
  

Int. J. Electrochem. Sci., 8 (2013) 2849 - 2862 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

 

Anomalous Diffusion and Electrical Response of Ionic Solutions 
 

E. K. Lenzi
1
, P. R. G. Fernandes

1
, T. Petrucci

1
, H. Mukai

1
, H. V. Ribeiro

1
, M. K. Lenzi

1
, G. Gonçalves

3 

1 
Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, 87020 - 900 

Maringá - PR, Brazil. 
2 

Departamento de Engenharia Química, Universidade Federal do Paraná, Setor de Tecnologia - Jardim 

das Américas, Caixa Postal 19011, 81531 - 990, Curitiba - PR,  Brazil. 
3 

Departamento de Engenharia Química, Universidade Estadual de Maringá, Avenida Colombo 5790, 

87020-900, Maringá - PR, Brazil. 
*
E-mail: eklenzi@dfi.uem.br  

 

Received:  2 December 2012  /  Accepted:  22 December 2012  /  Published: 1 February 2013 

 

 

We analyze the electrical response obtained in the framework of a model in which the diffusion of 

mobile ions in the bulk is governed by a fractional diffusion equation of distributed order subjected to 

integro-differential boundary conditions. The analysis is carried out by supposing that the positive and 

negative ions have different mobility and that the electric potential profile across the sample satisfies 

the Poisson's equation. In addition, we also compare the analytical results with experimental data 

obtained from ionic solutions of a salt dissolved in water, reveling a good agreement and evidencing 

that the dynamics of the ions can be related to different diffusive processes and, consequently, to 

anomalous diffusion. 
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1. INTRODUCTION 

Since the work of the botanic Robert Brown [1] on the thermal motion of small particles and 

the explanation proposed by Albert Einstein [2],  the diffusive phenomenon has been widely 

investigated in several fields of science, in particular the ones where the anomalous diffusion is 

present.  For instance, in atom deposition into a porous substrate [3], ultracold atoms [4], diffusion of 

high molecular weight polyisopropylacrylamide in nanopores [5], highly confined hard disk fluid 

mixtures [6], viscosity landscapes [7], fluctuating particle fluxes [8], granular materials [9], diffusion 

on fractals [10,11], ferrofluid [12], p-doped poly(3,4- ethylenedioxythiophene) modified electrodes 

[13], colloids [14], micromechanical responses of breast cancer cells and adjacent fibroblasts [15], and 
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many others. Depending on the nature of the stochastic process connected to the phenomenon in 

analysis, either Markovian [16] or non Markovian [17,18] features can be observed. In the last 

scenario, the spreading of the system is characterized by a nonlinear time dependence  for the mean 

square displacement, e.g.,   tzz ~
2

  , as a result of, for example, memory effects [18,19], long-

range correlations, long-range interactions [20-22], or surface effects [23,24]. In this context, the 

electrical response of several  systems (see Refs. [25-30]) may find a suitable description since the 

usual formalism, essentially connected to a Markovian process, does not conveniently described the 

experimental results. Therefore, not only the boundary conditions connected to the surface effects, 

which play a significant role in the electric response, but also the bulk equations should be revisited. In 

this sense, Bisquert, Compte, and coworkers [31-34] were the first to apply the fractional diffusion 

equation which, afterwards, has been worked out in the presence of the Poisson equation [35-37]. 

These results, based on the fractional approach [38-40], represent a new possibility when investigating 

different scenarios or revisiting physical situations, which are not suitably described in terms of the 

standard formalism. One of this scenarios is the electrical response obtained from ionic solutions, salt 

dissolved in water, which shows nonusual diffusive regimes similar to the ones observed in Refs. 

[26,27] for water. 

The plan of this work is first to analyze a model based on fractional diffusion equations of 

distributed order taking into account different mobilities (diffusion coefficients) and surface effects 

represented by the boundary conditions. This analysis is performed in Sec. 2 and extends the 

discussion present in Refs. [28,35,37] to a general case. Next, in Sec. 3, the phenomenological model 

is compared with experimental data obtained from the ionic solutions of 3KClO  dissolved in Milli-Q 

deionized water, i.e., ultrapure water of Type  1 according to the standards, for  the complex dielectric 

constant (permittivity) ( '''  i ). The agreement between the phenomenological model and the 

experimental data suggests that the dynamic of the ions, i.e., the diffusion process, is anomalous, 

similarly to the cases analyzed in Refs. [27,28]. The two last sections, Sec. 4 and Sec. 5, are devoted to 

discussions and conclusions. 

 

 

2. PHENOMENOLOGICAL FRAMEWORK 

Let us start our discussion presenting the phenomenological model that will be used to 

investigate our experimental data presented in the next section. Following the developments performed 

in Refs. [27,28,37], we consider a fractional diffusion equation of distributed order [41] for the bulk 

density of ions n  (   for positive and  for negative ones), 
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where 1BA  ,   is real number in the range 20   , and the current density given by 
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Note that 1 in Eq. (1) introduces a finite phase velocity which implies in a finite collision 

time, which is not present in the usual diffusion equation. Indeed, the usual diffusion equation is an 

approximation only valid in time scales that are large when compared with the time scale in which the 

diffusion-causing collisions takes place. In fact, the most striking non-physical properties of the 

standard diffusion equation is the infinite velocity of information propagation. In addition, Eq. (1) may 

also be connected to the situations discussed in Refs. [42-44] which are essentially non-Markovian. In 

Eq.(2), D  is the diffusion coefficient for the mobile ions (the same for positive and negative ones) of 

charge q ,V is the actual electric potential across a sample of thickness d , with the electrodes placed at 

the positions 2dz  of a Cartesian reference frame where z  is the axis normal to them, Bk  is the 

Boltzmann constant,  and T  is absolute temperature. The fractional operator considered here is the 

Caputo's one [45], i.e., 
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with kk  1  and ),(),()( tzntzn k

t

k

  .  In particular, we consider 0t  to analyze the 

response of the system under a periodic potential applied, defined later on, as indicated by Ref. [45]. In 

order to cover the influence of the surface on the ions in a more general situation, we consider that Eq. 

(1) is subjected to the boundary condition 
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'

),'(' ),(
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Equation (4) recovers several situations such as the blocking electrodes for 0),(  t , 

adsorption-desorption process at the surfaces corresponding to the Langmuir approximation when 

 1),( /    


tet  [46], and a Chang-Jaffe like boundary condition for     tt ),( .In this 

manner, Eq. (4) allows a unified framework for dealing with several boundary conditions and also with 

nonusual relaxations [24] which emerge when     tt ),(  for  t  arbitrary. For 

   
~),( tt    with  ~  arbitrary, we can related the processes at the surface with fractional 

kinetic equations [47,48]. These anomalous processes may also be related to the effects produced by 

the roughness of the surface in the limit of low frequency, leading us to obtain a power law behavior 

for the electric response, similar to the ones reported in Refs. [49] and [50]. Hence, the boundary 

condition considered here may interpolate several contexts which play an important role describing the 

electrical response of the system and, consequently, may be useful to investigate the system where the 

nonusual behavior is manifested. The potential is determined by the Poisson's equation 
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which depends on the difference between the densities of the charged particles. From this equation, we 

may obtain the impedance ( Z ) and, consequently, the quantities '  and '' connected to the complex 

dielectric constant.  In particular, we have that 
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where ZX Im , ZR Re , S  is the area of the electrode, and d  is the thickness of the sample. The 

real part, ' , is connected with the usual dielectric properties of the medium, whereas the imaginary 

part, '' , is related to the relative dielectric loss factor. In particular, the imaginary part, '' , is related 

to the conductivity of the system by the relation ''  . 

Let us obtain an expression for the electrical impedance for investigating the experimental data 

in connection to Eqs. (6) and (7). In this sense,  we consider Eq.(1) subjected to Eqs. (4) and (5) in the 

linear approximation by considering that ),(),( tzntzn  N , with ),( tznN  where N  

represents the number of ions. In addition, we also consider tieztzn 
  )(),(    to analyze the 

impedance when the electrolytic cell is  subjected to the time dependent potential tieztzV  )(),(  , 

with 2),2( 0

tieVtdV  . After substituting  these quantities in Eqs. (1), (4), and (5), we obtain a 

set of coupled equations which have the following solution for )(z  and )(z  
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where 
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with     Di 221 ,  221   , and   22 qTkB N . By using the previous equation it is 

possible to show that the potential for this system is given by 
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Equations (8), (9), and (13) may also be simplified by applying the condition )()( zz   , 
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In order to obtain a relation between 
1,C  and  

3,C ,   Eq. (4) can be used accomplishing the linear 

approximation, yielding 
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Figure 1. Behavior of the real and imaginary parts of the complex dielectric constant. The red line 

corresponds to the model presented here, the black line is the case of perfect blocking 

electrodes and the blue line is the case characterized by adsorption. The values adopted for the 

parameters are 1 2.9  10
-4

 m/s, 2 3.48  10
-7

  m/s,  3 4.62  10
-7

  m/s,  1.03  10
-

7
 m,  2  10

-3 
s,  3 0.076 s, 1 0.155, 2 0.88, sm /106 29

 DD , and  85 


 (where 
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 8.815  10
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From the previous results, it is possible to obtain the electric field ),( tzE  and, consequently, 

from the Coulomb theorem )(),2( ttdE  ,  where   is the surface density of charge on the 

electrode at 2dz  . These quantities are relevant to obtain the admittance Y and, consequently, the 

impedance YZ 1  of the system. The current at the electrode is determined by the equation 

 -J-J S  qI  dtd S  from which the admittance, VI /Y , of the sample (cell) can determined. 

For the case worked out here, it is given by 
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The impedance connected to Eq. (23) is obtained by using YZ 1 from which we can obtain 

' and '' .  Figure (1) illustrates the quantities ' and ''  obtained from the approach presented above 

(red line) with ),(),(),(  iii   , where  1)(),(   ii  with 

)(  i 1)(1


 i 2)(2


 i  and the cases characterized by perfect blocking electrodes (black 

line) 0),(  i  and adsorption (blue line)  333 1),(  ii  . Note that the behavior in the 

low frequency limit of the model proposed here with different mobilities is very different from the 

standards cases. 

 

 

 

3. MODEL AND EXPERIMENTAL DATA 

Now, we compare the phenomenological model described above with the experimental data 

obtained for ionic solutions of 3KClO  (supplied by QEEL - Indústrias Químicas S.A. with over 99.9 as 

received) dissolved in Milli-Q deionized water with the dielectric spectroscopy technique. The 

measurements of real and imaginary parts of the complex dielectric were performed by using a 

Solartron SI 1296 A impedance/gain phase analyzer. The frequency range used was from Hz210
 to 

kHz10 . The amplitude of the AC applied voltage was 20 mV. The ionic solutions were placed between 

two circular surfaces spaced 1.0 mm from each other. The area of electrical electrodes was 3.14 cm
2
. 

We used the electrical contact of stainless steel. Before starting the measurements, we adopted the 

following cleaning procedure: first, the electrodes were washed with detergent and deionized water 

also polished with fine sandpaper. Then, the electrodes were placed on ultrasonic bath for 10 min. 

After performing this procedure, the ionic solution, formed by the  Milli-Q water with a quantity of the 

salt 3KClO  completely dissolved, is introduced in the electrodes (1.0 mm thickness) and the real ' and 

the imaginary ''  part of the complex dielectric constant are measured. This procedure is  applied to 

six ionic solution of the Milli-Q water with the salt 3KClO  considered here. The  six different solutions 

were prepared with the following salt concentrations: solution (a) 4.0810
-3

 mol L
-1

; solution (b) 

1.2810
-2

 mol L
-1

; (c) 1.7110
-2

 mol L
-1

; solution (d) 4.4810
-2

 mol L
-1

; solution (e) 6.8510
-2

 mol L
-

1
; solution (f) 0.17 mol L

-1
.  
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Figure 2. Behavior of the real and imaginary parts of the complex dielectric constant for different 

concentrations is shown. The concentrations used are (a) 4.0810
-3

 mol L
-1

 (black squares), (b) 

1.2810
-2

 mol L
-1

 (black circles) , and (c) 1.7110
-2

 mol L
-1

 (black triangles), respectively.  

The experimental data are represented by the black symbols and the model corresponds to the 

colored solid lines. The values of the parameters for the red solid line are 1 2.1 10
-4

 m/s, 

2 7.3510
-7

  m/s,  3.3910
-7

 m,  5.4710
-4 

s,  1 0.152, 2 0.87, and  85 

.  

For the blue solid line, we have 1 6.1 10
-6

 m/s, 2 3.05 10
-8

  m/s,  2.07810
-8

 m, 

 0.011
 
s,  1 0.193, 2 0.87, and  80


. The green solid line is obtained by 

considering 1 7  10
-6

 m/s, 2 2.45  10
-8

  m/s,  1.962  10
-8

 m,  510
-3 

s,  

1 0.22, 2 0.88, and  78

. 

 

Figure 2 shows the experimental data, black symbols (square, circle, and triangle), and the 

model, color solid lines (red, blue, and green), for the real and imaginary parts of the complex 

dielectric. In order to obtain the agreement between the experimental data and the phenomenological 

model present in Sec. II, we consider that the dynamic of the processes on the surface are governed by 

 ),(  i  ),(  i ),(  i , where   1)(),(   ii  with 

)(  i 1)(1


 i 2)(2


 i being 1  and 2  two different characteristic lengths. The bulk 

(diffusion) equation for the concentrations present in Fig. (2) is considered with, 
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sm /1022 29

  DD , 1 , and 1BA . Note that these choices leads to a different behavior 

from the ones obtained from the usual models based on perfect blocking electrodes or adsorption 

process characterized by a Langmuir approximation are not suitable to obtain a good agreement with 

the experimental one. In this sense, it is useful to observe in Fig.(1) the behavior of '  and ''  

illustrated which evidences that the behavior in the low frequency limit for the standard cases is 

different from the ones exhibit by the experimental data. These features suggest that the dynamics of 

the ions in this frequency range has a nonusual diffusion which is essentially governed by the surface 

effects. In fact, nonusual terms are only considered in the boundary conditions which represents the 

interaction between the surface and the ions present in bulk. In particular, the phenomenological 

parameters evidence the presence of two different characteristic lengths 1  and 2  which can be 

connected to the layers of the ions on the electrode surfaces. One of them is closed of the surface and 

the other is more delocalized and they decrease if the quantity of salt increase (see the Table I). 

 

Table I: This table shows the values of the quantities 1  and 2 , and   for the concentrations used 

in Fig.(2). Note that increase the quantity of salt in the solution decrease the quantities related 

to adsorption -- desorption process ( 1  and 2 ) and, also, the Debye length ( ). 

 

Concentration (mol L
-1

  ) 4.0810
-3

 1.2810
-2

 1.7110
-2

 

 1  (m) 1.14 10
-7

 6.7110
-8

 3.5010
-8

 

2  (m) 4.0210
-10

 3.3510
-10

 1.2210
-10

 

       (m) 3.3910
-8

 2.0710
-8

 1.9610
-8

 

 

Let us increase the quantity of salt dissolved in water to 4.4810
-2

  mol L
-1

 and to 6.8510
-2

 

mol L
-1

, respectively. The behaviors of '  and '' are illustrated in Fig. (3) and similar to the previous 

case, a good agreement between the experimental data (black symbols) and the phenomenological 

model (color lines) described above is achieved. For these concentrations, we have considered an 

additional term in the boundary condition to model the surface effects on the dynamics of the ions; 

and, for the concentration 6.8510
-2

 mol L
-1

, the value obtained for the parameter   was greater than 

one evidencing the presence of finite phase velocity. The additional term to model the surface is given 

by  1)(),( 3   iiadd  with   3333 1)(  ii  . In order to confirm the presence of 

1 , we increase the concentration of salt in water to 0.17 mol L
-1

. The results presented in Fig. (4) 

shown that a suitable behavior is obtained when  is greater than one, similar to the concentration (e), 

which suggests a dependence between the concentration of ions and the diffusion process, i.e., the 

 values. 

 

 

4. DISCUSSIONS  

We have developed a phenomenological model by considering a fractional diffusion equation 

of distributed order by taking into account integro-differential boundary conditions. We also 
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considered different molities, diffusion coefficients, and surface effects. The result obtained from this 

model was illustrated in Fig. (1) in comparison with the standard cases to illustrate the differences. In 

particular, the main difference was observed in the low frequency limit where the surface effects, i.e., 

the boundary conditions, play an important role. In this point, it is also interesting to note that 

difference between the model analyzed here other developments (see e.g., Ref. [31] and [32]) is that 

the fractional diffusion equations for the ions are solved taking into account the Poisson equation and 

integro-differential boundary conditions. In particular, we have the presence of the fractional time 

derivatives of distributed order in the bulk (diffusion) equation and in the boundary conditions. Thus, 

we may interpolate several contexts which play an important role describing the electrical response of 

a system and, consequently, investigate systems where the nonusual behavior is manifested. 

 

-2 0 2

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4  (d)

 (e)

'

log
10

(/(2))

-2 0 2

10
-6

10
-5

10
-4

 (d)

 (e)

'
'

log
10

(/(2))
 

 

Figure 3. Behavior of the real and imaginary parts of the complex dielectric constant for two different 

concentrations. The concentrations used in (d) and (e) are 4.4810
-2

 mol L
-1

 (black squares) 

and 6.8510
-2

 mol L
-1 

 (black circles), respectively. The experimental data are represented by 

the black (square and circle) symbols and the model corresponds to the colored (red and green) 

lines. The values of the parameters for (d) are  parameters are  1 1.80 10
-5

 m/s, 2 4.14 

10
-8

  m/s,  3 5.4 10
-10 

m/s,  1.6110
-8

 m,  2.110
-3 

s,  3 0.0735 s, 1 0.149, 

2 0.89, 1 , and  78 

. For the concentration (e), we have that 1 1.65 10

-5
 m/s, 

2 3.79 10
-8

  m/s,  3 1.188 10
-10 

m/s,  1.5910
-8

 m,  2.110
-3 

s,  3 0.0735 s, 

1 0.149, 2 0.865,  70

, 98.0A , and    1.085. 
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By using this model, we have investigated the experimental data of the complex dielectric 

constant of ionic solutions of 3KClO  dissolved in Milli-Q water. In particular, we compare the 

phenomenological framework with experimental data as show in Figs. (2), (3), and (4).  

 

-2 0 2 4
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-6
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-5
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10
-7

10
-6

10
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'
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(/(2))
 

 

 

Figure 4. Behavior of the real and imaginary parts of the complex dielectric constant versus frequency 

for the concentration (f) 0.17  mol L
-1

 . The experimental data are represented by the black 

squares and the model with 1  corresponds to the solid red line.  The values of the 

parameters for are  1 9 10
-7

 m/s, 2 6.03 10
-8

  m/s, 3 1.125  10
-9

  m/s,  7.2410
-

9
 m,  510

-3 
s,  3 0.15 s, 1 0.245, 2 0.865,   75 


, 90.0A , and 018.1 .  

The blue dotted line, which corresponds to the model with previous parameter values with 

1 , was incorporated to evidence in  '  and ''   the effect produce by the choice 1 . 

 

The agreement between the experimental data present in Fig. (2) and the model is obtained by 

considering the diffusion equation with 1  and the processes on the surface, boundary conditions, 

governed by a power laws with different thickness, 1  and 2 . Following, we increase the 



Int. J. Electrochem. Sci., Vol. 8, 2013 

  

2860 

concentration of ions in the solution and the changes were first evidenced on the dynamics of the 

processes (see Fig. (3)) occurring at the surface. It was necessary to incorporate another term in the 

boundary condition to obtain a good agreement with the experimental data. This additional term has 

the thickness, 33 .  

Another point is the presence  1  in Eq. (1) to fit the experimental data obtained for the 

concentration (e), in contrast with the results presented in Refs. [27] and [28] characterized by the 

usual case or  10   . The concentration (f) present in Fig. (4) have also required 1 to fit the 

experimental data. These results, supported by the agreement between the experimental data and the 

model presented in Sec. 2, evidence that the dynamics of the ions in the sample is not usual and may 

be related to the diffusive regimes which can be suitably described if the boundary conditions and the 

bulk equation are modified.  

 

 

 

5. CONCLUSIONS  

The results obtained in the framework developed here, in Sec. 2, exhibit a rich class of 

behaviors depending on the choices performed for boundary conditions, i.e., for the function ),(  t , 

as shown in Fig. 1. The index   of the fractional time derivative present in the diffusion equation can 

also modify the behavior electrical response. This manner the approach analyzed here may describe 

scenarios characterized  by different diffusive behaviors such as, for example, the discussed in Refs. 

[27-29]. In this sense, the comparison between the experimental data and the model performed in Sec. 

3 suggests that dynamic of the ions present different diffusive regimes. Finally, we also hope that the 

results presented here can be useful to investigate the electrical response of others systems and their 

connections with the anomalous diffusion. 
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