Effect of CO₂ Saturation on the Corrosion Behaviour of AZ31B Magnesium Alloy in Na₃PO₄ Solutions

Wei Bai^{*}, Jinmiao Yu, Yan Yang, Yanqing Ye, Junming Guo, Yingjie Zhang

The Engineering Laboratory of Polylactic Acid-Based Functional Materials of Yunnan, Yunnan University of Nationalities, Kunming 650092, China ^{*}E-mail: <u>bw369852147@qq.com</u>

Received: 25 January 2013 / Accepted: 20 February 2013 / Published: 1 March 2013

Effect of CO₂ saturation on the corrosion behaviour of AZ31B magnesium alloy in the presence of different concentrations of Na₃PO₄ solution was investigated by open circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). As it was expected, in solution without CO₂ the corrosion rate decreases with increasing Na₃PO₄ concentration and the passive behaviour of AZ31B magnesium alloy apparently occurs when the concentration of Na₃PO₄ is increased to 10^{-2} mol L⁻¹ after 2 h immersion. However, in solution saturated with CO₂ the corrosion rate decreases with increasing na₃PO₄ solution saturated with CO₂ is bigger than that in single Na₃PO₄ solution, showing that CO₂ obviously accelerates the corrosion of AZ31B magnesium alloy in Na₃PO₄ solutions. The corrosion rate is also observed with immersion time decreased in Na₃PO₄ solution saturated with CO₂ as a result of increase in pH value with time going on.

Keywords: Corrosion; AZ31B magnesium alloy; Na₃PO₄; CO₂

1. INTRODUCTION

Nowadays, magnesium alloys have received extensive application in the aerospace, automotive application and electronic industries because of their excellent physical properties, including low density, high strength to weight ratio, excellent electrical conductivity, high thermal conductivity and good electromagnetic shielding characteristics among others [1-3]. However, the magnesium alloy has a low corrosion potential and easily corrodes, which limits its extensive utilization in these fields. Therefore, corrosion behaviour of magnesium and its alloy have been widely investigated in various environments and is still a significant research field [4-11].

Many material and components made by magnesium alloy are usually exposed to atmosphere containing abundant vapor and CO₂. It is easy to form a thin film saturated with CO₂ on the surface of magnesium alloy in this environment where magnesium alloy is active and easily corroded. Therefore, CO₂-induced atmospheric corrosion of magnesium and its alloys has received the attention of many researchers [8-11]. It is also reported that CO₂ may play an important role in the corrosion of magnesium alloy. For examples, Baril et al [8] studied the corrosion of pure magnesium in Na₂SO₄ solution aerated and deaerated. Their results showed that O2 did not influence the corrosion of magnesium and the corrosion rate of magnesium was controlled by HCO₃⁻ concentration in the presence of CO_2 . Lin et al [9] also studied the role of CO_2 in the initial atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl. NaCl was added by spraying the sample with saturated NaCl solution in 90% ethanol and the volume of CO₂ in mixed gas was 1%. They suggested NaCl-induced corrosion was inhibited in the presence of CO_2 by the formation of slightly soluble corrosion products containing hydroxy carbonates and hydroxy chlorides that provided a partly protective layer on the surface of the magnesium alloy. But it is unlikely to form a thin fluid film on magnesium alloy in their study. While Lindström et al. [10] made investigations of the influence of carbon dioxide on the atmospheric corrosion of magnesium; they concluded that in the presence of 350 ppm CO_2 the corrosion rate was only 25% of that registered in CO₂-free air. This was explained by the formation of a protective carbonate layer. Qu et al. [11] investigated the corrosion behaviour of AZ31B magnesium alloy in different concentrations of NaCl solution saturated with CO₂, they showed that the presence of CO₂ accelerated the anodic dissolution in NaCl solution. However, little has been studied about the corrosion mechanism of magnesium alloy in the presence of other salts saturated with CO₂.

Considering that metal phosphates are insolubility in neutral water and have high temperature resistance and chemical stability [12], phosphate chemical conversion may be a promising coating method for corrosion protection films of magnesium alloys. More and more researchers have interests in studying effect of phosphates on the corrosion of magnesium alloys [12-16]. Previous studies concerning the electrochemical performance of AZ91D alloy in phosphate electrolytes dealt mainly with producing a film by chemical [13] or electrochemical [14] oxidation to form protective coatings on AZ91D substrate. Niu et al. [15] succeeded in forming a zinc phosphate coating on AZ91D alloy with a typical phosphate microstructure having better corrosion resistance due to the presence of crystalline zinc in the coat. Heakal et al. [16] studied the influence of pH on the corrosion behavior of Mg-based AZ91D alloy in a constant composition phosphate medium, they suggested that pH value of phosphate medium have an important effect and spontaneously formed protective layers on the AZ91D surface greatly improve with increasing pH value of phosphate (over 8.1), which leads to partial blocking of the film pores; their results also showed the corrosion rate in NaH₂PO₄ solution is far larger than that in Na₃PO₄ solution. But literature available to date about effect of the concentration of phosphate on the corrosion of magnesium alloy with and without CO₂ is scare. Consequently, there is no clear understanding of the role of CO₂ in the corrosion kinetics of magnesium alloy in Na₃PO₄ solution saturated with CO₂.

The purpose of the present study is to study the detailed reaction sequence of AZ31B alloy in Na_3PO_4 solutions saturated with and without CO_2 by open circuit potential (OCP), potentiodynamic

polarization and electrochemical impedance spectroscopy (EIS) and is to discuss the effect of CO_2 saturation on the corrosion mechanism of magnesium alloy in Na_3PO_4 solutions.

2. EXPERIMENTAL METHODS

2.1 Materials

The experiments were performed with AZ31B magnesium alloy specimens with the following chemical composition (wt %): Al 3.05 %, Zn 0.99 %, Mn 0.28 %, Fe 0.003 %, Si 0.025 %, Cu 0.002 %, Ni 0.0049 % and Mg balance.

Sodium phosphate (Na₃PO₄) was of analytical grade. Different concentrations of Na₃PO₄ (0, 10^{-5} , 10^{-4} , 10^{-3} , 10^{-2} , 10^{-1} mol L⁻¹) were prepared from distilled water. The experimental solution was aerated using a CO₂ gas generator. pH was surveyed by PHS-25 pH-metre.

2.2 Electrochemical measurements

The working electrode was embedded in a PVC holder using epoxy resin given an exposed surface of 4.0 cm^2 . The exposed face was abraded with emery paper from 100 to 1200 grades, scoured with distilled water, degreased with acetone, washed again with distilled water, and dried with a blower.

A three-electrode system including a working electrode, an auxiliary electrode and a reference electrode was used for electrochemical measurements in 250 mL solution. Auxiliary electrode was a platinum foil and the reference electrode was a saturated calomel electrode (SCE) with a Luggin capillary positioned close to the working electrode surface in order to minimize ohmic potential drop. The working electrodes were immersed in the test solution at 30°C for 2 h before measurement until a steady state appeared. All electrochemical measurements were carried out using a PAR 2263 Potentistat/Galvanostat (Princeton Applied Research). EIS was carried out in a frequency range of 2×10^6 Hz to 0.1 Hz using a 10 mV peak-to-peak voltage excitation. The potentiodynamic polarization scan was carried out by polarizing from -1.9 V to 1.0 V with respect to the free corrosion potential ($E_{\rm corr}$ vs. SCE) at a scan rate of 1 mV s⁻¹. Each experiment was repeated at least three times to check the reproducibility.

3. EXPERIMENTAL RESULTS

*3.1 Solution saturated with CO*₂

It is generally agreed that the following reactions will occur in solution containing CO₂:

$$CO_2(g) \rightarrow CO_2(aq)$$
 (1)

$$CO_{2}(aq)+H_{2}O \rightarrow H_{2}CO_{3}(aq) \rightarrow H^{+}(aq)+HCO_{3}^{-}(aq)$$

$$HCO_{3}^{-}(aq) \rightarrow H^{+}(aq)+CO_{3}^{-2}$$
(3)

When CO_2 is saturated in the solution, hydrogen ion (H⁺) will be in equilibrium with CO_2 , and pH will be steady. So pH value of the solution can be used to determine whether and when the solution is saturated with CO_2 .

Figure 1. pH value of the solution with and without Na₃PO₄ as a function of the time aerated with CO₂

Fig.1 shows the pH value of the solution with and without Na_3PO_4 as a function of the time aerated with CO_2 at 30°C. It is evident that, the pH value of the solution with and without Na_3PO_4 tends firstly towards negative direction quickly, and then it changes slowly until steady state is established after 10 minutes. Therefore, the solution saturated with CO_2 can be obtained after 10 minutes aerated with CO_2 . So 10 minutes were chosen as the aeration time in this paper.

3.2 Electrochemical studies

3.2.1 Open circuit potential (OCP)

The OCP experiments of AZ31B in solution saturated with CO_2 without and with 0.01 mol L⁻¹ Na₃PO₄ at 30°C were recorded and plotted in Fig. 2. As it can be seen, the corrosion potentials (E_{corr} vs. SCE) shift towards positive direction quickly during the initial 2000 s, then slightly increase with time and reach a steady state at 6000 s in solution saturated with CO_2 with and without Na₃PO₄. Both curves in solution saturated with CO_2 with and without Na₃PO₄. Both the corrosion potential in Na₃PO₄ solution saturated with CO_2 is higher than that measured in

solution without Na_3PO_4 saturated with CO_2 but lower than that in Na_3PO_4 solution in the absence of CO_2 .

Figure 2. Variation of the OCP of AZ31B in solution saturated with CO₂ without and with Na₃PO₄

This indicates that Na_3PO_4 affects the kinetics of the anodic reaction of AZ31B magnesium alloy in solution saturated with CO_2 more strongly. Because the OCP does not change obviously with increasing immersion time after 2 h immersion, in this article 2 h was chosen as the immersion time in electrochemical studies.

3.2.2 Potentiodynamic polarization

To discuss the effect of Na₃PO₄ on the kinetics of the anodic reaction of AZ31B magnesium alloy in solution, the potentiodynamic polarization curves for the corrosion of AZ31B in solution without and with CO₂ containing different concentrations of Na₃PO₄ at 30 °C were shown in Fig.3a and b, respectively. Fig.3a shows that, corrosion potentials (E_{corr} vs. SCE) are shifted to noble direction with increasing Na₃PO₄ concentration in the absence of CO₂, the anodic branches are shifted to more positive potential direction while the cathodic branches dose not change obviously, suggesting that Na₃PO₄ mainly retards the anodic reaction. And from Fig.3a it also can be seen that, when the concentration of Na₃PO₄ is higher than or equal to 10⁻² mol L⁻¹, the anodic current densities become very low and do not change with increasing the applied potential (from corrosion potential to 1.5V). This domain corresponds to an apparent passivation zone. Over the potential region of the passive current zone a steady state is established between the rates of metal dissolution and passive film formation. Therefore, the anodic passive behaviour of AZ31B magnesium alloy apparently occurs when the concentration of Na₃PO₄ is increased to 10⁻² mol L⁻¹ in the absence of CO₂. Whereas a reverse trend about the effect of Na₃PO₄ was observed in the presence of CO₂ from Fig.3b. Fig3b shows that the corrosion potential decreases with increasing the concentration of Na_3PO_4 from 0 to 0.1 mol L⁻¹ in solution saturated with CO₂, and that the anodic current densities obviously increase with increasing the concentration of Na_3PO_4 , suggesting that Na_3PO_4 accelerates the anodic dissolution of AZ31B alloy in solution saturated with CO₂.

Figure 3. Potentiodynamic polarization for magnesium alloy in solution without (a) and saturated with CO_2 (b) at different concentrations of Na_3PO_4

CO ₂	$C_{\text{Na}_3\text{PO}_4}$ (mol L ⁻¹)	<i>E</i> _{corr} vs SCE (V)	$i_{\rm corr}$ (μ A cm ⁻²)	R_1 (Ω cm ²)	$R_{\rm t}$ ($\Omega {\rm cm}^2$)	$C_{\rm dl}$ (µF cm ⁻²)	$R_{\rm f}$ ($\Omega {\rm cm}^2$)	$C_{\rm dl}$ (µF cm ⁻²)
0	10 ⁻⁵	-1.550	112.1	256.7	1547	0.0002	1461	25.02
	10 ⁻⁴	-1.518	56.3	187.0	5307	0.0005	1473	24.82
	10 ⁻³	-1.504	49.9	157.4	6368	0.0006	440.0	28.03
	10 ⁻²	-1.478	28.2	36.5	14120	0.0003	-	-
	10 ⁻¹	-1.485	19.9	34.2	26240	0.00012	-	-
saturation with CO ₂	0	-1.652	125.6	346.1	562.6	0.0007	65.39	25.50
	10-5	-1.653	151.3	191.9	431.3	0.0009	181.9	18.20
	10 ⁻⁴	-1.629	177.8	110.8	418.6	0.0010	148.3	23.57
	10-3	-1.665	251.7	58.8	315.9	0.0016	99.68	31.47
	10-2	-1.861	501.4	31.4	220.5	-	-	-
	10-1	-1.856	512.3	29.8	219.7	-	-	-

Table 1. Electrochemical parameters from potentiodynamic polarization and EIS in different
concentration of Na₃PO₄ solution saturated with CO₂ at 30 $^{\circ}$ C

The corrosion potential E_{corr} and corrosion current density i_{corr} obtained from these curves were summarized in Table 1. Similar to the results obtained from OCP tests, the corrosion potential in Na₃PO₄ solution saturated with CO₂ is lower than that in Na₃PO₄ solution in the absence of CO₂, as shown in Table 1. It also can be seen from Table 1 that, with increasing concentration of Na₃PO₄ from 0 to 0.1 mol L⁻¹, the i_{corr} values in the presence of saturation CO₂ increase from 125.6 to 512.3 μ A cm⁻² while those in the absence of CO₂ only decrease from 112.1 to 19.9 μ A cm⁻². The corrosion rate is much higher in solution saturated with CO₂ than without CO₂ at each same concentration of Na₃PO₄. That is to say, CO₂ significantly accelerates AZ31B alloy corrosion in Na₃PO₄ solutions, which can be attributed to the co-effect of CO₂ and Na₃PO₄.

3.2.3 EIS

Figure 4. EIS of AZ31B at different concentrations of Na_3PO_4 solution without (a) and saturated with CO_2 (b).

In order to compare the corrosion behaviour of different solutions, Fig. 4a and b show the Nyquist diagrams of AZ31B for different concentrations of Na₃PO₄ without and saturated with CO₂ at 30 °C. It is easy to see from these figures that all impedance spectra are rather complex when the concentration of is lower than 10^{-3} mol L⁻¹. In general, the EIS for AZ31B is quite similar to that of magnesium and AZ21 in NaCl solution [11,17,18], even though the data is much scattered, the trend is still clear that the EIS consists of three loops, one capacitive in the high frequency range (hf), one inductive loop in the intermediate-frequency range (mf) and another capacitive loop in the low frequency (lf) in low concentration of Na₃PO₄. However, the intermediate-frequency inductive loop and low frequency capacitive almost disappear when the concentration is higher than 10^{-3} mol L⁻¹, these capacitive loops in the absence of CO₂ only are part of depress semicircles and the diameters are very large comparing to that in solution saturated with CO₂, The larger values of impedance and the character of impedance diagrams in the absence of CO₂ suggest existence of a passive film on AZ31B magnesium alloy.

Figure 5. Equivalent circuit of EIS in low (a) and high (b) concentration of Na₃PO₄

It is generally agreed that the capacitive loop in the high frequency region is always related to the transient resistance (R_t) and the double layer capacitance (C_{dl}) of the electrode [8,18-21], and it is possible to obtain the oxide film resistance of AZ31B from these loops as presented in Fig.4. Comparing the semicircle of high frequency capacitive loop, it is easy to see that the loop of the

solution saturated with CO_2 is smaller than that without CO_2 at each concentration of Na_3PO_4 . With increase of the concentration of Na_3PO_4 saturated with CO_2 the diameter decreases, meaning that the corrosion of AZ31B accelerates, whereas in the absence of CO_2 the corrosion rate decreases with increase of the concentration of Na_3PO_4 . These results are consistent in potentiodynamic polarization curves.

According to Song et al. [17,18] the low frequency capacitive loop is related to Mg^+ ion concentration within the face oxide broken area. The inductive loop in the intermediate-frequency range is generally attributed to the adsorbed species such as $Mg(OH)^+$ or $Mg(OH)_2$ [17,18,22]. According to our observations, the rate of adsorption of these species is only significant in solution containing higher concentration of Na₃PO₄ saturated with and without CO₂, since there is no inductive loop appeared in higher concentration of Na₃PO₄ solutions.

The EIS results were simulated using the equivalent circuit shown in Fig.5a (low concentration) and b (high concentration) to pure electronic models that could verify or role out mechanistic models and enable the calculation of numerical values corresponding to the electrochemical system under investigation [23]. In these circuits, R_s is solution resistance, R_t is charge transfer resistance and C_{tdl} is the double layer capacity associated to the oxidation film of AZ31B; R_f and C_{fdl} are associated to the adsorption film on the oxidation film of AZ31B. In high concentration of Na₃PO₄, the equivalent circuit contains inductance *L* and disturbs resistance; *Q* is the constant phase element comprising C_{tdl} and R_t , R_s , R_t , R_f and Q are all obtained from EIS in Fig. 4 via equivalent circuit in Fig. 5. And the solid lines in Fig.4 show the fit of the experimental data according to this model circuit. C_{dl} is accounted using the following equation [24]:

$$C_{\rm d1} = \frac{1}{2\pi f_{max} R} \tag{4}$$

Where f_{max} represents the frequency at which imaginary value reaches a maximum in one capacitive loop in the Nyquist plot. *R* is the resistance (R_t , R_f) and C_{dl} the double layer capacity (C_{tdl} , C_{fdl}). The resistances and double layer capacity (C_{tdl} , C_{fdl}) are all listed in Table 1.

From Table 1 it can be found, with the increasing concentration of Na₃PO₄ without CO₂, that C_{tdl} value decreases and R_t values increase, which reveals that corrosion rate of AZ31B decreases with increasing concentration of Na₃PO₄; while with the increasing concentration of Na₃PO₄ saturated with CO₂, the results are the contrary. The R_t values are far smaller in solution saturated with CO₂ than single Na₃PO₄. But C_{tdl} values are just the opposite. That is, the corrosion rate increases markedly in the solution aerated with CO₂. These results are well in agreement with the results obtained from potentiodynamic polarization.

3.2.4 Effect of immersion time

To further investigate the effect of immersion time on the corrosion of AZ31B in Na_3PO_4 solution saturated with CO_2 , the potentiodynamic polarization curves and EIS of 10^{-2} mol L⁻¹ Na_3PO_4

solution saturated with CO_2 at different time are presented in Fig 6a and b, respectively. Fig 6a shows that the corrosion potentials shift to more positive direction with increasing immersion time, the anodic branches are shifted to more positive potential direction, indicating that the anodic dissolution is retarded with increasing immersion time.

Figure 6. Potentiodynamic polarization (a) and EIS (b) of AZ31B in solution saturated with CO_2 in the presence of 10^{-2} mol L⁻¹ Na₃PO₄ at different times

As a result, the corrosion current also decreases with increasing immersion time. From these polarization curves, it is also clear passive behaviour will occur if the immersion time is longer than 32 h, and the passive range increases with increasing immersion time. It also can be seen from Fig. 6b

that, the immersion time increases significantly the size of the capacitive loop, when the time is raised to 32 h, the diameter of the capacitive loop becomes very large, and the capacitive loop increases more obviously than that before 32 h, the larger values of impedance and the character of impedance diagrams suggest existence of a corrosion film in Na₃PO₄ solution saturated with CO₂ after immersion for 32 h. And the film becomes more protective with increasing immersion time. This fact is consistent with the result from Baril et al. [8]. Baril also have reported that the concentration of HCO_3^- is a main factor of corrosion rate and in aerated solution the magnesium surface is covered with a porous film (MgO, Mg(OH)₂) which became thicker with time and had a low protective action.

4 DISCUSSION

4.1 Corrosion in Na₃PO₄ solution without CO₂

It is well known that dissolution of magnesium in aqueous solutions proceeds by reduction of water molecules to produce magnesium oxide and/or hydroxide and hydrogen gas.

In Na₃PO₄ solution without CO₂, PO_4^{3-} will hydrolyze and lead to increase in pH of the solution which brings into strongly alkaline solution. As shown in Fig.1 that pH value of 0.01 M Na₃PO₄ is higher than 11.

The anodic dissolution of magnesium in alkaline solution is

$$Mg(s) \rightarrow Mg^+(l) + e$$
 (5)

$$Mg^{+}(l) + H_2O \rightarrow Mg^{2+}(l) + OH^{-}(l)$$
 (6)

 $Mg(s) + 2OH^{-}(s) \rightarrow Mg(OH)_{2}(s) + 2e^{-1}$ (7)

And the corresponding cathodic reaction is

$$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
(8)

Therefore, countless electrochemical cells begin to form on the surface of AZ31B. Then cations, e.g. Na⁺, Mg⁺ will migrate towards to the cathodic areas, at the same time anions, e.g. $PO_4^{3^-}$, OH⁻ will migrate towards to the dissolution sites. Accordingly, insoluble Mg₃(PO₄)₂(s) and Mg(OH)₂(s) will form close to the anodic sites. The anodic dissolution is subsequently retarded. With increase in concentration of Na₃PO₄, pH becomes higher, and insoluble Mg₃(PO₄)₂(s) and Mg(OH)₂(s) come into being more easily. Thus the anodic dissolution becomes more difficult. When the concentration of PO₄³⁻ is equal to or higher than 10⁻² mol L⁻¹, the insoluble film becomes thicker and more protective; it will exhibit existence of a passive film in electrochemical tests. The phenomena are well in agreement with the results obtained from potentiodynamic polarization and EIS.

However, when in solution saturated with CO₂, on the one hand, the formation of H⁺ and CO₃²⁻ will enhance the conductivity and acidity of the electrolyte rather quickly, the cathodic hydrogen evolution becomes more facile. Accordingly, the corrosion rate also increases in the presence of CO₂; on the other hand, just as can be seen from Fig.1, pH value of the solution in the absence of Na₃PO₄ is about 3.8 and that in the presence of 10^{-2} mol L⁻¹ Na₃PO₄ is about 4.4, which means that the exist formation of phosphate ion is H₂PO₄, furthermore, according to the pourbaix diagram of Mg, Mg(OH)₂ is unstable when pH value is lower than 8.5, thus insoluble Mg₃(PO₄)₂(s) and Mg(OH)₂(s) can not form in this solution. Heakal et al.[16] also pointed out that precipitation of Mg₃(PO₄)₂(s) and Mg(OH)₂(s) is impossible in acid solution. Therefore, here the role of phosphate ion is to act as electrolyte, with increasing the concentration of Na₃PO₄, the conductivity of solution increases, meaning that the anodic dissolution accelerates with increasing the concentration of Mg₃(PO₄)₂(s) and Mg(OH)₂(s) meet the equilibrium pH value required for the precipitation of Mg₃(PO₄)₂(s) and Mg(OH)₂(s) meet the qualification, insoluble Mg₃(PO₄)₂(s) and Mg(OH)₂(s) will form on the anodic sites. In additional, the following reaction will take place:

$$2Mg^{2+}(aq)+2OH^{-}(aq)+CO_{3}^{2-}(aq) \rightarrow Mg_{2}(OH)_{2}CO_{3}(s)$$
 (9)

So with immersion time increased, the insoluble corrosion product $Mg_2(OH)_2CO_3(s)$, $Mg_3(PO_4)_2(s)$ and $Mg(OH)_2(s)$ also increase and accumulate on the surface of AZ31B, which become thicker with time and have a high protective action. The formation of $Mg_2(OH)_2CO_3(s)$, $Mg_3(PO_4)_2(s)$ and $Mg(OH)_2(s)$ further restricts the transport of CO_2 and O_2 to the magnesium surface and thereby favors the inhibitive effect with time increased. This is in agreement with the result obtained from effect of immersion time.

5. CONCLUSIONS

(1) In solution without CO_2 , Na_3PO_4 can inhibit the corrosion of AZ31B magnesium alloy, the corrosion decreases with increasing Na_3PO_4 concentration, the anodic dissolution will go into passive zone with increasing the applied potential when the concentration is equal to or higher than 10^{-2} mol L⁻¹. However, in solution saturated with CO_2 , Na_3PO_4 will accelerate the corrosion of AZ31B magnesium alloy, and the corrosion rate increases with increasing Na_3PO_4 concentration.

(2) CO_2 plays an important role in the corrosion of AZ31B magnesium alloy in Na₃PO₄ solution. The corrosion of AZ31B is stronger in Na₃PO₄ solution saturated with CO₂ than without CO₂. EIS shows that the corrosion reaction is controlled by charge transfer resistance and film resistance. The results of potentiodynamic polarization and EIS are consistent.

(3) The inhibitive effect of CO_2 is also observed with time increased due to hydrogen evolution which results in increase of the pH value, showing that CO_2 reduces the average corrosion rate due to the formation of insoluble products. With increase in immersion time, the protective film becomes thicker, the *i*_{corr} decrease and *R*_t increase.

ACKNOWLEDGEMENT

This work was supported by Natural science fund item of China under the Grant Number 51161025, Natural science fund item of Yunnan province under the Grant Number 2011FZ173, Department of Education fund item of Yunnan province under the Grant Number 2011Y211, Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province (IRTSTYN) and Green Chemisty and Functional Materials Research for Yunnan Innovation Team under the Grant Number 2011HC008.

References

- 1. W. Liu, F. Cao, L. Chang, Z. Zhang, J. Zhang, Corros. Sci. 51(2009)1334.
- 2. Y.H. Wei, L.J. Yang, L.F. Hou, Y.W. Guo B.S. Xu, Eng. Fail. Anal. 16(2009)19.
- 3. A.K. Mondal, S. Kumar, C. Blawert, N.B. Dahotre, Surf. & Coa. Tech. 202(2008)3187.
- 4. Z. Shi, G. Song, A. Atrens, Corros. Sci. 47(2005)2760.
- 5. P.B. Srinivasan, C. Blawert, W. Dietzet, K.U. Kainer, Scripta Mater. 59(2008)43.
- 6. R.L. Edgar, Automotive Light Metals 1(2000)42.
- 7. G.L. Markar, J. Kruger, Int. Mater. Rev. 38(1993)138.
- 8. G. Baril, N. Pébère, Corros. Sci. 43(2001)471.
- 9. C. Lin, X. Li, Rare Metals 25(2006)190.
- 10. R. Lindstrom, J. E. Svensson, L. G. Johansson, J. Electrochem. Soc. 149(2002) B103.
- 11. Q. Qu, J. Ma, L. Wang, L. Li, W. Bai, Z. Ding, Corros. Sci. 53(2011)1186.
- 12. Ž. Mesíková, P. Šulcová, M.Trojan, J. Therm. Anal. Cal. 88(2007)103.
- 13. G. Y. Li, J. S. Lian, L. Y. Niu, Z. H. Jiang, Q. Jiang, Surf. Coat. Technol. 201(2006) 1814
- 14. H. Hsiao, W. Tsai, Surf. Coat. Technol. 190(2005)299
- 15. L. Y. Niu, Z.H. Jiang, G. Y. Li, C.D. Gu, J.S. Lian, Surf. Coat. Technol. 200(2006)3021
- 16. F. El-Taib Heakal, A. M.Fekry, M. Z. Fatayerji, J. Appl. Electrochem. 39(2009)583.
- 17. G. Song, A. Atrens, D. ST Jonh, X. Wu, J. Nairn, Corros. Sci. 39(1997)1981.
- 18. G. Song, A.Aterens, X. Wu, B. Zhang, Corros. Sci. 40(1998)1769.
- 19. Q. Qu, S. Jiang, W. Bai, L. Li, Electrochem. Acta. 52(2007)6811.
- 20. Q. Qu, S. Jiang, L. Li, W. Bai, J. Zhou, Corros. Sci. 50(2008)35.
- 21. G. baril, C. Blanc, N. Pébère, J. Electrochem. Soc. 148(2001)B489.
- 22. L. Li, Q. Qu, Z. Fang, L. Wang, Y. He, R. Yuan, Z. Ding, Int. J. Electrochem. Sci., 7(2012)12690.
- 23. L. Larabi, Y. Harek, M. Traisnel, A. Mansri, J. Appl. Electrochem. 34(2004)833.
- 24. P. Bommersbach, C. Alemany-Dumont, J. P. Millet, B. Normand, *Electrochim. Acta*. 51(2006)4011.

© 2013 by ESG (www.electrochemsci.org)