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The gel polymer electrolyte (GPE) films based on polymethylmethacrylate (PMMA) containing the 

mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent and various 

concentrations of magnesium triflate or Mg(CF3SO3)2 salt have been prepared using the solution 

casting technique. The maximum room temperature ionic conductivity of 1.27 x 10
-3

 S cm
-1 

was 

obtained from the GPE film containing 20 wt.% of Mg(CF3SO3)2 salt. The conductivity-temperature 

studies of the GPE films follow the Arrhenius behavior with activation energy for ionic conduction are 

determined to be 0.18 - 0.26 eV. The transport number of magnesium ions in the GPEs was evaluated 

using the combination of a.c. impedance spectroscopy and d.c. polarization techniques. Fourier 

Transform Infrared Spectroscopy (FTIR) studies confirmed the increased in conductivity is due to 

increase of free ions and decrease in ion aggregates. 
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1. INTRODUCTION 

 

Electrochemical energy storage systems have a tremendous role in technical applications such 

as supercapacitors, electrochemical devices, sensors, fuel cells, etc. [1-2]. In the midst of technologies 

emerging today, an even higher demand for rechargeable batteries with high specific energy, high 

power which provides good metal surface stability and high electrochemical stability are expected [2-

4]. Although lithium batteries are widely been used in high power application due to its highest 

electrode potential with an average voltage of 3.8 V, the lithium itself has brought out serious 

environmental issues due to its reactive nature and safety concern to the device and even the users [5-

6]. At the same time, the accessibility of the raw material for the conventional battery is a great 

challenge that is likely to impact its sustainability in the future. Therefore, an alternative energy 
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sources which are less detrimental to the environment and cost effective has been discovered to replace 

lithium-based batteries.  

Various studies have shown that magnesium, being the most abundance element on earth and 

its relative higher stability is more likely to be a good candidate for electrolyte materials [7-8]. In 

particular, magnesium-based systems have attracted interest in electrochemical research and 

development due to their electrochemical properties which are closed to lithium-based system as 

reported by Chusid et al. [9]. Yoshimoto et al. [10] have investigated the development of the 

electrochemistry of magnesium in a non aqueous media in connection with developing rechargeable 

magnesium batteries. In contrast to lithium batteries, rechargeable magnesium batteries are expected to 

have wide scope in the future since magnesium possesses a number of important characteristics as it is 

free from hazards, its stability is high with highly negative standard potential (-2.375 V), relatively low 

equivalent weight (12g per Faraday), high melting point (649
°
C), low cost, high safety, ease of 

handling, and low toxicity which allows for urban waste disposal [11-13]. Girish Kumar and 

Munichandraiah [13-14] have successfully produced working magnesium cells by using 

poly(vinylidenefluoride) (PVDF) and poly(methylmethacrylate) (PMMA) as polymer hosts for the gel 

polymer electrolytes and manganese oxide (MnO2) as cathode. 

In batteries, electrolytes play the role as the medium for the transfer of charges between a pair 

of electrodes i.e. cathode and anode. At present, gel polymer electrolytes (GPEs) has gain much 

attention compared to both solid polymer electrolytes (SPEs) and liquid electrolytes. Feuillade and 

Perche [15] had demonstrated the idea of mixing solvent–salt–polymer hybrid system in which the salt 

solution is immobilized by the addition of a suitable polymer matrix. After the discovery, Sekhon et al. 

[16] affirm that the solvent provides the conducting medium whereas polymer provides mechanical 

stability to these electrolytes.   

One of the host polymers that have been widely used as a promising matrix for an electrolyte 

material is PMMA. Appetecchi and co-workers [17] reported that PMMA-based gel electrolytes 

structure is the most beneficial to ionic conduction and has shown excellent interfacial stability 

towards electrodes. At the same time, chemical cross-linking of PMMA can remarkably increase the 

electrolyte solution retention ability as well as suppress salt dendrite formation in the GPE [18]. 

Asmara et. al [19] have investigated the variation of conductivity of GPE with various concentrations 

of PMMA in a binary solvent of EC:DEC and a fixed amount of magnesium triflate.  

In the present work, gel polymer electrolyte films comprising PMMA, propylene carbonate 

(PC), ethylene carbonate (EC) and magnesium triflate (Mg(CF3SO3)2) salt have been prepared. The 

effects of different concentrations of magnesium triflate on ionic conductivities have been measured by 

using impedance spectroscopy techniques. A combination of a.c. impedance and d.c. polarization 

methods were used to measure the transport number of magnesium ions in the GPE films. The 

transport number will reveal the contribution of magnesium ions in the ionic conductivity of the GPE 

films. FTIR spectroscopy was used to investigate the effect of free ions and ion aggregates from 

Mg(CF3SO3)2) salt on the ionic conductivity of the GPE films.  
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2. MATERIAL AND METHODS 

2.1. Materials  

PMMA with molecular weight of 9.96 x 10
5 

g/mol, propylene carbonate (PC), ethylene 

carbonate (EC), and magnesium triflate, Mg(CF3SO3)2 salt were purchased from Sigma-Aldrich. These 

materials were used as received without further purification. 

 

2.2. Preparation of the gel polymer electrolytes 

The solution casting method was used to prepare gel polymer electrolyte (GPE) films. In this 

method, magnesium triflate, Mg(CF3SO3)2 salt was first dissolved in the mixture of EC and PC with 

continuous stirring at 60°C for several hours. The polymer, PMMA, was then added to this solution 

and the mixture was further stirred until complete homogenization of the mixture was achieved. The 

viscous solution thus obtained was cast on a petri-dish and allowed to dry at room temperature to form 

the free standing GPE films. In this work, the GPE films were prepared by varying the amounts of 

Mg(CF3SO3)2 salt from 5wt% to 30wt% in a fixed amount (by weight) of PMMA and the plasticizing 

solvent, (EC and PC). The mass ratio of (EC+PC) to PMMA was 3:2. 

 

2.3. Characterizations 

The ionic conductivity of the GPE films was evaluated using an electrochemical cell by 

sandwiching the GPE films between two stainless steel electrodes. a.c. impedance measurements were 

carried out using HIOKI 3532 LCR impedance analyzer over the frequency range from 1 Hz to 1 MHz 

at room temperature. The ionic conductivity was also measured as a function of temperature in the 

temperature range of 303 K to 373 K for the GPE films containing 5wt.%, 20wt.% and 30wt.% of 

Mg(CF3SO3)2  salt. The conductivity, σ of the GPE was calculated using the following equation; 

 

AR

t

b



                                      (1) 

 

where t is the thickness of the GPE films, Rb is the bulk resistance obtained from the Cole-Cole 

plot of a.c. impedance measurement and A is the contact area between the electrodes and electrolyte. 

The total ionic transport number, tion was measured using the d.c. polarization method [20]. In 

this method, the d.c. current is monitored as a function of time on the application of fixed d.c. voltage 

(0.5 V) across the SSGPESS (SS: stainless steel). The stainless steel acted as blocking electrodes. The 

value of tion was determined by using the following equation; 
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where iT and ie are the total current and residual current, respectively. The transport number, 

t of Mg
2+

 ions in the GPE was evaluated by the method that proposed by Evans et al. [21] using the 

combination of a.c. impedance spectroscopy and d.c. polarization of MgGPEMg cell. According to 

this method, the cells were polarized by applying a constant voltage, 30.V  V for 20 hours and 

subsequently initial and final currents were recorded. The cells were subjected to a.c. impedance 

measurements prior to and after the polarization. The values of electrode-electrolyte contact resistances 

were obtained from the impedance plots. The transport number, t values were determined using the 

equation; 
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i

IRVI
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t






              (3) 

 

where oI  and sI  are initial current and final current, respectively. oR  and sR are cell resistances 

before and after the polarization, respectively. FTIR spectra of GPE films were taken using Thermo 

Scientific Nicolet iS10 Smart ITR spectrometer [19] in the wavenumber range from 650 to 4000 cm
-1 

and resolution of 1 cm
-1

. 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Ionic conductivity measurements 

In the present work, the binary solvent of EC and PC are used as a plasticizing solvent. EC and 

PC are chosen because of their high dielectric constant,  (  for EC = 89 and  for PC = 64) which is 

beneficial for the dissolution of Mg(CF3SO3)2 salt. At room temperature, EC is present in powder form 

and hence a co-solvent is required to dissolve it. Therefore in this work, PC is used as co-solvent for 

EC which at room temperature PC is in liquid form and its viscosity,  = 2.53 cP. Thus, a binary 

mixture of EC and PC is a good solvent combination for polymer electrolyte with characteristics of 

high dielectric constant and low viscosity. 

 In order to get the appropriate EC:PC ratio that would give the highest conductivity on 

incorporation of  Mg(CF3SO3)2 salt in GPE films, prior to this work, we have prepared the GPE films 

containing mass ratio of EC:PC = 1:1 in a fixed amount of PMMA (2 g) with various concentrations of 

Mg(CF3SO3)2 salt, from 0.2 g to 1.0 g. The conductivity values of these GPE films are given in Table 

1. It can be observed that the conductivity values are in the order of 10
-4

 S cm
-1

 with the highest 

conductivity is obtained from the sample containing 0.6 g Mg(CF3SO3)2 salt. It is noticed that the GPE 

films in this system were inhomogeneous and not flexible; this might be due to lower proportions of 

(EC+PC). We have also prepared the GPE films with higher proportion of PC (EC:PC = 1:2) and  the 

obtained films exhibited poor mechanical and electrical properties which is not favorable for battery 

applications. Since the formation of GPE requires optimum quantity of the liquid components, i.e. 

binary solvent mixtures (EC+PC), therefore the mass ratio of EC:PC used in the present study was 

fixed at 2:1. Kumar and Munichandraiah [14] obtained the highest conductivity of 3.75 x 10
-4 

S cm
-1
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from the GPE sample containing 1 g PMMA, 2 g (PC + EC) and 0.5 Mg(CF3SO3)2 salt. In their work, 

the mass ratio of PC:EC was 1:1. This conductivity value is about the same order of magnitude with 

our previous GPE system as listed in Table 1. 

 

Table 1. The conductivity values of GPEs containing PMMA (2g), (EC:PC) (1:1) (2g) and various 

amounts of Mg(CF3SO3)2 salt 

 

Amount of Mg(CF3SO3)2 salt 

(g) 

Conductivity (S cm
-1

) 

0.2 2.43  10
-4 

0.4 3.75  10
-4

 

0.6 6.08  10
-4

 

0.8 2.80  10
-4

 

1.0 2.59  10
-4

 

 

Fig. 1 shows the variation of conductivity with the concentration of Mg(CF3SO3)2 salt. It can be 

observed that at low salt concentrations (5 wt.% and 10 wt.%), the conductivity values are in order of 

10
-5

 S cm
-1

. On addition of 15 wt.% of Mg(CF3SO3)2 salt, the value of conductivity is found to be (5.58 

± 0.5 x 10
-4

)
 
S cm

-1
. This value is about the same with that reported by Kumar and Munichandraiah 

[14], they obtained a conductivity of 2.1 x 10
-4 

S cm
-1

 for the GPE film containing 1 g PMMA, 2 g (PC 

+ EC) and ~ 12 wt.% of Mg(CF3SO3)2 salt .  

 

 

 
 

Figure 1. Ionic conductivity (σ) of GPE films as a function of Mg(CF3SO3)2 salt concentration 
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In the present work, the value of conductivity increases until it reaches a maximum value of 

(1.27 ± 0.3 x 10
-3

)
 
S cm

-1
 when 20 wt.% of Mg(CF3SO3)2 salt has been added. The GPEs exhibits high 

ionic conductivity due to the presence of Mg(CF3SO3)2 salt dissolved in EC and PC, which is 

encapsulated in the matrix of PMMA [22]. The increase in the ionic conductivity with the increase of 

salt concentration can be related to the increase in the number of mobile charge carriers in the polymer 

electrolytes [23]. Further increase in concentration of Mg(CF3SO3)2 salt (25 wt.% and 30 wt.%), the 

conductivity decreased to order of 10
-4

 S cm
-1

. This result may be attributed to the ions aggregation, 

leading to the formation of ion pairs and ion aggregates, thus reduces the number of mobile charge 

carriers [24]. 

The conductivity-temperature dependence studies have been done on the GPEs containing 5 

wt.%, 20 wt.% and 30 wt.% of Mg(CF3SO3)2 salt. The films were sandwiched between two blocking 

electrodes and were subjected to a.c. impedance measurements in the temperature range from 303 K to 

373 K. Fig. 2 shows the plots are fairly linear with activation energy, Ea obtained from the films 

containing 5wt.%, 20wt.%, and 30wt.% of Mg(CF3SO3)2  are in the range between 0.18 and 0.26 eV.  

The regression value, R
2
 for the plot of log σ versus 1000/T is almost unity suggesting that the plot can 

be considered linear thus obeying the Arrhenius behavior. The low value of Ea suggests that ionic 

conduction is facile in GPE films due to the completely amorphous nature that facilitates the fast Mg
2+

 

ion motion in the polymer network. In this study, the value of Ea is a minimum of 0.18 eV for the 

highest conducting GPE film. The values of conductivity, σ and activation energy, Ea obtained in this 

present work are within the range that reported by other researchers as presented in Table 2.  

 

 
 

Figure 2. Temperature dependence of ionic conductivity of PMMA-EC-PC-Mg(CF3SO3)2 gel polymer 

electrolyte films for the film containing (a) 5wt.%, (b) 30wt.% and (c) 20wt.% of Mg(CF3SO3)2 

salt 
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Table 2. The conductivity and activation energy values of GPE films using various types of 

magnesium salt 

 

GPE composition Conductivity (Scm
-1

) Ea (eV) Reference 

PMMA+PC+Mg(ClO4)2 

 

1.59 x 10
-2 

(Resistivity,  = 62.8   

cm) 

0.21 

(19.8 

kJ/mol) 

[25], [26] 

 

PMMA+PC+Mg(ClO4)2 

 

2.38 x 10
-4 

(Resistivity,  = 4200   

cm)
 

0.21 

(19.8 

kJ/mol) 

[27] 

PMMA+PC+EC+ Mg(CF3SO3)2 4.20 x 10
-4 

0.038 [14] 

PAN+PC+EC+ Mg(CF3SO3)2 1.80 x 10
-3

 0.13 – 0.16 [22] 

PVdF-

HFP+EC+PC+Mg(ClO4)2+MgO 

8.0 x 10
-3

 0.235 [28] 

 

3.2. Transport Number 

The value of tion has been evaluated using Eq. (2) and found to be > 0.99 for each GPE film. 

This result indicates that the overall conductivity of the GPE film is predominantly ionic as shown in 

Fig. 3(a). The cationic transport number measurement is an important study to determine the 

performance of the GPE film from its application point of view, i.e. magnesium rechargeable batteries. 
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Figure 3. (a) The variation of current with respect to time across the cell SSGPESS (b) d.c. 

polarization curve of the cell MgGPEMg for the highest conducting GPE film. 

 

In this present work, the transport number of Mg
2+

 ions in the GPE films was measured using 

the combination of a.c. and d.c techniques, as described above. The d.c. polarization curve of the GPE 

film containing 20 wt.% of Mg(CF3SO3)2 salt  is shown in Fig. 3(b). The value of Mg
2+

 ions transport 

number has been calculated using Eq. (3) and the value has found to 0.38 for the highest conducting 

GPE film. This value is about the same that reported by Asmara et al. [19]. In their work, they obtained 

the value of Mg
2+

 ions transport number of 0.37 for 0.4 M Mg(CF3SO3)2 dissolved in a binary solvent 

of EC:DEC containing 40wt.% PMMA. Kumar et al. [14] obtained the value of Mg
2+

 ions transport 

number of 0.33 at room temperature for PMMA-based GPE using 0.5 g of Mg(CF3SO3)2 salt.  

 

3.3. FTIR Analysis 

 

Table 3. Assignment of triflate anion (CF3SO3)
-
 [19, 29-32] 

 

FTIR bands Wavenumber(cm
-1

) Assignment 

SO3 symmetric 

stretching SO3 

symmetric stretching 

 

SO3 symmetric 

stretching 

SO3 symmetric 

stretching 

1032 

1040 

 

1051 

1062 

free triflate ions 

Ion pairs; [Mg(CF3SO3)2], 

[Mg(CF3SO3)2]2
-
,  [Mg(CF3SO3)2]3

2- 

[Mg2(CF3SO3)2]
+
  aggregate

 

[Mg3(CF3SO3)2]
2+

 aggregates
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As discussed in the results of ionic conductivity, the increases in room temperature ionic 

conductivity of GPE films is dependent on the number of charge carriers while the decreases in 

conductivity are probably due to the formation of ion pairs and ion aggregates. 
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Figure 4. Symmetric SO3 mode for GPE films containing (a) 5wt.%  (b) 20wt.% and (c) 30wt.% of 

Mg(CF3SO3)2 salt  

 

FTIR spectroscopic measurements were carried out to investigate the presence of free ions, ion 

pairs and ion aggregates in the GPE films with various concentrations of magnesium triflate salt. 

Table 3 summarizes the assignments for FTIR bands of triflate anion (CF3SO3)
-
. Jeong et at. 

[30] reported that the distinctions between free ions, ion pairs, ion aggregates and large ion aggregates 

can be observed from the FTIR spectra of triflate anion. According to them, ion association occurs at 

the SO3 end of the anion and the symmetric SO3 mode is highly sensitive to change in the coordination 

state of the anion. Fig. 4 (a)-(c) display the FTIR spectra of GPE films containing 5 wt.%, 20 wt.% and 

30 wt.% Mg(CF3SO3)2 salt in the wavenumber region from 1000 to 1100 cm
-1

. In all spectra, it can be 

observed four decomposed bands that peak at approximately 1030, 1041, 1051 and 1071 cm
-1

 which 

assigned to free ions, ion pairs, ion aggregates of triflate anion and ring breathing of a binary solvent 

(EC:PC), respectively. The amount of the entities i.e free ions, ion pairs and ion aggregates were 

represented by the area of each band. 

Fig. 5 and 6 show the relationship between the conductivity and area of free ions band and ion 

aggregates band as a function of Mg(CF3SO3)2 salt concentration, respectively. It is to be noted that in 

this work, the amount of PMMA and the plasticizing solvent, (EC+PC) are fixed. In Fig. 5, it can be 

observed that at salt concentrations above 20 wt.% the area of free ions band decreased with increasing 

salt concentration, while in Fig. 6, the area of ion aggregates increased. The curves of ion pairs and ion 

aggregates are similar with that reported by Asmara et al. [19] for PMMA-(EC+DEC)-Mg(CF3SO3)2 

gel polymer electrolytes. The free ions curve exhibits a maxima and the ion aggregates curve exhibits a 

minimum at 20 wt.% salt concentration, i.e. the highest conducting GPE film. As salt concentration 
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increases from 5 wt.% to 20 wt.%, the plasticizing solvent, EC and PC play a vital role in dissociating 

ion aggregates into mobile ions.  

 

 
Figure 5. The relationship between area under assigned decomposed free ions band with conductivity 

as a function of Mg(CF3SO3)2 salt concentration 

 

            
 

Figure 6. The relationship between area under assigned decomposed ion aggregates band with 

conductivity as a function of Mg(CF3SO3)2 salt concentration 
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In these GPE films, the amount of free ions is much higher (up to 3 times) than ion aggregates 

as can be seen in Figure 5 and 6. However, above 20 wt.% salt concentration ion association becomes 

significant compared to dissociation. Therefore, on addition of 25 wt.% and 30 wt.% Mg(CF3SO3)2 

salt, the decrease in conductivity can be explained by the decrease in free ions and the increase in ion 

aggregates. The results presented in Fig. 5 and 6 can be correlated with the curve of conductivity-

Mg(CF3SO3)2 salt concentration (Fig. 1). Thus, FTIR studies have shed some light on the variation of 

conductivity with the Mg(CF3SO3)2 salt concentration. 

 

 

 

4. CONCLUSIONS 

The magnesium ion conducting gel polymer electrolytes consisting of magnesium triflate salt 

dissolved in a plasticizing solvent, EC and PC, immobilized in a host polymer PMMA have been 

synthesized and characterized. The highest room temperature ionic conductivity of 1.27 x 10
-3

 S cm
-1

 

is obtained from the GPE film containing 20 wt.% of Mg(CF3SO3)2 salt. The temperature-dependence 

study shows that it follows the Arrhenius relationship with activation energy of 0.18 eV. The Mg
2+

 

ions transport number has been evaluated using a combination of a.c. impedance and d.c. polarization 

techniques and the value is found to be 0.38 for the highest conducting GPE film. FTIR studies proved 

the increased in conductivity is due to the increase of free ions and decrease in ion aggregates. 
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