
  

Int. J. Electrochem. Sci., 8 (2013) 4924 - 4940 

 

International Journal of 

ELECTROCHEMICAL 
SCIENCE 

www.electrochemsci.org 

 

 

Evaluation of the Corrosion Inhibition Performance of Silane 

Coatings Filled with Cerium Salt-Activated Nanoparticles on 

Hot-Dip Galvanized Steel Substrates 
 

Roohangiz Zandi Zand
1
, Kim Verbeken

2
, Annemie Adriaens

1,* 

1
Department of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, B-9000, Ghent, Belgium 

2
Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 

Zwijnaarde (Ghent), Belgium 
*
E-mail: annemie.adriaens@ugent.be 

 

Received:  22 January 2013  /  Accepted:  12 March 2013  /  Published: 1 April 2013 

 

 

The present work investigates the morphological and electrochemical behavior of hot-dip galvanized 

(HDG) steel substrates that were pre-treated with 3-glycidoxypropyltrimethoxysilane (GPTMS) and 

bisphenol A (BPA) modified with cerium ion-activated CeO2 nanoparticles. The morphology of the 

coatings before and after the corrosion test was examined using atomic force microscopy (AFM) and 

scanning electron microscopy (SEM). The results indicated the formation of a comparatively smooth, 

nanostructured surface, with a small heterogeneity in the coating thickness. Microscopic observations 

also confirmed that the integral surface morphology of the silane coating filled with activated CeO2 

nanoparticles was maintained after short-term corrosion tests (144 h). The corrosion behavior of the 

sol–gel coatings was investigated using natural salt spray tests, electrochemical impedance 

spectroscopy (EIS), and potentiodynamic polarization tests. The results showed that the presence of the 

nanoparticles reinforced the barrier properties of the silane films, and a synergy seemed to be created 

between the activated nanoparticles and the cerium ions, reducing the corrosion activity. 
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1. INTRODUCTION 

Zinc coatings are predominantly used for an improved aqueous corrosion resistance of steel by 

two mechanisms, namely barrier and galvanic protection. On the one hand, the zinc coating serves as a 

barrier between the steel substrate and the corrosive environment. Consequently zinc will be attacked 

before steel. On the other hand, since zinc is less noble, i.e. more anodic than iron at ambient 

conditions, it will also offer galvanic protection as zinc will sacrificially corrode to protect the steel 

substrate, even if steel is exposed at cut edges or at scratches. Typical processing methods used to 
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apply Zn-based coatings include hot-dip galvanizing (HDG), thermal spraying and electro deposition. 

HDG is the immersion of a steel compound in a molten bath of zinc or a zinc-alloy. Both batch and 

continuous processing methods are industrially available [1]. An extensive overview of the metallurgy 

of zinc coated steels can be found in the review of Marder [2].  

The corrosion resistance of HDG steel can be improved by the application of coatings [2]. One 

approach to improve corrosion resistance of HDG steel is based on hybrid organic–inorganic coatings 

[3-4]. This approach combines the advantages of the inorganic and organic components. The organic 

constituent provides flexibility, reduces defectiveness, and improves the compatibility with the 

polymer coatings, while the inorganic part is responsible for the superior adhesion to the metal surface 

and the high ductility. Moreover, these coatings can be applied at relatively low temperatures. 

The anticorrosive properties of hybrid organic–inorganic coatings can be improved by the 

incorporation of nanoparticles in the coating [5-18]. The nanoparticles can be synthesized in the films, 

as demonstrated for sol–gel coatings [9-11], or they can be added to the pre-treatment solutions [13]. 

The corrosion resistance of Mg alloys, pre-treated with sol–gel coatings containing ZrO2 and CeO2 

nanoparticles, has been investigated previously, and it was reported that the CeO2 component provided 

enhanced corrosion protection, while ZrO2 imparted corrosion resistance and wear resistance [19]. 

Van Ooij and co-workers [14] reported that bis-sulfur silane films could be thickened and 

strengthened by loading them with silica particles. However, when the bis-sulfur silane film was 

heavily loaded with silica, it tended to form a porous film, which promoted electrolyte intrusion and 

premature film delamination. The addition of SiO2 nanoparticles to silane films electrodeposited on 

aluminum also revealed beneficial effects, and a “critical content” of nanoparticles was proposed [15]. 

The results obtained in these studies focused mainly on the role of the nanoparticles in the barrier 

properties of the film, and little attention was given at the role of the nanoparticles in the 

electrochemical processes involved in the corrosion processes of metallic substrates [9]. 

Ceria nanoparticles are versatile materials that have found applications in many different fields, 

including catalysis [20], ceramics [21], fuel cells [21] sensors [22-23], biomaterials [24], cosmetics [8], 

and coatings [25-26]. With respect to coatings, ceria nanoparticles have shown to improve wear and 

corrosion resistance in acidic media [26]. NiAl intermetallic coatings containing CeO2, in comparison 

with the coating without CeO2, exhibited higher hardness, an improved elastic modulus, fewer defects, 

and decreased porosity [27]. Ce2O3–CeO2 layers showed a pronounced stabilizing effect on the passive 

state of steel and its corrosion resistance in a sulfuric acid medium, which allows these coated steels to 

be used as construction materials for reactors neutralizing sulfuric acid-containing emissions [28]. It 

has also been reported that nano-CeO2 and nano-SiO2 particles increased the thermal stability of Ni–

W–P alloy coatings at high temperatures, and improved their micro-hardness [29]. 

Previous work has reported the protective nature of silane coatings modified with CeO2 

nanoparticles and cerium nitrate [30-32]. The results demonstrated that ceria nanoparticles were very 

effective fillers; they led to improved barrier properties in the silane coatings, and improved the 

corrosion inhibition. It was established that the positive impact on both the barrier properties and the 

corrosion inhibition was significantly improved by modifying the silane solution with cerium nitrate. 

The presence of cerium nitrate reinforced the barrier properties of the silane films, reducing the 

corrosion activity and improved self-healing the corroded areas. 
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The present work reports and discusses the protective behavior of silane films loaded with 

CeO2 nanoparticles. The nanoparticles were activated with cerium ions to improve the corrosion 

resistance of the galvanized steel substrates. The morphological features of the coated substrates were 

evaluated before and after corrosion tests using atomic force microscopy (AFM) and scanning electron 

microscopy (SEM). The corrosion behavior of the sol–gel coatings was investigated using natural salt 

spray tests, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization tests. 

The results obtained in the present work show that the activation of the nanoparticles with cerium ions 

leads to the formation of thicker and more protective silane films. 

 

 

2. EXPERIMENTAL 

2.1. Sample preparation 

Ceria nanoparticles (10 wt% in water, particle size < 25 nm, Sigma Aldrich) were 

ultrasonically dispersed in an aqueous solution of cerium nitrate (Fluka), to obtain concentrations of 

0.025 M for the nanoparticles, and 0.025 M for the cerium nitrate. This aqueous dispersion was then 

used to prepare what will be called the “silane solution containing activated CeO2 nanoparticles” in the 

remaining part of the paper. 

Another set of ceria nanoparticles was ultrasonically dispersed in water at a concentration of 

0.05 M. This aqueous dispersion was used to prepare what will be called the “silane solution 

containing CeO2 nanoparticles” in the remaining part of the paper. 

The silane solution was prepared by adding 4.084 mL of 3-glicidoxypropyltrimethoxy silane or 

GPTMS (Merck) to 0.5 mL of HCl-acidified water (pH = 2) (H2O/Si mole ratio = 0.5 [33]). The 

solution was placed in a sealed beaker and stirred at room temperature for 20 min at a rate of 240 rpm, 

to hydrolyze and condensate the silane precursors. The aqueous dispersion of ceria nanoparticles was 

added at the end of this synthesis step, and this was followed by stirring for 10 min. In the following 

step, 2.111 g of bisphenol A (BPA) (Merck) was added to the solutions as a cross-linking agent 

(BPA/Si mole ratio = 0.5). The latter has been shown to realize a significant effect on the morphology 

and improvement of the corrosion resistance of coatings [30]. The BPA was dissolved by mixing the 

solution for 80 minutes. To accelerate the condensation reaction, 0.0152 mL of 1-methylimidazol (MI) 

(Merck) (MI/Si mole ratio = 0.01) was added to the solution, which was followed by stirring for 5 min. 

The result was a clear and colorless homogenous solution.  

Identical silane solutions were prepared with and without cerium nitrate, to obtain the so-called 

“cerium modified and non-modified silane coatings”. The Ce/Si mole ratio was 0.05. 

The metallic substrate consisted of hot dip-galvanized steel coupons (4.98 cm
2
 area and 0.1 cm 

thickness for the AFM, SEM, and electrochemical tests) and plates (7 × 15 × 0.1 cm for the salt spray 

tests). The zinc coating had a weight of approximately 140 g/m
2
, and a thickness of approximately 10 

µm. The galvanized steel specimens were degreased using an alkaline cleaner. After cleaning, the 

substrates were washed with distilled water, dried in air, and immersed in the silane solution for 60 s. 

The coated specimens were dried at room temperature for 24 h, and subsequently submitted to a 25–

130°C curing process for 90 minutes, to initiate extensive cross-linking in the hybrid films [34].  
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2.2. Analytical methods 

Atomic force microscopy (AFM) images were obtained under ambient conditions using a 

Multimode scanning probe microscope (Digital Instruments – USA) equipped with a Nanoscope IIIa 

controller. Ten-micron scans were recorded in tapping mode, using a silicon cantilever (OTESPA – 

Veeco). Nanoscope software version 4.43r8 was used to analyze the surface roughness after the 

recorded images were modified using an X and Y Plane Fit Auto procedure. 

Electrochemical impedance measurements (EIS) and potentiodynamic polarization tests were 

carried out to monitor the corrosion performance of the silane-treated galvanized steel substrates in a 

3.5% NaCl solution, using an Autolab PG-STAT 20 potentiostat equipped with a frequency response 

analyzer module. A three-electrode system was used, in which an Ag/AgCl KClsat electrode, a 

platinum mesh electrode, and the sample were used as reference, counter, and working electrodes, 

respectively. The EIS measurements were performed at the open circuit potential. The data were 

obtained as a function of frequency (frequency range of 10
5
 Hz to 10

–2
 Hz), using a sine wave with a 

peak-to-peak amplitude of 10 mV. All EIS measurements were carried out at room temperature, the 

samples were immersed in the electrolyte solution for 30 min before the data were acquired, and 

measurements were performed periodically. For each experiment, the measurements were repeated 

four times. Impedance fitting was performed using the appropriate equivalent circuits, in Z-view 

software (Scribner Associates Inc.). 

The potentiodynamic measurements were performed within the range of –1500 to 1000 mV 

versus Ag/AgCl KClsat, at a rate of 1 mV/s. These measurements were also performed four times. The 

Tafel extrapolation method (conducted according to the ASTM Standard G3-89, 2004) [36] was used 

to determine Icorr and Ecorr. 

Scanning electron microscopy (SEM) measurements were performed using an XL30 SEM 

microscope (FEI) equipped with energy dispersive X-ray spectroscopy. The aim was to characterize 

the microstructure, obtain qualitative chemical composition, and thickness of the coated substrates 

before and after the electrochemical impedance spectroscopy measurements (144 h of immersion in a 

3.5% NaCl solution). Secondary electron images were collected at 20 kV. 

The corrosion performance of the coated substrates was evaluated in a neutral salt spray test 

that followed the ASTM B117 procedure [35], using a 5% NaCl solution. Prior to exposure, the back 

and the edges of the plates were covered with adhesive tape. An artificial scratch that reached the 

substrate was made in the coating, to examine possible delamination. Visual assessment of the 

macroscopic surfaces was carried out at various time intervals throughout the total exposure time (144 

h). 

 

3. RESULTS AND DISCUSSION 

3.1. Atomic force microscopy studies 

Figure 1 presents AFM (a, c, e, g) top view and (b, d, f, h) topographic images taken of the 

HDG steel specimen coated with non-modified and cerium-modified silane coatings. The image in 

Figure 1a revealed a comparatively smooth nanostructured surface with a root mean square (RMS) 
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surface roughness of 0.608 nm. The image did not show much color contrast, which suggested low 

levels of heterogeneity in the coating thickness, and good distribution of the silica particles. However, 

the image in Figure 1b, which showed substrate features, revealed some large particles that likely 

resulted from the agglomeration of smaller particles on the surface [37-38]. These images were used as 

references to examine the changes in the surface morphology that occurred after the addition of the 

cerium dopant and the nanoparticles. In the case of the silane coating modified with Ce(NO3)3, the 

images (Figure 1c and d) revealed a smooth nanostructured surface with an RMS surface roughness of 

0.402 nm. Interestingly enough, the rather low color contrast in Figure 1c suggested limited 

heterogeneity in the coating thickness. In addition, no agglomerates were present on the surface. 

For the coating modified with CeO2 nanoparticles, the image (Figure 1e) revealed the presence 

of a number of CeO2 nanoparticles uniformly distributed in the silane coating, which had an RMS 

roughness of 8.421 nm. Some agglomerates were also visible on the topographic image (Figure 1f). 

Furthermore, there was a sharper color contrast in the topographic image, suggesting larger height 

differences. The color contrast was uniformly distributed throughout the image, which indicated the 

heterogeneity of the coating thickness; this was also observed by Phanasgaonkar et al. [38]. 

Figure 1g shows a top-view image of the silane film filled with activated CeO2 nanoparticles. 

The image revealed the presence of a number of CeO2 nanoparticles uniformly distributed in the silane 

coating, which had an RMS roughness of 6.210 nm. The figure did not show much color contrast, 

which indicated the lower heterogeneity of the coating thickness. In addition, the topographic image 

(1h) showed that the outer surface layers of this coating contained particles and agglomerates with 

nanometer-scale dimensions. These results suggest that addition of cerium ions altered the surface 

morphology of the coating modified with non-activated CeO2 nanoparticles. 

 

3.2. Surface microstructure before and after electrochemical impedance spectroscopy tests 

SEM analysis was used to investigate the effects of the CeO2 nanoparticles on the 

microstructure and qualitative chemical composition of the intact cerium-modified and non-modified 

silane coatings. Figure 2a shows the typical blank silane coating surface prior to immersion in a 3.5% 

NaCl solution. The coating appeared to be uniform, defect and crack-free. However, several white 

agglomerates appeared in the coating matrix, which were identified by EDX as being Si-rich (Figure 

2b). It is likely that these features were clusters of nanoparticles formed in the outermost layers of the 

silane film [39-40]. The coatings doped with cerium nitrate and cerium oxide nanoparticles contained 

many particles of different sizes (Figure 2c and d, respectively). These particles were equally 

distributed in the coatings, and no micro-scale pores or cracks were observed. In the case of the silane 

film filled with CeO2 nanoparticles activated with cerium ions (Figure 2e), silica agglomeration was 

detected, but at lower levels, and with smaller particles compared to the blank silane film. EDX 

analysis of this region (Figure 2f) clearly showed the presence of cerium and silicon peaks. These 

results indicated that the addition of activated CeO2 nanoparticles led to the decomposition of the 

silane chains and a reduction in the size of the particles in the sols [38, 39].  
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Figure 1. AFM top-view (a, c, e, g) and topographic images (b, d, f, h) of the HDG steel samples 

coated with blank silane (a, b), Ce(NO3)3.6H2O (c, d), CeO2 nanoparticles (e, f), and CeO2 + 

Ce(NO3)3.6H2O (g, h).  

(a) 
(b) 

(c) 
(d) 

(e) (f) 

(g) (h) 
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Figure 2. Scanning electron micrographs (a, c, d, e) and EDX spectrum obtained from the indicated 

regions (b, f) of the HDG steel samples coated with blank silane (a, b), Ce(NO3)3.6H2O (c), 

CeO2 nanoparticles (d), and CeO2 + Ce(NO3)3.6H2O (e, f) prior to immersion in a 3.5% NaCl 

solution. 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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The thickness of the silane films was also determined using SEM. The silane coatings modified 

with cerium nitrate and cerium oxide nanoparticles showed thicknesses of approximately 2.16 and 4.97 

µm, respectively. These values increased to approximately 6.77 µm for the films filled with CeO2 

nanoparticles activated with cerium ions. All modified films were thicker than the blank silane film, 

which showed a thickness of approximately 1.89 µm. These results suggested that a thicker or better 

cross-linked coating layer was formed in the presence of the activated cerium nanoparticles, as was 

also observed by Montemor et al. [19] and Garcia-Heras et al. [41]. This modification in the coating 

matrix can provide improved resistance to the oxidation of the substrate [38]. 

 

 

 

 

 

 

 

Figure 3. Scanning electron micrographs of the HDG steel samples coated with blank silane (a), 

Ce(NO3)3.6H2O (b), CeO2 nanoparticles (c), and CeO2 + Ce(NO3)3.6H2O (d) after 144 h of 

immersion in a 3.5% NaCl solution. 

 

The SEM images for the non-modified and cerium-modified silane coatings obtained after the 

electrochemical impedance spectroscopy tests are shown in Figure 3. The morphologies of the samples 

indicated the ability of the sol–gel coatings to protect the HDG steel substrates. After 144 h of 

immersion in a 3.5% NaCl solution, localized corrosion was observed for all coatings, which consisted 

of the exfoliation of the corrosion products and cracks of different sizes. These localized attacks 

promoted the deterioration and delamination of the hybrid film, possibly due to hydrolysis reactions at 

(a) (b) 

(c) (d) 

Cracks 

 

Crack 
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the interface. Additionally, the diffusion of the oxidant ions became faster, and the corrosion rate 

increased, causing an accumulation of corrosion products at the interface, and at the same time 

promoting the formation of defects and micro-cracks [32]. However, the SEM results showed that the 

barrier properties of the films containing the activated nanoparticles (Figure 3d) were improved, likely 

as a consequence of the increased film thickness. The presence of the cerium ions also promoted the 

formation of reactive silanol groups in the silane molecules, leading to a higher degree of cross-

linking, higher silicon content, and therefore more homogeneous films with better barrier properties, as 

has been confirmed by Montemor et al. [19]. 

 

3.3. Performance in salt spray tests 

 

  

 

 

 

Figure 4. Photographs of the HDG steel samples coated with blank silane (a), Ce(NO3)3.6H2O (b), 

CeO2 nanoparticles (c), and CeO2 + Ce(NO3)3.6H2O (d), after 144 h of salt spray exposure.  

(b) 

(c) (d) 

(a) 

2 cm 
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To detect possible differences among the differently modified silane films, salt spray testing 

was performed. Figure 4 presents the qualitative results of the exposure after 144 h. At the initial 

stages of exposure, all coatings showed the sacrificial dissolution of zinc in the artificially scratched 

area. As the salt spray analysis progressed, the breakdown of the coating layers progressed, and this 

was followed by the degradation of the zinc coatings, resulting in the formation of white rust [42].  

For the blank silane-coated substrate, delamination increased rapidly with increasing salt spray 

exposure time. After modification of the silane coating, the delamination still increased with exposure 

time, but at markedly reduced rates. For example, for the silane coating filled with activated CeO2 

nanoparticles, comparatively little delamination was observed after exposure to the neutral salt spray 

for 144 h. This indicated the stable nature and barrier protection characteristics of the coating. 

 

3.4. Electrochemical impedance spectroscopy 

Figure 5a and c shows the electrochemical impedance spectra obtained on the galvanized steel 

substrates pre-treated with the non-modified and Ce(NO3)3-modified silane films, respectively. The 

results showed that the impedance values were higher for the film containing cerium nitrate. 

Furthermore, in the presence of cerium nitrate, the values for the total impedance remained 

approximately constant during the experiment (144 h in 3.5% NaCl solution). This effect was due to 

both the better barrier properties, and the corrosion inhibition abilities, as reported in a previous study 

[30]. 

The EIS Bode plots obtained for the silane coatings filled with CeO2 nanoparticles are shown in 

Figure 5e and g. The total impedance of the system was lower for the system containing only CeO2. 

The addition of cerium ions led to a significant increase in the impedance. For example, after 24 h of 

immersion, the total impedance of the CeO2-plus-cerium system was more than two orders of 

magnitude higher than that of the system filled with only CeO2. This trend was also noted in previous 

literature [9, 19], and was attributed to the fact that nanoparticles are likely to agglomerate and create 

large defects in the coating, promoting the uptake of the aggressive solution, and therefore promoting 

corrosion activity. The activation of the nanoparticles with cerium ions enhanced the protective 

properties of the modified silane films by increasing the film thickness and/or reducing the porosity 

[19]. 

The shape of the phase angle plot indicated the presence of two time constants (Figure 5b, d, f, 

h), which were attributed to the response of the silane film (high frequency process), and the response 

of the processes occurring at the silane film/substrate interface (low frequency time constant). 

A more detailed interpretation of the EIS results can be made by numerical fitting, using the 

equivalent circuit depicted in Figure 6. In this equivalent circuit, constant phase elements were used 

instead of pure capacitors, because of the non-ideal character of the corresponding response with phase 

shifts differing from –90°. 
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Figure 5. EIS Bode modulus (a, c, e, g) and phase angle (b, d, f, h) plots obtained on the HDG steel 

samples pre-treated with the blank silane coating (a, b), Ce(NO3)3.6H2O (c, d), CeO2 

nanoparticles (e, f), and CeO2 + Ce(NO3)3.6H2O (g, h) during 144 h of immersion in a 3.5% 

NaCl solution. 

(b) (a) 

(c) (d) 

(e) 
(f) 

(g) (h) 
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Figure 6. Equivalent circuit used for the numerical fitting of the EIS data during immersion in a 3.5% 

NaCl solution. 

 

The true capacitances were then calculated from the respective CPE parameters, as described 

elsewhere [30]. Thus, for the equivalent circuit shown in Figure 6, Rs is the resistance of the 

electrolyte; CPEC and RC represent the capacitance and resistance of the hybrid coating, respectively; 

CPEdl is the capacitance of the electrochemical double layer at the metal/electrolyte interface; and Rct 

is the charge transfer resistance of the metal. 

 

  

Figure 7. Evolution of the coating resistance (a), and coating capacitance (b), during immersion in a 

3.5% NaCl solution. Values were obtained by numerical fitting, using the equivalent circuit 

depicted in Figure 6. 

 

Figure 7 shows the evolution of the coating properties (i.e. the resistance and capacitance) as a 

function of immersion time. Generally, the high-frequency resistance values (Figure 7a) showed a 

decrease during the first hours of immersion, due to the development of conductive pathways inside 

the blank silane film [8]. After the start of immersion, the highest resistance was observed for the 

coating modified with Ce(NO3)3; this was followed by a sharp drop after a few hours. For the coating 

with non-activated CeO2 nanoparticles, the high frequency resistance passed through a maximum, and 

then started to decrease. The initial increase of the high-frequency resistance values in the last two 

systems was attributed to swelling of the matrix and the consequent closing of nano/micro pores [43]. 

(a) (b) 
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The evolution of the high-frequency resistance for the system filled with activated CeO2 

nanoparticles showed a more gradual increase. During the first hours of immersion, the EIS response 

was nearly capacitive over the entire frequency range, and the resistance values were above 233 Ω 

cm
2
. The resistance slowly increased during the experiment and after 144 h (6 days) the resistance 

showed a significant increase. Compared with the blank silane film, the modified silane films showed 

significantly improved barrier properties. 

The evolution of the coating capacitance is shown in Figure 7b. The silane coating filled with 

activated CeO2 nanoparticles had the lowest capacitance of the four systems examined over the 144 h 

of immersion, and had the largest coating thickness. Further, the capacitance showed relatively 

consistent values during immersion, with only a small increase after 96 h of immersion; this was 

associated with uptake of the electrolyte [9, 43]. In contrast, after 96 h of immersion, a significant 

increase in film capacitance was observed for the sample pretreated with the blank silane film, as a 

result of the water uptake that occurred due to the reduced barrier properties of the film [9]. 

The evolution of the high frequency fitting parameters indicated that the addition of 

nanoparticles reinforced the barrier properties of the film. The addition of cerium to the nanoparticles 

markedly influenced the capacitance and resistance of the coatings, and then systems filled with 

cerium-activated CeO2 nanoparticles were more protective than the other systems. These results were 

in accordance with Schem et al.’s work on aluminum alloys with a silane coating filled with CeO2 

nanoparticles [43], and Montemor et al.’s work on galvanized steel with silane coatings doped with Ce 

salt-activated nanoparticles [9].  

 

 

  

Figure 8. Evolution of the double layer capacitance (a) and the transfer resistance (b) during 

immersion in a 3.5% NaCl solution. Values were obtained by numerical fitting using the 

equivalent circuit depicted in Figure 6. 

 

The evolution of the fitting parameters associated with the low frequency behavior of the EIS 

spectra (Figure 8) gave information on the electrochemical activity at the silane/zinc interface. For the 

(a) (b) 
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system pre-treated with the silane coating, the initial CPE values (Figure 8a) were of the order of 

0.0187 F cm
−2

. During 96 h of immersion, the CPE values increased and then stabilized at 

approximately 0.1402 F cm
−2

. This agreed with the evolution of the low frequency resistance (Figure 

8b) of the blank silane films, which showed a gradual decrease during the 96 h of immersion, from 

39.81 Ω cm
2
 to 20.24 Ω cm

2
; the resistance then stabilized at approximately 34.42 Ω cm

2
.  

Distinctive behavior was observed in the systems modified with CeO2. In the absence of cerium 

ions, after 96 h of immersion, the CeO2-filled system showed CPE values of approximately 0.0438 F 

cm
−2

, and resistances that increased from 92.54 Ω cm
2
 (during the first hour of immersion) to 

approximately 166.20 Ω cm
2
. After 144 h of immersion, the CPE and the resistance had increased by 

small amounts to 0.0129 F cm
−2

 and 106.60 Ω cm
2
, respectively. The activation with cerium ions had 

significant effects on both the low frequency CPE and the resistance. During the 96 h of immersion, 

the CPE values were below 9.7601 × 10
–3

 F cm
−2

, and the resistances increased to over 318.80 Ω cm
2
. 

As the immersion time elapsed, there was a gradual decrease in resistance. Finally, the resistance and 

CPE values approached the values observed for the silane coating modified with Ce(NO3)3. The low 

frequency resistance increased with immersion time, indicating that the cerium oxide/hydroxide was 

stably formed with the release of Ce(NO3)3 from the sol–gel matrix [44]. The low frequency resistance 

value slowly increased to close to 170.62 Ω cm
2
 after 144 h of immersion, indicating the continuous 

accumulation of the cerium oxide/hydroxide over the immersion period. In addition, the CPE value 

increased gradually to approximately 0.0301 F cm
−2

 after 144 h of immersion, four orders of 

magnitude lower than the value measured for the blank silane coating, suggesting that the inhibition 

products had filled the originally electrolyte-saturated pores at the coating/substrate interface [44]. 

In some cases, the evolution of the low frequency resistance showed an increase after a few 

hours, accompanied by a decrease in the CPE. Since the corrosion activity occurred in localized areas, 

it is likely that the precipitation of the insoluble and passive corrosion products occurred at these 

locations, decreasing the corrosion activity at the interface [9]. In fact, the most pronounced changes 

were observed for the blank silane film, which was the one that presented the poorest barrier properties 

and was therefore the most prone to early corrosion attack, as was observed by Montemor et al. [9].  

 

3.5. Potentiodynamic polarization results 

The polarization curves of the specimens, which were recorded after 1 h of immersion in the 

electrolyte, are illustrated in Figure 9. The corrosion current (icorr) and corrosion potential (Ecorr) were 

determined using Tafel extrapolation [36, 39]. The relevant parameters (Table 1) indicate the different 

effects of the cerium modification on the icorr and Ecorr of the silane coatings. There were two notable 

differences in the curve’s features for the samples pre-treated with the blank silane film and the 

samples treated with the silane film filled with activated CeO2 nanoparticles. One of the differences 

was the large shift in the Ecorr value to a less negative value, and the other was related to the marked 

reduction in the cathodic current density (A/cm
2
). The difference in Ecorr directly reflected the degree 

of coverage of the coating over the entire substrate [45]. The good coverage provided a continuous 

nanoporous coating layer, and caused the shift of the Ecorr value to a more positive value. The 

difference in the cathodic current density was attributed to the inhibiting aspects of the cathodic 
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reaction at the corrosion site, particularly the oxygen reduction reaction [45, 46]. Similar behavior has 

been reported by Montemor et al. [9] for galvanized steel substrates in a 0.005 M NaCl solution.  

 

 

Figure 9. Potentiodynamic polarization curves for the HDG steel samples coated with blank silane, 

Ce(NO3)3.6H2O, CeO2 nanoparticles, and CeO2 + Ce(NO3)3.6H2O, obtained after 1 h of 

immersion in a 3.5% NaCl solution. For comparative purposes, the inset shows a plot in which 

the potential is depicted as the difference between the imposed potential and the corrosion 

potential. This approach allows a better separation of the anodic and cathodic polarization 

effects. 

 

 

Table 1. Summary of the electrochemical parameters obtained from the polarization, measured in a 

3.5% NaCl solution. 

 

Sample Ecorr (V) Icorr (A cm
-2

) bc (V/dec) ba (V/dec) Passive area (V) 

Blank silane -0.974 3.577 × 10
-5

 0.06 0.093 -0.792 to -0.241 

Ce(NO3)3 -0.959 3.224 × 10
-6

 0.022 0.022 -0.832 to -0.320 

CeO2 -0.987 4.904 × 10
-6

 0.031 0.026 -0.677 to -0.262 

CeO2 + Ce(NO3)3 -0.934 1.116 × 10
-6

 0.015 0.012 -0.809 to -0.327 
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4. CONCLUSIONS 

Pre-treatments of hot dip-galvanized steel based on the use of 3-

glycidoxypropyltrimethoxysilane (GPTMS) and bisphenol A (BPA) filled with activated CeO2 

nanoparticles revealed the formation of a comparatively smooth nanostructured surface, with low 

heterogeneity in the coating thickness. Microscopic observations also confirmed that the complete 

surface morphology of the silane coating filled with activated CeO2 nanoparticles was maintained after 

short-term corrosion tests (144 h immersion in 3.5% NaCl solution). These coatings resisted the salt 

spray exposure for 144 h, with reduced corrosion near an artificial scratch, and uniform corrosion 

otherwise, which contrasted with the blank silane coating. 

Upon the addition of activated CeO2 nanoparticles as a dopant, the silane coating showed 

improved barrier properties and coating resistance, and a decrease in coating capacitance. The 

incorporation of activated CeO2 nanoparticles reduced the cathodic current density by two orders of 

magnitude, and shifted the voltage to more positive values (compared with the blank silane-coated 

substrate) during polarization in a 3.5% NaCl solution.  
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