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In this paper, a novel approach for distinguishing the type of corrosion from Electrochemical Noise 

(EN) signals is presented. A database containing numerous sets of original EN data is established，

then the database is divided into training sets and test sets randomly. The EN data sets are used as the 

inputs of the Artificial Neural Networks (ANN) and the types of corrosion as the outputs of the ANN. 

A feature vector is extracted from each EN data set. Subsequently, two kinds of artificial neural 

networks with different neural structures, the Back Propagation (BP) and the Support Vector Machine 

(SVM), are constructed by training feature vector. The test sets are used to test the accuracy of the two 

neural networks. The result shows the ANN is a very accurate and effective way to distinguish the type 

of corrosion and the SVM is more accurate than the BP. 

 

 

Keywords: Electrochemical Noise; Artificial Neural Networks; Feature vector; Back Propagation 

(BP) ; Support Vector Machine (SVM)  

 

 

1. INTRODUCTION 

 

1.1 Electrochemical noise 

304 stainless steel is widely used in the field of engineering due to its good performance in 

corrosion resistance and mechanical properties. [1-3]. The corrosion behaviors of it under different 

working conditions have been studied using different techniques such as X-ray photoelectron 

spectroscopy (XPS)[4], photoelectrochemical method[5], scanning Kelvin probe (SKP)[5], dynamic 

electrochemical impedance spectroscopy (DEIS)[6, 7], scanning electron microscope (SEM), and 

acoustic emission (AE) [2, 8-12]. 
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Electrochemical noise (EN) is defined as the fluctuations of potential and current generated 

spontaneously during the corrosion processes [14, 15]. The EN originates from the random ion 

movements in the electrolyte/electrode interface[13]. Unlike the traditional electrochemical techniques 

(potentiodynamic polarization tests, impedance spectroscopy, etc), EN measurements can be 

performed in freely corroding systems without the external application of electrical signals, so that the 

natural evolution of corrosion processes is assured[17].  

Recently, the focus of studies on EN is the electrochemical noise analysis (ENA). The original 

EN data usually appears to be complicated. How to extract meaningful parameters, which characterize 

the corrosion process, is the difficulty of research. Many methods such as Electrochemical Noise 

Resistance (Rn) in time domain[4, 14, 15], the Fast Fourier Transform (FFT) in frequency domain[20, 

21], the average charge in each event (q) and the frequency of events (fn) derived from shot noise 

theory[16], the energy distribution (ED) from wavelet transform[17, 18], fractal geometry[25, 26], the 

correlation dimensions by the phase space methods [27-29] etc have been proposed.  

Artificial neural network is a new approach to differentiate corrosion types. Although ANN has 

been developed extensively over many years, especially in the field of forecast, fitting, pattern 

recognition, few people apply it to the research of electrochemical noise. The ANN use multi-

parameters to distinguish corrosion types jointly instead of using one parameter independently. There 

is no need to establish the evaluation mathematical model of various parameters or identify the weights 

of each parameter. Moreover, ANN is a kind of machine learning which can substitutes for human 

brain to complete recognition. Furthermore, it can be used in real-time systems due to the high 

processing speed. 

In this paper, ANN with the ability to learn from experimental values is used as an intelligent 

information processing system to distinguish the corrosion types. This process can be seen as an 

application of pattern recognition. The ANN learned from training data and recognized different 

corrosion types from a series of input (feature vectors containing many parameters) and output 

(different corrosion types) without any prior assumptions about their nature and interrelations [30]. 

Therefore, ANN could be a useful tool in determining the corrosion types from electrochemical noise.  

 

1.2 Artificial Neural Networks 

The artificial neural network is a mathematical model of simulating human neurons to process 

information. It can be used to do pattern recognition, fitting (when it can’t be expressed using a 

formula or the formula is complicated）and forecasting etc.  

In this paper, BP neural network and SVM are designed. A typical BP neural network structure 

is showed in fig 1. In order to design a BP ANN three parameters must be determined: the number of 

nodes, the learning rate and the learning function. The number of nodes affects the ANN accuracy: less 

nodes lead to lower accuracy and relatively shorter training times, while more nodes lead to over-

fitting and longer training time. The learning rate is the speed of weight update. The larger the learning 

rate, the faster the network will learn. However it will cause a weight shock which must be avoided. 

The learning function is the function used in hidden layer, which can affect the ANNs’ accuracy and 
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efficiency. Choosing three appropriate parameters which lead to the highest accuracy is significant for 

designing a BP ANN.  

 

 

Figure 1. The architecture of the BP ANN model. 

 

 

Figure 2. SVM architecture 

 

The SVM is a new kind of learning machine that uses the central concept named kernel for a 

number of learning tasks. Kernel machines provide a modular framework that can be adapted to 

different tasks and domains by using different kernel function (i.e., linear, polynomial, sigmoid or 

radial basis) and the base algorithm. SVMs have good performance in solving classification and 
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regression problems. The principle of classification, achieved by method of neural networks, is to find 

an optimal hyperplane to maximize the edge between Positive examples and the counter examples [31-

33].  

The support vector machine architecture is shown in fig 2, where k is the kernel function, such 

as:  

 

linear :                                                                     (1) 

 

polynomial:                                    (2) 

 

radial basis:                                        (3) 

 

sigmoid:                                                (4) 

 

Design a SVM requires determine three parameters: the cost (c), the gamma (g) and the kernel 

function (t). The cost is error tolerance. The higher the value, the more networks can’t tolerate errors. 

The gamma relates to the kernel function, like the in the formula (4); the kernel function is the 

function selected. The optimal parameters that lead to the highest accuracy are obtained by various 

optimization algorithms. The optimization algorithms usually used are cross validation (K-CV), 

genetic algorithm (GA) and particle swarm optimization (PSO). 

 

 

 

2. EXPERIMENTAL  

2.1 Specimens preparation 

The specimen used in this study was 304 stainless steel (SS) (chemical composition, in mass 

fraction, %: C ≤ 0.080%; Cr 18.0%-20.0%; Ni 8.00%-11.0%; Mn≤ 2.0%; Si ≤1.0%; P, 

≤0.045%;S.≤0.03%; Fe, balance).From the SS plates,10mm×10mm×t mm(thickness) specimens were 

cut, then the specimens were mounted in epoxy with only the working electrode surface of 1cm
2
 

exposed. The exposed surface was grinded using abrasive papers through 500-grade to 3000-grade, 

polished with diamond paste, rinsed using acetone, degreased with deionized water and dried in air. A 

saturated calomel electrode(SCE), with a salt bridge, was used as a reference electrode (RE). 

 

2.2 Experimental conditions 

A three-electrode setup was used for the experiments. Two nominally identical WEs were 

immersed in the selected solutions. The potential and current were measured simultaneously through a 

zero resistance ammeter (ZRA) mode via a data acquisition system working as a multi-channel 

electrochemical workstation. This system is constructed by NI-CRIO and developed software. 
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The electrolytes used in this experiment were summarized in Table 1, and the corresponding 

corrosion type was inferred from visual observation of the sample, coupled with the behavior of these 

systems as reported by earlier workers and visual interpretation of the electrochemical noise time 

records. All experiments were under the room temperature (25℃± 3℃) .The data processing and 

neural network were implemented by Matlab2011. 

 

Table 1. Experimental solutions 

 

experiment Solutions Corrosion type Duration (h) Label 

1 0.1mol/l  FeCl3 Pitting 72 PT1 

1 0.2mol/l  FeCl3 Pitting 72 PT2 

1 0.3mol/l  FeCl3 Pitting 72 PT3 

2 0.5mol/l  H2SO4 Uniform corrosion 72 U1 

2 0.6mol/l  H2SO4 Uniform corrosion 72 U2 

2 0.7mol/l  H2SO4 Uniform corrosion 72 U3 

3 0.1mol/l  NaOH 

+0.1mol/l  KOH 

Passivation 72 P1 

 

 

 

3. DEVELOPMENT OF THE ARTIFICIAL NEURAL NETWORKS 

During the experiment, both the current between the two working electrodes and the potential 

of the SS specimens against an SCE are simultaneously recorded for 72 hours. These records are 

analysed for each solution. The flow chart shows the data analysis procedure by ANN(fig 3).  
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Figure 3. The flow chart of the development of ANN 

 

The sampling interval in experiment is 0.5s and each data record consisted of 1024 

datapoints(512s), from which a feature vector is extracted.  In this paper, a feature vector contained 10 

elements: Rn, q , fn, the energy of 7-level wavelet crystal. The formula is listed as follows: 

 

Rn:                                           (5) 
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q and fn:   

 

             (6)          

 

            (7) 

 

              (8) 

 

EDP:                   

 

          (9) 

 

          (10) 

 

             (11) 

 

Where, ,  are the standard deviation of potential and current after removal of DC;  

are the low frequency PSD values of the potential and current noise respectively; B is the Stern–Geary 

coefficient ; , are the coefficient decomposed by Daubechies-4 wavelet to seven levels, j stands 

for the level. 

After the above data process, the original data have been converted to numerous feature 

vectors. Then 100 feature vectors are selected randomly from three kinds of corrosion as input signals. 

Among these 100 feature vectors, 80% (80) of them are selected as training sets and the rest 20% (20) 

as the test sets. Before training the ANN model, both input and output variables should be normalized 

within the range from 0 to 1 in order to eliminate the gap between each feature value to improve the  

accuracy. The typical normalized function is shown as follow: 

 

                    (12) 

 

Where and  are the maximum and the minimum value. After this, cross validation 

(K-CV) is selected to find the best c, g in SVM. A validation set is selected to find the best learning 

rate and learning function in BP ANN. Training sets are used to train the network, then, this trained 

network is been used to predict the type of the test set. The prediction accuracy is achieved as follow: 

 

                         (13) 

 

where Nc is the number of the correct prediction and N is the total number of the test set. 

Accuracy is the most important parameter to evaluate the ANN. 
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4. RESULTS AND DISCUSSION 

4.1. Preparing for training networks 

A visual examination of the EN signals in the time domain exhibited certain typical features. 

The time records for all the potential and current noise records presented are trend removed by wavelet 

transform reference to [34], so as to eliminate the DC drift[35].  

As references [27,36] have shown, the EN data of pitting will have some peaks, while the 

EN data of uniform corrosion and passivation appear frequent and irregular oscillation. Fig 4-a and 4-d 

show the potential and current records for AISI type 304ss in 0.2mol/l FeCl3 after 2 hours of 

immersion. Well-defined peaks are observed in the current and potential noise record with high 

amplitude of 3mV and 7μA, respectively. Visual examination of the surface after immersion show 

well-developed pits. Figure4-b and 4-e show records for 304ss in 0.6mol/l H2SO4 after 6 hours of 

immersion[37]. oth the current and potential noise oscillate frequently and irregularly within amplitude 

of 0.4mV and 200nA. The surface of the specimens becomes rough and grayed by sight. Figure4-c and 

4-f show records for 304ss in 0.1mol/l NaOH + 0.1mol/l KOH after 2 hours of immersion. The noise 

records show similarity to those of the uniform corrosion, but the amplitude within 0.5mV and 0.5nA 

is significantly less and the oscillation frequency is also lower than the uniform corrosion. The surface 

shows no visible changes.  
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Figure 4. three kinds of EN data for pitting(a,d), uniform corrosion(b,e) and passivation(c,f). 

 

As designed, a feature vector that consists of 10 elements is extracted from a set of 1024 data 

points. Fig 5 shows feature vector of 300 samples. The type plot (fig 5-a) shows that each corrosion 
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type contains 100 samples. As cottis et al[18,38] shows that the passivation have largest RN value 

larger than 10
5
Ω, while uniform corrosion and pitting have smaller value of RN.  The Rn plot (fig 5-b) 

shows an obvious gap between the value Rn of the passivation is larger with the value of 10
5
Ω while 

Rn of the other two is less than 10
4
Ω

 
. The q plot (fig 5-c) shows pitting has a large value of q 

compared with the other two corrosion types, because accourding to reference [22] q is a function of 

the tendency to localization. Fig5-e to k shows the energy distribution plot for different corrosion 

types. It shows that the relative energy distributions exhibit different features. For the pitting, the 

maximum is observed in the crystal d7, while for uniform corrosion the energy is mainly centred 

among the crystal d1-d3. As for passivation, the main energy distribution is among crystal d3-d5. 

Inferred from the theory of Wavelet decomposition, a large coefficient indicates a high similarity to the 

mother wavelet. So a peak leads to a large coefficient of large scale mother wavelet, in a similar way, 

high repetition rate leads to a large coefficient of small scale mother wavelet [23]. In conclusion, the 

performance in fig 5 is consistent with the results in fig 4 and the Wavelet decomposition theory. 
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Figure 5.  ten elements of 600 feature vectors 

 

4.2 Result of BP  

Before training BP neural networks, the number of hidden layers has to be determined. The 

input has 10 elements, so 9 hidden layers is suitable The training function provided by matlab is used 

to train networks [39].. The training performance is shown in fig 6. The mean squared error (mse) 

reduces with iteration. At the beginning, the mse has a high convergence rate and the minimum value 

of validation mse (green lion) appears at epoch 26 (indicating iteraction times).  After then, more 

iteration times lead to the rise of mse. So the training stop at epoch 26 with the best validation mse 

value of 2.1381×10
-6

 .  
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The accuracy of the neural network is showed by the method as matrix in fig 7. The column of 

matrices is the output class and the row is the target class. The diagonal of matrix（in green） 

indicates the output class is the same as the target class. Similarly, the elements which are not on the 

diagonal (in red) indicates the wrong output. The grey boxes are the accracy of each corrosion type, 

and the blue box is the accuacy of each set. There are 4 matrices corresponding to train set, validition 

set, test set and all sets in fig 7. We can only find one wrong output in test matrix in fig 7, where the 

actual type is the 2nd class (uniform corrosion), but misclassified as 1st class(pitting). Obviously, the 

accuracy of the bp ANN is 99.7%(299/300). 
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Figure 6. the training performance 
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Figure 7. the confusion matrix 
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4.3. Result of SVM 

SVM is different from BP. It uses cross validation to find the best c and g. Cross validation is 

carried out by the following steps. The original training data is divided into k sets(Generally by 

average). Each set would be selected as a validation set, and the rest k-1 sets as the training set. Thus 

we got k models, and the CVAccuracy is the average accuracy of the k models[40,41]. 

The parameter selection results are showed by the gridsearch method in large step and small 

step in fig 8. After an approximate range of c and g is achieved in large step, an optimal value of c and 

g can be obtained in small step, maximizing the CVAccuracy. In fig 8, the x,y axis is log to log scale 

by the base of 2, and the z axis is CVaccurcay. A 3D view can help us find the best c and g in an 

intuitive observation. Fig 8 shows the best c is 0.25, and the best g is 0.0625 with the accuracy of 

99.5833%.  
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Figure 8. the parameter selection resule by the gridsearch method in large step (a) and small step(b) 

 

After locating the best c and g, the next step is applying them for training. Then the network is 

trained to predict the classification using the test set. Fig 10 shows the actual and predicted 

classification of the test set. In fig 10 actual type is represented by ‘o’, and the predicted type by SVM 

is represented by ‘*’. The predicted type is correct where ‘o’ coincides with ’*’,. The accuracy is 

exactly 100% (120/120) [31-33].  

Furthermore, Fig 11 shows different results of typical morphology analysis of 304 SS after 72 

hours of immersion. Original sample shows a smooth surface (in Fig 11-a). Well-developed pits are 

observed on the surface in solution PT1, PT2, PT3 (in Fig 11-b). Uniform corrosion shows that a 

serious general corrosion occurs on the surface in solution U1, U2, U3 (in Fig 11-c). Passivation shows 

the formation of a passive film that little corrosion occurs on the surface in solution p1 (in Fig 11-c). 
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Figure 10.  the actual and predicted classification of the test set 

 

 
 

Figure 11. metallographical image of original sample (a), pitting (b), uniform corrosion (c) and 

passivation(d) 

 

On all accounts, all the results obtained above obviously indicate that the well-trained ANN 

model ,whether BP or SVM, showed a good performance, with the accuracy of 99.7% and100%, on 

determination of corrosion types from electrochenmical noise. An ANN is just like a black-box, the 
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internal structure of which is insignificant. Using matlab to package all function into an entire program 

can determinate the corrosion type from original EN data automatically and acccurately. 

 

 

5. CONCLUSIONS 

In this paper, methods of artificial neural networks are employed to determinate corrosion types 

form electrochemical noise. A database is established to manage the data, which makes subsequent 

steps more convenient and efficient. After that, a reference EN data processing flow is proposed to 

develop the artificial neural networks. The neural network is optimized by the algorithm named cross 

validation (K-CV) .Finally, the results show that BP has an accuracy of 99.7% and SVM has an 

accuracy of 100%, which evidently indicate that ANN has a high accuracy on distinguish the corrosion 

type. In conclusion, ANN is a novel effective and accurate methodology to process electrochemical 

noise and determinate the corrosion type. 

 

 

ACKNOWLEDGEMENTS 

The project was supported by the National Program on Key Basic Research Project (973 Program) 

(2011CB610505) and National Natural Science Foundation of China (61240038). 

 

 

References 

 

1. G. Du, J. Li, W.K. Wang, C. Jiang, S.Z. Song, Corrosion Science 53 (2011) 2918-2926. 

2. R. Zhao, Z. Zhang, J.B. Shi, L. Tao, S.Z. Song, Journal of Central South University of Technology 

17 (2010) 13-18. 

3. A. Machet, A. Galtayries, S. Zanna, L. Klein, V. Maurice, P. Jolivet, M. Foucault, P. Combrade, P. 

Scott, P. Marcus, Electrochimica Acta 49 (2004) 3957-3964. 

4. J.F. Chen, W.F. Bogaerts, Corrosion Science 37 (1995) 1839-1842. 

5. Shenghan Zhang,Yu tan, Journal of Nuclear Materials, DOI :10.1016/j.jnucmat.2012.11.024 

6. L.T. Han, F. Mansfeld, Corrosion Science 39 (1997) 199-202. 

7. K. Darowicki, S. Krakowiak, P. Slepski, Electrochimica Acta 49 (2004) 2909-2918. 

8. K. Darowicki, P. Slepski, M. Szocinski, Progress in Organic Coatings 52 (2005) 306-310. 

9. G. Du, W.K. Wang, S.Z. Song, S.J. Jin, Anti-Corrosion Methods and Materials 57 (2010) 126-132. 

10. J.A. Xu, X.Q. Wu, E.H. Han, Corrosion Science 53 (2011) 1537-1546. 

11. A. Arutunow, K. Darowicki, Electrochimica Acta 53 (2008) 4387-4395. 

12. A. Arutunow, K. Darowicki, Electrochimica Acta 54 (2009) 1034-1041. 

13. W. Kuang, X. Wu, E.-H. Han, Corrosion Science 52 (2010) 4081-4087. 

14. K. Hladky, J.L. Dawson, Corros. Sci. 22 (1982) 231. 

15. R.A. Cottis, Corrosion. 57 (2001) 265-285. 

16. R.A. Cottis, Russian Journal of Electrochemistry 42 (2006) 497-505. 

17. E. Garcia-Ochoa, F. Corvo, Electrochem. Commun. 12 (2010) 826-830. 

18. H.A.A. Al-Mazeedi, R.A. Cottis, Electrochimica Acta 49 (2004) 2787-2793. 

19. U. Bertocci, C. Gabrielli, F. Huet, M. Keddam, Journal of the Electrochemical Society 144 (1997) 

31-37. 

20. Jurchustu, Dawson J L. Corrosion, 1987, 43 (1) : 19 

21. Hldky K, Dawson J L. Corros. Sci. , 1982, 22 (3) : 231 

22. J.M. Sanchez-Amaya, R.A. Cottis, F.J. Botana, Corrosion Science 47 (2005) 3280-3299. 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

2377 

23. A. Aballe, M. Bethencourt, F.J. Botana, M. Marcos, Electrochemistry Communications 1 (1999) 

266-270. 

24. A. Aballe, M. Bethencourt, F.J. Botana, M. Marcos, Electrochimica Acta 44 (1999) 4805-4816. 

25. E. García-Ochoa, F. Corvo. Electrochemistry Communications 12 (2010) 826–830 

26. S.V. Muniandy, W.X. Chew, C.S. Kan. Corrosion Science 53 (2011) 188–200 

27. Xia Dahai, Song Shizhe, Wang Jihui, Shi Jiangbo, Bi Huichao, Gao Zhiming, Electrochemistry 

Communications, 2012, 15(1): 88-92. 

28. Xia Dahai, Song Shizhe, Gong Wenqi, Jiang Yuxuan, Gao Zhiming, Wang Jihui, Journal of food 

engineering, 2012, 113(1): 11-18.  

29. Xia Dahai, Shi Jiangbo, Gong Wenqi, Zhou Rongji, Gao Zhiming, Wang Jihui, Electrochemistry, 

2012, 80 (11): 907-912. 

30. Sun Y, Zeng WD, Zhao YQ, Qi YL, Ma X, Han YF. Comput Mater Sci 2010;48:686–91. 

31. Vapnik V. Statistical Learning Theory[M]. Wiley, New York,NY,1998. 

32. Cortrs C, Vapnik V. Support-vector networks[J].Machine Learning,1995,20:273-297. 

33. Boser B, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers[J].ACM press: In 

Proceedings of the Fifth Annual Workshop on Computetional Learning Theroy,1992. 

34. A.M.Homborg, T.Tinga, X.Zhang, Electrochimica Acta 70(2012)199-209 

35. Mansfeld, Z. Sun, et al. Corrosion Science 43(2) (2001): 341-352. 

36. Smulko, J, K. Darowicki, et al. Electrochimica Acta 47(8) (2002): 1297-1303. 

37. S.Girija, U.Kamachi Mudali, et al. corrosion science. 49(2007) 4051-4068 

38. Takumi Haruna, Yasuyuki Morikawa,et al. corrosion science. 45(2003):2093-2104 

39. Hong-Ying Li,, Ji-Dong Hu, Materials and Design 42 (2012) 192–197 

40. Lin C J. Neural computation,2001,13(2);307-317 

41. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press,    

New York, 2004. 

 

 

© 2013 by ESG (www.electrochemsci.org) 

  
 
 

 

http://www.electrochemsci.org/

