considerable
development, allowing great advances in process simulation in fluid media. CFD modeling cannot
completely replace experimentation, but it has become a useful tool, which complements and improves
the experimental work [20, 21]. In this work, more detailed evaluations were performed to get better
understanding of the performance inside the electrochemical reactor, because other parameters as
velocity magnitude, velocity magnitude, x-velocity and tracer concentration were evaluated and
correlated with the turbulent intensity at different positions, inside and outer the rotating ring
electrodes at different angular velocities.

2. MATERIALS AND METHODS

Tests were performed in an electrochemical batch reactor with a synthetic wastewater prepared
with potassium dichromate. The viscosity («) and density (p) of the process fluid were 1.0019x10° Pa-
s and 998 kg/m®, respectively. The electrochemical reactor capacity was 8.5 liters. To produce
turbulence in the reactor, a rotating iron ring electrode was used during the electrochemical chromium
removal process. The rotating iron electrodes contained 14 iron steel rings allocated in a sequence of
one cathode followed by one anode and separated 1.0 cm from each other. Each ring has a diameter of
11.5 cm, 7 rings function as cathodes and the other 7 as anodes. The liquid height was 24.6 cm and the
tank diameter was 21.5 cm. The superficial area of each iron ring was 75.0 cm?. A shaft connected to a
variable speed motor was used to support the ring arrangement and to control the electrode revolutions
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per minute (rpm).The tests were performed in the turbulent range: 75 rpm (Re=16,470), 150 rpm
(Re=32,940) and 230 rpm (Re=50,509) rpm. Where Re=pd°N/u is Reynolds number and N the
electrode rotational speed in revolutions per second. A constant electric current of 5.0 amperes was
applied during the process, using a direct current power supply. Figure 1 shows the configuration of
the stirred tank electrochemical reactor.
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Figure 1. Configuration of stirred tank electrochemical reactor.

The related CFD model of the reactor was prepared to analyze the performance of the reactor at
different steady state operational angular velocities: 75, 150 and 230 rpm. The reactor model was
meshed using 1,547,617 tetrahedral cells. Figure 2, shows the mesh used for the electrochemical

reactor.
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Figure 2. Electrochemical reactor mesh.

The reactor was modeled using a single rotational reference frame with a steady rotational
speed. The rotational system of ring electrodes and impellers were assumed as a moving wall (with no
slip condition) attached to the moving reference frame; the whole surfaces of the vessel including the
baffles of the reactor were considered as stationary wall boundary condition. The conservation
equations were set to a rotating reference system, expressing the governing equations of fluid flow for
a steadily rotating frame in terms of the relative velocity v . The steady state continuity equation (mass

conservation) for incompressible fluid can be written as follows:

<
|
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o

v, 2

where: v, = relative velocity vector.
The conservation of momentum for a rotating reference frame is given by:

9 PV )+V-(pV0 )+ p(26xV, +dxdxF)=-Vp+V-(T)+ pg+F 3
8{ r rr r ()

Where: 1= viscous stress tensor, pg= gravitational body force and F = external force vector.
The momentum equation contains two additional acceleration terms: the Coriolis acceleration, and the
centripetal acceleration. A pressure-based segregated algorithm solver has been used, where the
governing equations are solved sequentially. For the pressure—velocity coupling the semi-implicit
pressure-linked equation (SIMPLE) algorithm was used, the Standard scheme was selected for
pressure discretization, and for the momentum discretization, the first order upwind scheme was used
in the initial solution and second order for the final solution. The realizable k-¢ turbulent model was
used because presented better results than standard and RNG models. The CFD simulations were
performed using the commercial software Fluent, 6.3.26. Due to the unsymmetrical configuration of
the blades, a complete three dimensional model reactor was used. Different parameters such as
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velocity magnitude, x velocity, turbulent intensity and tracer concentration were evaluated for different
positions (indicated in figure 3), at different angular velocities, as shown in table 1a and 1b.
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Figure 3. Positions in the electrochemical reactor where different parameters were evaluated.

Table la. Coordinates in the electrochemical reactor for the up, mid and down positions, where
different parameters were evaluated.

| position |
coordinate  up mid down
X 0 0 0 0 0 0
Y -0.1075 0.1075 -0.1075 0.1075 -0.1075 0.1075
Z 0.22 0.22 0.121 0.121  0.03 0.03

Table 1b. Coordinates in the electrochemical reactor for the in and out positions, where different
parameters were evaluated.

coordinate in out

X 0 0 0 0

Y -0.035 -0.035 -0.08 -0.08
Z 0 0.246 0 0.246

In the case of the tracer tests, a flow electrochemical reactor was evaluated and a tracer with the
same properties as the water was simulated. The tracer concentration was homogeneous throughout the
reactor at the beginning of the test. Then, water was fed in the reactor at velocity magnitude of 1 m/s,
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based on the inlet projected area (3.227e-05 m?. The tracer was removed gradually from the reactor
due to the entering water and its concentration also was evaluated at the reactor exit.

3. RESULTS AND DISCUSSION

Table 2 shows experimental results obtained of chromium concentrations reduction from 130
mg/L to less than 0.5 mg/L, at different angular velocities (rpm).

Table 2. Concentration reduction time for different angular velocities.

Angular velocity Reaction time [min]

[rpm] _
0 38
(theoretical)

0 42
75 30
150 24
230 22

The theoretical time of the process was calculated considering that reaction (1) was
instantaneous and the Cr (V1) is reduced to Cr (I11), only by the anodically generated Fe?* [22]. The
increase of angular velocity in the reactor does not have a linear effect on the concentration reduction
time as it is observed from table 1. When the total reaction time experimental values are compared it is
found a reaction time reduction of 29% when angular velocity goes from 0 rpm to 75 rpm. If the
angular velocity is doubled (from 75 rpm to 150 rpm), the reaction time reduction reaches about 20%.
Finally, a 53% increase in angular velocity (150 rpm to 230 rpm), the reaction time reduction only
adds up to 8.3%. As discussed above, one of the main characteristics of turbulence is that it enhances
mass transfer when it is present in a flow field. The fluid motion sets up the concentration distribution
within the reactor, which in turn influences the reaction rate [1], and the turbulence intensity ensures a
fast mixing on smaller scales [1, 2]. Bakker [23] carried out gas—liquid simulations with fermenter,
equipped with a radial impeller at the bottom and three axial impellers at the top, incorporating models
for gas dispersion, bubble coalescence and breakup, and inter-phase mass transfer. They found that the
mass transfer coefficient is highest near the impellers, i.e. where the turbulence intensity is highest.
The effects of turbulent increasing mass transfer rates have also been observed in external flows
around cylinders [24] where a direct correlation between increments in turbulent intensity values and
mass transfer was reported, and stirred tanks [25] where the mass transfer increase was reported to
depend on angular velocity. To evaluate the modifications induced on the flow once the angular
velocity is increased, turbulent intensity is evaluated for 75 rpm, 150 rpm and 230 rpm. Turbulent
Intensity is defined for each velocity component as the root mean square of the velocity fluctuations
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referenced to a characteristic mean flow velocity U,. For the x velocity component, it is given in

equation 4.
——\1/2
u1u1)

r, -G

(4)

Where T, is the turbulent intensity in the streamwise direction, Uy is the average velocity, u; is
the streamwise fluctuating velocity component. The overall turbulent intensity is defined as the
average of Ty, Ty, and T, as shown in equation 5.
(l—r—r)l/z
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Since the flow inside the reactor was numerically simulated. Figure 3a shows a complete 3-D
distribution of turbulent intensity for an angular velocity of 230 rpm.

Figure 3a. Three dimensional distribution of turbulent intensity (230 rpm).

As seen, although this image is illustrative of the turbulent intensity distribution within the
reactor, it is difficult to analyze the spatial distribution of turbulent intensity along the three coordinate
axes and the influence of the ring location on the flow field. To analyze spatial location influence on
the turbulent intensity values, turbulent intensity distribution at five different locations (shown in table
la and 1b, and figure 3), along the z-axis (figures 4) and y-axis (figure 5), are presented.
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Figure 4. Turbulent intensity along the z-axis for the reactor operated at 75, 150 and 230 rpm.
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Figure 5. Turbulent intensity along the y-axis for down, mid and up positions, in the reactor operated

at 150 and 230 rpm.

As shown, the highest turbulent intensity (TI) is reached at the 230 rpm, but in the out position
(outside the ring electrodes). In general, at the three angular velocities, higher TI values at the out
position are reached. However, lower Tl values are reached at the in position (inside the ring
electrodes zone). Moreover, the T values at the in positions are similar for 230 rpm and 150 rpm. In
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figure 5, the TI values for both rpms along the y-axis at down, mid and up positions in the
electrochemical reactor are presented. As shown, turbulent intensity grows in the radial direction (here
represented by the y coordinate). It increases up to an inflection point located nextto y = 0.05 m and y
= -0.05 m, zone limited by the electrodes position lines, which is approximately the ring electrodes
diameter. However, the TI values inside the ring electrodes zone are similar for both angular velocities.
On the other hand, the T1 values out of this zone are higher at 230 rpm than at 150 rpm.
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The maximum values for turbulent intensity are always reached near the tank wall, as seen in
figure 6a. These are the critical points were turbulent intensity is mainly increased, and therefore the
mass transfer is increased. In the same figure, it is possible to see that also higher TI zones are
produced between the baffles and the electrode paddles. On the other hand, the lowest TI values are
located in the zone inside the ring electrodes at all angular velocities. Figure 6b, shows the pathlines
colored by velocity magnitude for each angular velocity in the electrochemical reactor. As seen, the
lowest velocity magnitude values are reached at 75 rpm and for all the rpm, there are lower values of
velocity magnitude and TI, in the zone inside the ring electrodes.

In the outer zone (between the reactor wall and the outer ring electrodes wall), higher velocity
magnitude are generated.

Figure 7, shows the velocity magnitude values along the y-axis at for down, mid and up
positions, in the reactor operated at 75, 150 and 230 rpm.
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Figure 7. Velocity magnitude values along the y-axis at down, mid and up positions, in the reactor
operated at 75, 150 and 230 rpm.

As shown in these figures, the velocity magnitude drops quickly as one moves towards the
electrodes centerline and corroborate that the lowest velocities are reached inside the ring electrodes.
An important fact is that for 150 and 230 rpm, the velocity magnitude values are similar inside the ring
electrodes, but at the outer zone higher velocities corresponds to higher rpm.

In addition, figure 8 shows that along the reactor the velocity magnitude values inside (in
position) the ring electrodes are very similar in both angular velocities.
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Figure 8. Velocity magnitude along the z-axis at for in and out positions, in the reactor operated at 150
and 230 rpm.

The zone inside the ring electrodes is about 35% of the reactor volume and it has similar
behavior at both ring electrodes rotational speed, 150 rpm and 230 rpm. Therefore, increasing the
rotational speed has no important effects in this zone and consequently, in the time Cr(VI) reduction
electrochemical process.
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Figure 9. Velocity values along the x-axis at down, mid and up positions, in the reactor operated at 75,
150 and 230 rpm
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The reactants Fe(Il) an Cr(\V1) ions must be transported to the highest turbulence intensity zone
located outer of the ring electrodes zone to increase the reaction rate. Considering that this effect has
an important impact in the time electrochemical process, the x-velocity was evaluated at the different
positions inside the reactor for all the three angular velocities, because the reactants Fe(ll) an Cr(V1)
ions are transported to the outer ring electrodes zone and this effect has an important impact in the time
electrochemical process.

Figure 9, shows that at 150 rpm and 230 rpm the x-velocity is higher than at 75 rpm, making
faster the reduction of the Cr(VI), but in the zone inside the ring electrodes, the fluid x-velocity is
again very similar, as in the case of Tl and velocity magnitude, as was shown before. The tracer tests
performed at150 rpm and 230 rpm, confirm that for both cases, the tracer stills trapped inside the rings
zone, it only rotates without an efficient mixing, as shown in figure 10. In addition, it can be observed
that near the baffles (mid and up positions), in the opposite direction of the fluid movement, there are
zones with higher tracer concentration due to the low velocity in those areas.
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Figure 10. Contours of tracer concentration in the flow reactor at 150 and 230 rpm.
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Figure 11, shows that at both rpm, the tracer concentration along the electrochemical reactor.
As seen, inside the rings (in position) the concentration is higher than in the exterior zone (out
position) because the lower velocity and turbulence in this zone. As shown in figure 12, this effect
produces that at the reactor exit the tracer concentration is higher in the central part.
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Figure 12. Tracer concentration in the flow reactor at the reactor exit for 150 rpm and 230 rpm.
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The results showed that at both angular velocities, 150 rpm and 230 rpm, the behavior is
similar and the mixing is deficient. These effects limited the transport of reactants, and then the Cr(VI)
reduction rate, no matter the angular velocity were increased. Because an important fraction of volume
has similar behavior at 150 rpm and 230 rpm, the reactants transport throughout the reactor is limited,
and then increasing the agitation rate form 150 rpm to 230rpm, has no important effect in the Cr(VI)
time reduction. In this case, both, the top-to-bottom turnover flow and the turbulence intensity could be
increased putting axial-flow impellers (e.g. pitched blade impellers) inside the ring electrodes.
According to these results, the current configuration of the electrochemical reactor, mainly the rotating
ring electrodes must be changed to improve its overall mixing performance and reduce the energy
consumption.

4. CONCLUSIONS

Increasing angular velocity of the rotating ring electrode will increase magnitude velocity and
the turbulent intensity that hence mass transfer, especially outside the ring electrodes. However, no
important difference on the Cr(V1) reduction rate was obtained when the rpm of the ring electrodes
was increased from 150rpm to 230 rpm. At both rpm, the magnitude velocity and the turbulent
intensity behavior inside the rotating ring electrodes zones are very similar. Due to this effect, the
transport of the reactants (i.e. Fe(ll) and Cr(V1)) throughout the reactor was limited, causing that the
increase in the rpm had no important outcome on the Cr(VI1) reduction rate. Based on these results, it
is necessary to change the electrodes configuration to improve the electrochemical performance and
reduce the energy consumption. These results are very useful because different operational deficiencies
in the electrochemical reactor were found and possible improvements can be suggested. These results
also show the usefulness of CFD simulations to have better understanding of the reactor operation.
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